JPS61251530A - Production of glass coated shell granule - Google Patents

Production of glass coated shell granule

Info

Publication number
JPS61251530A
JPS61251530A JP9434885A JP9434885A JPS61251530A JP S61251530 A JPS61251530 A JP S61251530A JP 9434885 A JP9434885 A JP 9434885A JP 9434885 A JP9434885 A JP 9434885A JP S61251530 A JPS61251530 A JP S61251530A
Authority
JP
Japan
Prior art keywords
granules
glass
core material
pearlite
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9434885A
Other languages
Japanese (ja)
Other versions
JPH0146457B2 (en
Inventor
Shigenari Hayata
早田 重成
Kimimichi Masui
増井 公道
Shinpei Nakayama
中山 新平
Tetsuya Nishi
哲也 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP9434885A priority Critical patent/JPS61251530A/en
Publication of JPS61251530A publication Critical patent/JPS61251530A/en
Publication of JPH0146457B2 publication Critical patent/JPH0146457B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain lightweight granules having low water absorption and improved strength, by coating the surface of core material of granule of perlite raw ore with glass powder through a binder and heating the coated material so that the core material is expanded and sintered to the glass powder layer. CONSTITUTION:Perlite raw ore is ground to form granules, the granules are used as a core material, a binder is stuck to the surface of the core material and the surface is coated with glass powder which contains optionally a blowing agent. Then, the granulated material is dried, heat-treated, the granule of perlite raw ore which becomes the core material is expanded in the final process, so that the glass powder layer is sintered to the core material. Consequently glass coated shell granule which makes the most of characteristics of non-combustible particle of perlite which becomes the core material, having suppressed water absorption and bulk density and extremely improved crushing strength is easily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土木・建築資材関係その他の用途において使
用される断熱材、保温材、各種壁材や骨材等の素材とし
て有用な軽量のガラス殻被覆粒体の製造法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a lightweight material useful as a material for heat insulating materials, heat retaining materials, various wall materials, aggregates, etc. used in civil engineering, construction materials, and other uses. The present invention relates to a method for producing glass-shelled granules.

〔従来技術〕[Prior art]

ガラスを素材とした比較的軽量の粒状成形体を得る方法
としては、従来より、ガラス粉末と分解型発泡剤粉末と
を混合し、これに結合剤を加えて造粒させた後、この造
粒物を加熱してガラス粉末を溶融焼結しつつ発泡させて
球状のガラス発泡粒を得る方法が知られている。
Conventionally, the method for obtaining relatively lightweight granular molded bodies made of glass is to mix glass powder and decomposable blowing agent powder, add a binder to the mixture, granulate it, and then process the granulated product. A method is known in which glass powder is foamed while being heated to melt and sinter it to obtain spherical foamed glass particles.

然るに、上記の方法により製造されたガラス発泡粒は単
一構造を有するので、強度が小さく且つ嵩密度の大きい
ものであった。またガラス発泡粒自体が単一構造を有す
るから、その粉末粒子から成長させて造粒するのに長時
間を要するばかりか、均一な大きさの造粒物を得ること
が甚だ困難であって、粒度分布が広範囲となり、所望の
粒度を得ようとすれば、その収率は低下する。その上、
均一な粒度のガラス発泡粒を意図する場合には、焼結・
発泡工程前に造粒物の篩分は工程を行なう必要があった
However, since the glass foam particles produced by the above method have a single structure, they have low strength and high bulk density. Furthermore, since the glass foam particles themselves have a single structure, not only does it take a long time to grow and granulate them from the powder particles, but it is extremely difficult to obtain granules of uniform size. The particle size distribution becomes wide and the yield decreases when trying to obtain the desired particle size. On top of that,
If glass foam particles with uniform particle size are intended, sintering and
It was necessary to sieve the granules before the foaming process.

一方、従来より建築資材用の素材として市販されている
パーライト(膨張パーライトを含む)は、真珠岩等を粉
砕し、これを焼成加工した無機質“粒状体であるが、連
通孔率が高く吸水性が極めて大きい(容積比70%以上
)と共に、強度面でも弱いため、用途を著しく限定され
る欠点があり、例えば低吸水率の要求される建築壁材や
断熱材等には不向きであるといった問題点を有していた
On the other hand, pearlite (including expanded pearlite), which has been commercially available as a material for construction materials, is an inorganic "granular material" made by crushing pearlite etc. and firing it, but it has a high open porosity and water absorption. It is extremely large (more than 70% volume ratio) and has weak strength, so it has the disadvantage of severely limiting its uses, such as being unsuitable for building wall materials and insulation materials that require low water absorption. It had a point.

そこで本件出願人は先に、上記パーライト(発泡済み)
を用いてガラス殻被覆粒体を生成し、これによりパーラ
イト自体の上記欠点を補うようにしたガラス殻被覆粒体
と、その製造法について提案した。しかしながら、上記
の製造法では、予めパーライト原石を加熱・焼成して発
泡されたパーライト(連通孔を有する非燃焼性粒子)を
用いて、ガラス殻被覆粒体を生成するものである。それ
故、パーライト原石に対する焼成と、焼成され発泡され
た後のパーライトをガラス殻で被覆してなるガラス殻被
覆粒体全体の焼成という2回の加熱・焼成工程が必要と
なるばかりか、2回目の加熱・焼成によって焼結される
芯材をなすパーライトとその外側のガラス殻との焼結状
態が緊密でないといった不都合を存する。
Therefore, the applicant first decided to use the above pearlite (foamed)
We have proposed glass-shell-coated granules that compensate for the above-mentioned drawbacks of pearlite itself, and a method for producing the glass-shell-coated granules. However, in the above manufacturing method, glass shell-covered granules are produced using pearlite (non-combustible particles having communicating holes) which has been foamed by heating and firing pearlite raw stone in advance. Therefore, not only are two heating and firing processes required: firing the pearlite raw stone and firing the entire glass shell-coated granules made by covering the fired and foamed pearlite with a glass shell, but also the second heating and firing process. There is a disadvantage that the pearlite that forms the core material that is sintered by heating and firing is not tightly sintered with the glass shell on the outside.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の問題点を考慮してなされたものであっ
て、発泡性を有するパーライト原石の特性を活し、吸水
性を低く抑え且つ強度面でも大幅に向上させ得ると共に
、軽量化、造粒工程の短縮、粒度の均一性の確保等を実
現し、さらには加熱・焼成工程を減少し且つ良好な焼結
状態が得られるガラス殻被覆粒体の製造法の提供を目的
とするものである。
The present invention has been made in consideration of the above-mentioned problems, and makes use of the characteristics of pearlite raw stone that has foamability to suppress water absorption to a low level and significantly improve strength, as well as reduce weight and The purpose of the present invention is to provide a method for producing glass shell-coated granules that shortens the granulation process, ensures uniformity of particle size, and further reduces the heating and sintering steps and provides a good sintered state. It is.

〔発明の構成〕[Structure of the invention]

本発明に係るガラス殻被覆粒体の製造法は、パーライト
原石を粉砕して顆粒物を生成し、この顆粒物を芯材とし
て、その表面に結合剤を付着した後、必要に応じて発泡
剤を含ませたガラス粉末を用いて被覆コーティングし、
次いでこの造粒物を乾燥し加熱処理して、前記芯材とな
るパーライト原石顆粒物を最終工程で発泡させガラス粉
末層を芯材に焼結させることにより、芯材となるパーラ
イトの非燃焼性粒子の特性を活かすと共に、吸水性およ
び嵩密度を低く抑え且つ単粒圧壊強度が著しく向上した
ガラス殻被覆粒体を容易に得、さらに造粒時間の短縮と
粒度の均一化、および加熱・焼成工程の減少と良好な焼
結状態を得るように構成したことを特徴とするものであ
る。
The method for producing glass shell-coated granules according to the present invention involves pulverizing raw pearlite to produce granules, using the granules as a core material, and adhering a binder to the surface of the granules, and then adding a blowing agent as needed. coated with glass powder,
Next, the granules are dried and heat-treated, and in the final step, the raw pearlite granules that will become the core material are foamed and the glass powder layer is sintered to the core material, thereby forming non-combustible pearlite particles that will become the core material. It is easy to obtain glass shell-coated granules that have low water absorption and bulk density, and significantly improved single-particle crushing strength, while taking advantage of the characteristics of The present invention is characterized in that it is configured to reduce the amount of sintering and to obtain a good sintered state.

〔実施例〕〔Example〕

本発明の一実施例を説明すれば、以下の通りである。 An embodiment of the present invention will be described as follows.

パーライト原石を粉砕して顆粒物を生成する。Granules are produced by crushing raw pearlite.

このパーライト原石は元来発泡性を有し、加熱・焼成す
ることにより発泡するといった性質を備えていて、黒曜
石系の天然石または真珠岩系の天然石、或いは松脂岩系
の天然石などから成るものである。上記の顆粒物はガラ
ス殻被覆粒体の芯材となるものであって、粉砕後、所望
の粒度(例えば10〜12mesh)に篩分けしたもの
を使用する。
This pearlite raw stone is originally foamable and has the property of foaming when heated and fired, and is made of obsidian-based natural stone, pearlite-based natural stone, or pinestone-based natural stone. . The above-mentioned granules serve as the core material of the glass-shelled granules, and are used after being crushed and sieved to a desired particle size (for example, 10 to 12 mesh).

次に、篩分けされたパーライト原石顆粒物をパン型造粒
機に供給し、これに結合剤としてポリビニルアルコール
水溶液を加えて、顆粒物の表面を結合剤でぬらす。上記
の結合剤としては、所謂増粘効果を有する物質の溶液を
翔いるのが適当であり、例えばポリビニルアルコールの
他、カルボキシメチルセルロース、デンプン等の水溶性
高分子類の水溶液が例示される。
Next, the sieved raw pearlite granules are fed to a pan-type granulator, and an aqueous polyvinyl alcohol solution is added thereto as a binder to wet the surface of the granules with the binder. As the above-mentioned binder, it is appropriate to use a solution of a substance having a so-called thickening effect, such as polyvinyl alcohol, as well as an aqueous solution of water-soluble polymers such as carboxymethyl cellulose and starch.

一方、ガラス粉末に発泡剤を混合して混合物を得る。ガ
ラス粉末と発泡剤との混合は、通常スーパーミキサー(
用田°製作所■製)にかけて混合する。上記のスーパー
ミキサーは、回分式で、上部中央に特殊羽根形状の混合
用アームと、その−例に細分造粒用高速チョッパーとを
備え、各々の回転によって下部の着脱可能なボール容器
の内部で粉末の混合・造粒を行うものである。
On the other hand, a foaming agent is mixed with glass powder to obtain a mixture. Mixing of glass powder and blowing agent is usually done using a super mixer (
(Made by Yoda Seisakusho ■) and mix. The above-mentioned super mixer is a batch type, and is equipped with a special blade-shaped mixing arm in the upper center, and a high-speed chopper for fine granulation, for example. This is used to mix and granulate powder.

上記のガラス粉末は、例えばガラス成分とじて、S 1
0 z  (70wt  %)、Adz  ○3 (5
wt% )、Bz  Oz  (14wt  %)  
、F ez  03  (0,5−t %)  、Ca
O(1wt  % )Kz  O(2wt% )、Na
20  (6,5wt  % )、BaO(1wt%)
の組成からなる2 00mesh以下のガラス粉末を使
用する。また上記発泡剤として例えば約300〜400
1IIeshの炭酸カルシウム(Ca C03)の粉末
を使用し、前記ガラス粉末に3重量部を配合する。この
発泡剤は、後述する熱処理時に熱分解してガスを発生し
うる種々の粉末状組成物が挙゛げられ、所謂合成樹脂の
発泡分野で知られた分解型発泡剤が挙げられる。これら
のうち上記のように、炭酸カルシウムのごとき炭酸塩や
カーボン粉末のような炭酸ガス発生剤を用いるのが好ま
しい。さらに上記ガラス粉末と分解型発泡剤との混合比
率は、通常、ガラス粉末100重量部に対して発泡剤が
0.5〜10重量部となるよう調整するのが好ましい。
The above-mentioned glass powder, for example, together with the glass component, is S 1
0 z (70wt%), Adz ○3 (5
wt%), Bz Oz (14wt%)
, Fez 03 (0,5-t %) , Ca
O (1wt%) Kz O (2wt%), Na
20 (6.5wt%), BaO (1wt%)
A glass powder of 200 mesh or less with the composition of Further, as the above-mentioned foaming agent, for example, about 300 to 400
1IIesh calcium carbonate (Ca CO3) powder is used, and 3 parts by weight is blended with the glass powder. Examples of the blowing agent include various powdered compositions that can be thermally decomposed to generate gas during the heat treatment described below, including decomposable blowing agents known in the field of foaming of synthetic resins. Among these, as mentioned above, it is preferable to use a carbonate such as calcium carbonate or a carbon dioxide gas generating agent such as carbon powder. Further, the mixing ratio of the glass powder and the decomposable blowing agent is preferably adjusted so that the amount of the blowing agent is 0.5 to 10 parts by weight per 100 parts by weight of the glass powder.

0.5重量部未満であると発泡剤が少な過ぎて分解ガス
の絶対量が足りないし、また10重量部を越えると、発
泡剤の分解生成物が一部結晶化して高密度になってしま
い、軽量化の点で好ましくないからである。
If it is less than 0.5 parts by weight, there is too little blowing agent and the absolute amount of decomposed gas is insufficient, and if it exceeds 10 parts by weight, some of the decomposition products of the blowing agent will crystallize, resulting in high density. This is because it is not preferable in terms of weight reduction.

上記ガラス粉末と発泡剤との混合物を先述したパン型造
粒機に供給し、パン型造粒機を起動させる。パン型造粒
機の転勤により、前記パーライト原石顆粒物からなる芯
材は核となってガラス粉末の混合物を結合剤で付着させ
ながら成長する。この状態で所定時間を経過すると、パ
ーライト原石を、ガラス粉末素材で形成されたガラス殻
により被覆コーティングして成る造粒物が生成される。
The mixture of the glass powder and the blowing agent is supplied to the pan-type granulator mentioned above, and the pan-type granulator is started. Due to the transfer of the pan-type granulator, the core material made of the raw pearlite granules becomes a nucleus and grows while adhering the glass powder mixture with a binder. After a predetermined period of time has elapsed in this state, granules are produced in which the raw pearlite is coated with a glass shell made of a glass powder material.

上記の被覆層の形成過程を更に詳しく説明すると、上記
結合剤を、芯材となるパーライト原石顆粒物の表面に噴
霧機等の手段により噴霧して湿潤させ、この芯材をガラ
ス粉末と分解型発泡剤の混合物上で転勤させてその外周
に混合物を付着させ、適宜結合剤を噴霧させつつ転勤を
続けて付着層を成長させることにより、コーティング層
を形成する。尚、ガラス粉末と分解型発泡剤と結合剤と
からなる混合物を芯材に接触させて被覆することも可能
である。すなわち、造粒方法は従来例もしくはこれに準
じた何れかの方式(例えば糖衣機)を採用することがで
きる。上記転勤方式の場合、例えば結合剤で湿潤した芯
材をガラス粉末上に載置し、そこで転動させてガラス粉
末を付着させ、次いで分解型発泡剤の粉末上に移動しそ
こで転動させて発泡剤を付着させ、この動作を交互に繰
り返すことによって、予めガラス粉末と発泡剤とを混合
することなく混合層を被覆形成するものである。
To explain the formation process of the above-mentioned coating layer in more detail, the above-mentioned binder is sprayed onto the surface of the raw pearlite granules that will become the core material using a sprayer or other means to moisten it, and the core material is mixed with glass powder and decomposed foaming. A coating layer is formed by transferring the mixture onto the mixture of agents to adhere the mixture to the outer periphery thereof, and continuing to transfer while appropriately spraying a binder to grow an adhesion layer. Note that it is also possible to coat the core material by bringing it into contact with a mixture consisting of glass powder, a decomposable foaming agent, and a binder. That is, the granulation method can be a conventional method or any method similar thereto (for example, a sugar coating machine). In the case of the above-mentioned transfer method, for example, the core material moistened with a binder is placed on top of the glass powder, rolled there to adhere the glass powder, and then moved onto the decomposable blowing agent powder and rolled there. By depositing the foaming agent and repeating this operation alternately, a mixed layer is formed without mixing the glass powder and the foaming agent in advance.

このようにして生成された造粒物を、先ず所定の温度で
所定時間だけ乾燥する。この乾燥工程は、使用された結
合剤に含まれる水分を、焼結前に予め消去するために行
うものであって、焼結時間の短縮をはかると共に、含有
水分に起因する焼結時の爆裂を防止するのに有効である
The granules thus produced are first dried at a predetermined temperature for a predetermined time. This drying process is carried out to eliminate moisture contained in the binder used before sintering, and is intended to shorten the sintering time and prevent explosions during sintering due to the moisture content. It is effective in preventing

最後に、上記乾燥後の粒状体を電気炉で加熱処理して、
前記ガラス殻およびパーライト原石顆粒物を同時に焼結
させる。これによりガラス殻被覆粒体の芯材をなすパー
ライト原石は発泡して焼結し、一方、ガラス粉末層から
なるガラス殻も発泡剤を含む場合は同時に発泡して焼結
する。その結果、発泡されたパーライト原石すなわちパ
ーライトを中核とし、その外表面をガラス粉末素材で形
成され焼結されたガラス殻により被覆コーティングした
構造の粒状物から成るガラス殻被覆粒体が得られる。尚
、前記ガラス粉末が発泡剤を含む発泡性を有する場合、
最終処理の加熱工程では発泡剤の発泡温度まで直線的に
加熱し、このガラス殻が焼結し発泡したのち室温で放冷
される。しかし前記ガラス粉末が発泡剤を含まない非発
泡性を有する場合は、ガラス粉末層が焼結して固いガラ
ス殻となる温度まで加熱すれば、それだけで充分である
Finally, the dried granules are heat-treated in an electric furnace,
The glass shell and raw pearlite granules are sintered at the same time. As a result, the pearlite raw stone forming the core material of the glass shell-coated granules is foamed and sintered, and on the other hand, if the glass shell made of the glass powder layer also contains a foaming agent, it is simultaneously foamed and sintered. As a result, glass-shell-coated granules are obtained, which consist of granules having a structure in which the core is foamed pearlite raw stone, that is, pearlite, and the outer surface is coated with a sintered glass shell made of a glass powder material. In addition, when the glass powder has foaming properties including a foaming agent,
In the heating step of the final treatment, the glass shell is linearly heated to the foaming temperature of the foaming agent, and after the glass shell is sintered and foamed, it is allowed to cool at room temperature. However, if the glass powder does not contain a blowing agent and has non-foaming properties, it is sufficient to heat the glass powder layer to a temperature at which it sinteres into a hard glass shell.

上記の熱処理は通常、高温加熱炉中で少なくともガラス
粒子が相互に融着しうる温度下で所定時間保持すること
により行なわれる。この時の温度は、ガラス粉末の融点
に左右されるが、通常700〜900℃が適している。
The above heat treatment is usually carried out by holding the glass particles in a high-temperature heating furnace for a predetermined period of time at a temperature that allows at least the glass particles to fuse together. The temperature at this time depends on the melting point of the glass powder, but usually 700 to 900°C is suitable.

また、加熱時間は1〜15分で充分である。このような
熱処理により被覆層中の発泡剤が分離して融着しつつあ
るガラス粉末層中に気泡を形成し、その結果、第1図の
顕微鏡写真から明らかなように、外層が多孔性のガラス
発泡層からなり、その内部の芯材は発泡率の高いパーラ
イト層から成っていて、内外層が共に一体的に焼結され
た状態のガラス殻被覆粒体が得られる。
Further, a heating time of 1 to 15 minutes is sufficient. This heat treatment causes the foaming agent in the coating layer to separate and form bubbles in the fused glass powder layer, resulting in the outer layer becoming porous, as is clear from the micrograph in Figure 1. A glass shell-coated granule is obtained, which is made of a glass foam layer, the core material of which is made of a pearlite layer with a high foaming rate, and the inner and outer layers are integrally sintered.

上記の方法によって製造されたガラス殻被覆粒体の芯材
は、パーライト原石の顆粒物に焼成加工された無機質の
粒状体であり、無数の連通孔を有しく独立気泡と併存し
ているのも含まれる)、発泡したパーライト自体は連通
孔率が非常に高くて容積比70%以上の吸水率を有して
いる。このパーライトは、通常は単粒(粒径5〜7n+
esh)で圧壊強度が0.373 kgという比較的小
さい強度しか備えていないものであるが、以上のように
して得られた発泡性を有するガラス殻被覆粒体は、嵩密
度が低く軽量であると共に、吸水率は低く抑えられ、し
かも単粒圧壊強度についても大幅に同上するものである
The core material of the glass shell-coated granules produced by the above method is an inorganic granule that has been calcined into raw pearlite granules, and has numerous communicating pores, including some that coexist with closed cells. The foamed pearlite itself has a very high open porosity and a water absorption rate of 70% or more by volume. This pearlite is usually single grain (particle size 5 to 7n+
Although it has a relatively low crushing strength of 0.373 kg, the foamable glass shell-coated granules obtained as described above have a low bulk density and are lightweight. At the same time, the water absorption rate is kept low, and the single grain crushing strength is also significantly the same as above.

またパーライト原石を芯材に使用したガラス殻被覆粒体
は、第2図に示したように、ガラス酸のコーティング層
の厚さと嵩密度との間に一定の関係特性が存在している
ことが判明した。同図ツクラフで示したように、ガラス
酸をなすコーティング層の厚さが0.5fl以下では、
ただ単にコーティングされているというだけであって、
このコーチイン・グが発泡性に寄与しうるちのではなく
、またコーティング層が厚くなり過ぎると芯材に対して
ガラス発泡層の含める割合が多くなりガラス殻被覆粒体
の嵩密度が大きくなる。即ち、パーライト原石を中核と
してその外包殻をなすガラス酸のコーティング層の厚さ
は、0.7〜0.9m程度が最適であって、これによっ
て粒体の嵩密度を最低限(0,17g/cc)にまで抑
制することが出来る。少なくともコーティング層の厚さ
は、嵩密度との関係を考慮すれば0.5m乃至1.3鶴
の範囲内に設定することが望ましい。
In addition, as shown in Figure 2, glass shell-coated granules using raw pearlite as the core material have a certain relationship between the thickness of the glass acid coating layer and the bulk density. found. As shown by the graph in the same figure, when the thickness of the coating layer made of glass acid is less than 0.5fl,
It's just that it's coated,
This coaching does not only contribute to foamability, but also, if the coating layer becomes too thick, the proportion of the glass foam layer to the core material increases, increasing the bulk density of the glass shell-coated granules. In other words, the optimum thickness of the glass acid coating layer, which forms the outer shell of pearlite raw stone, is approximately 0.7 to 0.9 m, thereby minimizing the bulk density of the particles (0.17 g). /cc). At least the thickness of the coating layer is desirably set within the range of 0.5 m to 1.3 m in consideration of the relationship with bulk density.

コーティング層の厚さに対する発泡性(嵩密度)は、表
1に示す通りである。(但し、芯材であるパーライト原
石は10〜l ’l mesh sその平均径は1.5
4 nである。) 表  1 またパーライト原石として黒曜石を使用し、その顆粒物
をガラス粉末層で被覆コーティングして成るガラス殻被
覆粒体(加熱・焼成前の未発泡状態のもの)を、種々の
加熱時間に変更しながら加熱・焼成し発泡させたときの
物性を示す実験データは、表2乃至表5に示す通りであ
った。
The foamability (bulk density) with respect to the thickness of the coating layer is as shown in Table 1. (However, the pearlite raw stone that is the core material has a mesh size of 10~l'l and its average diameter is 1.5
4n. ) Table 1 In addition, glass shell-coated granules (in an unfoamed state before heating and firing) made by using obsidian as the raw pearlite and coating the granules with a layer of glass powder were heated for various times. The experimental data showing the physical properties when foamed by heating and firing were as shown in Tables 2 to 5.

表2 〔ガラス殻被覆粒体4〜5 n+esh、発泡性ガラス
層厚平均1.42m、芯材は黒曜石顆粒物で形成されて
いる。〕 表3 〔ガラス殻被覆粒体5〜6 mesh、発泡性ガラス層
厚平均1.06mm、芯材は黒曜石顆粒物で形成されて
いる。〕 表4 〔ガラス殻被覆粒体6〜7 mesh、発泡性ガラス層
厚平均0077鶴、芯材は黒曜石顆粒物で形成されてい
る。〕 表5 〔ガラス殻被覆粒体7〜8mesh、発泡性ガラス層厚
平均0.53mm、芯材は黒曜石顆粒物で形成されてい
る。〕 この発明の方法は従来の方法に比して、造粒時に芯材を
用いるため造粒工程に要する時間を大幅に短縮でき、更
に芯材として予め所定の粒径のものを用いることにより
均一な粒径の造粒を容易に行なうことができる。従って
、短時間で粒度分布幅の狭いほぼ均一なガラス発泡粒を
得ることができる。
Table 2 [Glass shell-coated granules 4 to 5 n+esh, foamable glass layer thickness average 1.42 m, core material formed of obsidian granules. Table 3 [Glass shell-coated granules 5 to 6 mesh, foamable glass layer thickness average 1.06 mm, core material made of obsidian granules. Table 4 [Glass shell-coated granules 6 to 7 mesh, foamable glass layer thickness average 0077 mm, core material made of obsidian granules. Table 5 [Glass shell-coated granules 7 to 8 mesh, foamable glass layer thickness average 0.53 mm, core material made of obsidian granules. ] Compared to conventional methods, the method of the present invention uses a core material during granulation, so it can significantly shorten the time required for the granulation process, and furthermore, by using a core material of a predetermined particle size in advance, uniformity can be achieved. Granulation with a suitable particle size can be easily carried out. Therefore, substantially uniform glass foam particles with a narrow particle size distribution can be obtained in a short time.

このようなガラス殻被覆粒体は不燃性断熱材や軽量骨材
等に有用である。なお、得られるガラス発泡粒の大きさ
は、芯材の大きさ及び芯材の発泡度に左右されるが、そ
の粒径は適宜制御することが可能である。
Such glass-shelled granules are useful as noncombustible heat insulating materials, lightweight aggregates, and the like. Note that the size of the obtained foamed glass particles depends on the size of the core material and the degree of foaming of the core material, but the particle size can be controlled as appropriate.

〔実験例1〕 パーライト原石として天然の黒曜石を使用し、これを約
1.5鰭の顆粒状に粉砕した。こ°の顆粒物をパン型造
粒機に供給し、結合剤としてポリビニルアルコール1%
水溶液を噴霧して黒曜石顆粒物の表面を結合剤でぬらし
た。一方、ガラス成分として、Sto! (70wt%
) 、AJz 03  (5−t%)、Bz Oz  
(14wt%) 、F e z 03(0,5wt  
%)  、CaO(1wt  % )K、O(2wt 
 % )、Naz  O(6,5wt  % )、Ba
O(1wt%) の組成からなる硬質ガラスを200m
esh以下のガラス粉末に粉砕し、これに発泡剤として
CaC0,の粉体(約300〜400mesh) 3重
量部を配合し、スーパーミキサーに・より混合した。
[Experimental Example 1] Natural obsidian was used as pearlite raw stone, and it was crushed into granules of about 1.5 fins. The granules were fed to a pan-type granulator, and 1% polyvinyl alcohol was added as a binder.
The surface of the obsidian granules was wetted with the binder by spraying an aqueous solution. On the other hand, as a glass component, Sto! (70wt%
), AJz 03 (5-t%), Bz Oz
(14wt%), Fez 03 (0.5wt%)
%), CaO (1wt%) K, O (2wt%
%), NazO (6.5wt%), Ba
200m of hard glass with a composition of O (1wt%)
The glass powder was pulverized into a glass powder having a size of esh or less, and 3 parts by weight of CaC0 powder (approximately 300 to 400 mesh) as a foaming agent was added thereto and mixed using a super mixer.

上記の混合物を、黒曜石顆粒物の収容された前記パン型
造粒機に供給し、各顆粒物の表面にガラス被覆層の膜厚
が約0.5mmとなるように被覆しコーティングして造
粒物を得た。この造粒物は更に乾燥した後、900℃に
設定した電気炉で10分間だけ加熱した。
The above mixture was supplied to the pan-type granulator containing the obsidian granules, and the surface of each granule was coated with a glass coating layer to a thickness of about 0.5 mm to form the granules. Obtained. After further drying, this granulated material was heated for 10 minutes in an electric furnace set at 900°C.

以上のようにして得られたガラス殻被覆粒体は、芯材を
なす黒曜石が発泡し、さらにその外側をガラス発泡体で
包被した状態の複合粒構造をなし、嵩密度は0.19 
g/cc、吸水率3.1 wt%、圧壊強度1.10 
kgであった。
The glass shell-coated granules obtained as described above have a composite granular structure in which the core material obsidian is foamed and the outside is further covered with glass foam, and the bulk density is 0.19.
g/cc, water absorption rate 3.1 wt%, crushing strength 1.10
It was kg.

〔実験例2〕 上記実験例1と同様の黒曜石の顆粒物を糖衣機に供給し
、結合剤としてポリビニルアルコール1%水溶液を噴霧
して黒曜石顆粒物の表面をぬらした。次に、実施例1と
同様の硬質ガラスと発泡剤との混合物を糖衣機に供給し
、ガラス粉末により膜厚約11mに被覆コーティングし
た造粒物を得た。この造粒物を乾燥した後、900℃に
設定した電気炉で7分間だけ加熱した。以上のようにし
て得られたガラス殻被覆粒体は、嵩密度が0.18 g
/cc、吸水率3.54%、圧壊強度2.3kgであり
、芯材をなす黒曜石が発泡し、さらにその外側をガラス
発泡体で包被した状態の複合粒構造をなしていた。
[Experimental Example 2] Obsidian granules similar to those in Experimental Example 1 were fed to a sugar coating machine, and a 1% aqueous solution of polyvinyl alcohol was sprayed as a binder to wet the surface of the obsidian granules. Next, the same mixture of hard glass and foaming agent as in Example 1 was fed to a sugar coating machine to obtain granules coated with glass powder to a thickness of about 11 m. After drying this granulated material, it was heated for only 7 minutes in an electric furnace set at 900°C. The glass shell-coated granules obtained as described above have a bulk density of 0.18 g.
/cc, water absorption rate of 3.54%, and crushing strength of 2.3 kg, and had a composite grain structure in which the core material, obsidian, was foamed and the outside was further covered with glass foam.

〔発明の効果〕〔Effect of the invention〕

本発明に係るガラス殻被覆粒体の製造法は以上のように
、パーライト原石の顆粒物を芯材とし、この芯材に、ガ
ラス粉末に結合剤を用いて被覆した後、これを乾燥し且
つ加熱処理して前記パーライト原石を発泡・焼結させ、
それと同時にガラス粉末層を焼結させるものであるから
、発泡されたパーライトに連通孔が形成され吸水率が高
くなっても、そのパーライト自体の特性を活かすと共に
、外包殻をなすガラス酸によって吸水率を低く抑制する
ことが可能となる。またパーライトを核とするガラス酸
との二重構造に形成されるから、嵩密度が小さく軽量で
あると共に、単粒圧壊強度が大きい等の効果を奏するも
のである。
As described above, the method for manufacturing glass shell-coated granules according to the present invention uses pearlite raw granules as a core material, coats the core material with glass powder using a binder, and then dries and heats the core material. processing to foam and sinter the pearlite raw stone,
At the same time, the glass powder layer is sintered, so even if communicating pores are formed in the foamed pearlite and the water absorption rate increases, the characteristics of the pearlite itself are utilized and the glass acid forming the outer shell increases the water absorption rate. This makes it possible to keep it low. Furthermore, since it is formed into a double structure with glass acid having pearlite as its core, it has low bulk density and light weight, and also has high single-grain crushing strength.

またガラス殻被覆粒体の製造に際してガラス殻被覆粒体
の芯材となるパーライトを成長させなから造粒するので
、造粒時間を大幅に短縮できると共に、ガラス殻被覆粒
体の粒度の均一性を容易に保つことが可能となるもので
ある。
In addition, when producing the glass-shelled granules, the pearlite, which is the core material of the glass-shelled granules, is granulated before being grown, so the granulation time can be significantly shortened, and the particle size of the glass-shelled granules can be uniform. can be easily maintained.

更に、造粒前のパーライト原石に対する焼成工程を省略
し、最終工程の加熱・焼成によりガラス酸で被覆された
パーライト原石を発泡させるものであるから、製造工程
を短縮することが出来る。
Furthermore, since the firing step for the pearlite raw stone before granulation is omitted and the pearlite raw stone coated with glass acid is foamed by heating and firing in the final step, the manufacturing process can be shortened.

その上、芯材としてのパーライト原石とこれを被覆して
いるガラス層とを同時に発泡させることが可能となるか
ら、内外層が融合し易く互いに緊密な焼結状態が得られ
るといった優れた効果を奏するものである。
Furthermore, since it is possible to foam the pearlite raw stone as the core material and the glass layer covering it at the same time, it has the excellent effect that the inner and outer layers are easily fused and a tightly sintered state can be obtained. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造されたガラス殻被覆粒体を顕
微鏡写真で見た断面図、第2図はガラス殻被覆粒体にお
ける嵩密度のコーティング層厚さ依存性を表すグラフで
ある。
FIG. 1 is a microscopic cross-sectional view of the glass shell-coated granules produced according to the present invention, and FIG. 2 is a graph showing the dependence of bulk density on the coating layer thickness of the glass-shell coated granules.

Claims (1)

【特許請求の範囲】 1、パーライト原石を粉砕して顆粒物を生成し、この顆
粒物を芯材として、その表面に結合剤を付着した後ガラ
ス粉末を用いて被覆コーティングし、次いでこの造粒物
を乾燥し加熱処理して、前記芯材となるパーライト原石
顆粒物を最終工程で発泡させガラス粉末層を芯材に焼結
させることを特徴とするガラス殻被覆粒体の製造法。 2、上記のパーライト原石は、黒曜石系の天然石である
特許請求の範囲第1項記載のガラス殻被覆粒体の製造法
。 3、上記のパーライト原石は、真珠岩系の天然石である
特許請求の範囲第1項記載のガラス殻被覆粒体の製造法
。 4、上記のガラス粉末は、発泡性を有している特許請求
の範囲第1項記載のガラス殻被覆粒体の製造法。
[Claims] 1. Pulverize raw pearlite to produce granules, use the granules as a core material, attach a binder to the surface, coat with glass powder, and then use the granules as a core material. A method for producing glass shell-coated granules, which comprises drying and heat-treating the raw pearlite granules, which serve as the core material, in a final step of foaming and sintering the glass powder layer to the core material. 2. The method for producing glass-shelled granules according to claim 1, wherein the pearlite raw stone is an obsidian-based natural stone. 3. The method for producing glass shell-coated granules according to claim 1, wherein the pearlite raw stone is a pearlite-based natural stone. 4. The method for producing glass shell-coated granules according to claim 1, wherein the glass powder has foaming properties.
JP9434885A 1985-04-30 1985-04-30 Production of glass coated shell granule Granted JPS61251530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9434885A JPS61251530A (en) 1985-04-30 1985-04-30 Production of glass coated shell granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9434885A JPS61251530A (en) 1985-04-30 1985-04-30 Production of glass coated shell granule

Publications (2)

Publication Number Publication Date
JPS61251530A true JPS61251530A (en) 1986-11-08
JPH0146457B2 JPH0146457B2 (en) 1989-10-09

Family

ID=14107777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9434885A Granted JPS61251530A (en) 1985-04-30 1985-04-30 Production of glass coated shell granule

Country Status (1)

Country Link
JP (1) JPS61251530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182242A (en) * 1987-01-20 1988-07-27 住友建設株式会社 Artificial lightweight aggregate and manufacture
JP2008189536A (en) * 2007-02-07 2008-08-21 Sk Kaken Co Ltd White glass particle, and method for producing the same
CN102807326A (en) * 2012-08-20 2012-12-05 宁波荣山新型材料有限公司 Polymer-modified low temperature foaming glass thermal insulation material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182242A (en) * 1987-01-20 1988-07-27 住友建設株式会社 Artificial lightweight aggregate and manufacture
JP2008189536A (en) * 2007-02-07 2008-08-21 Sk Kaken Co Ltd White glass particle, and method for producing the same
CN102807326A (en) * 2012-08-20 2012-12-05 宁波荣山新型材料有限公司 Polymer-modified low temperature foaming glass thermal insulation material and preparation method thereof

Also Published As

Publication number Publication date
JPH0146457B2 (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US4698317A (en) Porous cordierite ceramics, a process for producing same and use of the porous cordierite ceramics
US4025689A (en) Method for manufacture of graphitized hollow spheres and hollow spheres manufactured thereby
US4430108A (en) Method for making foam glass from diatomaceous earth and fly ash
CN101429041B (en) Fire-resistant light granules and method of production thereof
CN107285802A (en) A kind of microvesicle ceramic wafer and preparation method thereof
JPS61251530A (en) Production of glass coated shell granule
HU211191B (en) Process for producing ceramic shaped-bodies
US3546061A (en) Molded building blocks of different foamed glass layers and process for making same
JPS61236643A (en) Glass shell covered particle and manufacture
US3652310A (en) Method of producing lightweight, heat-insulating construction elements from lime and silicate and products thereof
JPH0243688B2 (en) GARASUSHITSUCHUKUTAHORYUOYOBISONOSEIZOHOHO
JPS589833A (en) Preparation of foamed glass bead
JPS6365616B2 (en)
JPH0143694B2 (en)
JPS61236621A (en) Production of foamed fine glass grain
JPS61197432A (en) Production of foamed glass
JPS63198970A (en) Hollow sphere of calcium phosphate
JPS61132538A (en) Production of foamed glass particle
JPH01215742A (en) Heat-insulation material and production thereof
JP3586319B2 (en) Ultralight fine particles having high strength and method for producing the same
JPH0146456B2 (en)
JP4448564B2 (en) Porous ceramic product and manufacturing method thereof
JP3222352B2 (en) Multilayer inorganic foam and method for producing the same
JPS62226874A (en) Porous ceramic burnt body and manufacture
JPS5820898B2 (en) Manufacturing method for fired lightweight building materials