JPH07330463A - Production of starting material used for expanded ceramic material - Google Patents

Production of starting material used for expanded ceramic material

Info

Publication number
JPH07330463A
JPH07330463A JP14867494A JP14867494A JPH07330463A JP H07330463 A JPH07330463 A JP H07330463A JP 14867494 A JP14867494 A JP 14867494A JP 14867494 A JP14867494 A JP 14867494A JP H07330463 A JPH07330463 A JP H07330463A
Authority
JP
Japan
Prior art keywords
raw material
water
starting material
particle size
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14867494A
Other languages
Japanese (ja)
Inventor
Satoru Nagai
了 永井
Yoshio Nagaharu
良夫 永治
Kazuo Imahashi
一夫 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
Toyo Corp
Original Assignee
Takasago Industry Co Ltd
Toyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd, Toyo Corp filed Critical Takasago Industry Co Ltd
Priority to JP14867494A priority Critical patent/JPH07330463A/en
Publication of JPH07330463A publication Critical patent/JPH07330463A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a starting material for an expanded ceramic meterial capable of uniform expansion even in the case of relatively fine particles having a narrow particle size distribution by granulating a thermally expandable slurried inorg. starting material with a spray drier. CONSTITUTION:A slurried inorg. starting material which is expanded by firing is granulated with a spray drier to obtain the objective starting material used for an expanded ceramic material. By this method, a product free from unevenness in expansion can be produced even when a water-soluble molten starting material is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、断熱、吸音等の目的で
使用される発泡セラミックス材料の製造に用いる原料の
製造方法に関し、特に、焼成することによって発泡する
無機質材料(以下、熱発泡性原料という)を造粒して焼
成することにより得られる発泡セラミックス材料の製造
に用いる原料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material used for producing a foamed ceramic material used for the purpose of heat insulation, sound absorption, etc., and particularly to an inorganic material (hereinafter referred to as thermal foaming property) which is foamed by firing. The present invention relates to a method for producing a raw material used for producing a foamed ceramic material obtained by granulating and firing a raw material).

【0002】[0002]

【従来の技術】造粒した熱発泡性原料を用いて得られる
発泡セラミックス材には、発泡後の粒子が融着して一体
化した成形物と、各々の粒子が融着しないで独立粒の形
とした軽量骨材とがある。
2. Description of the Related Art A foamed ceramic material obtained by using a granulated thermally expandable raw material is a molded product in which particles after foaming are fused and integrated with each other, and individual particles without fusion of each particle. There is a shaped lightweight aggregate.

【0003】成形物の場合は、原料を造粒してこれを容
器内に充填するか、コンベヤや板体の上に敷き詰める
か、あるいはプレス等で成形した後に、焼成して発泡と
同時に各粒子間を融着させ一体化して製造している。
In the case of a molded product, the raw material is granulated and filled in a container, spread on a conveyor or a plate, or after being molded by a press or the like, it is fired to expand each particle at the same time. It is manufactured by fusing and integrating the spaces.

【0004】この場合の造粒の意義は、造粒しない粉体
に比べて均一に充填できること、発泡が基本的に各粒子
単位でおこなわれること及び熔融して発泡直前の状態で
も粒子間に空間が構成されるから、発泡に悪影響を与え
る結晶水や有機物の熱分解によって発生するガスが抜け
やすいこと等の理由によって、均一に発泡した製品が得
られやすいからである。
In this case, the significance of granulation is that it can be packed more uniformly than non-granulated powder, that foaming is basically performed in each particle unit, and that there is a space between particles even immediately before melting by foaming. This is because a product having uniform foaming is likely to be obtained because, for example, water of crystallization that adversely affects foaming or gas generated by thermal decomposition of an organic substance is easily released.

【0005】軽量骨材の場合は、造粒した熱発泡性原料
をロータリーキルン等を用いて互いの粒子同士が融着し
ないように粒子を撹拌しながら焼成して、独立した粒単
位ごとの発泡体を製造するものであるから、造粒は不可
欠となる。
In the case of a lightweight aggregate, the granulated heat-foamable raw material is fired while stirring the particles by using a rotary kiln so that the particles are not fused to each other, and foams are formed in individual particle units. Granulation is indispensable since it is manufactured.

【0006】いずれの場合においても粒度分布が広い
と、微粒と粗粒との発泡温度や発泡倍率が異なってしま
って、均一に発泡した製品が得難いことから、粒度分布
の狭い造粒原料が必要である。
In any case, if the particle size distribution is wide, the foaming temperature and the expansion ratio of the fine particles and the coarse particles are different, and it is difficult to obtain a uniformly foamed product. Therefore, a granulating raw material having a narrow particle size distribution is required. Is.

【0007】従来の造粒方法は、ボールミルや振動ミル
等で粉砕した乾燥粉末原料を、パン型造粒機等を用い
て、水またはバインダー水溶液等を添加しながら造粒し
て篩い分けをした後に、希望する粒度範囲を得ていた。
In the conventional granulation method, a dry powder raw material crushed by a ball mill, a vibration mill or the like is granulated with a pan type granulator or the like while adding water or an aqueous binder solution, and sieved. Later, I was getting the desired particle size range.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特に比
較的細粒子で、かつ希望の粒度範囲の粒子の揃った原料
を必要とする場合は、上記した造粒方法では粒度分布が
広くなることから、歩留まりが悪くなってしまう欠点が
ある。
However, especially when a raw material having relatively fine particles and having a uniform particle size in a desired particle size range is required, the above-mentioned granulation method results in a wide particle size distribution. There is a drawback that the yield becomes poor.

【0009】また、ボールミルや振動ミル等での原料の
粉砕工程においては、乾式粉砕の場合は湿潤した原料は
乾燥しなければならず、湿式粉砕の場合はスラリーの乾
燥工程と乾燥物を粉末にするための二次の粉砕工程が必
要となってしまって、いずれも不経済である。
Further, in the pulverizing step of the raw material in a ball mill or a vibration mill, the wet raw material must be dried in the case of dry pulverization, and in the case of wet pulverizing, the slurry drying step and the dried product are made into powder. A secondary crushing process is required to do so, which is uneconomical.

【0010】通常、発泡セラミックス材の原料は安価で
比較的低温度で熔融する天然ガラスもしくは人造ガラス
等を主体原料として用いられ、これに発泡原料を添加し
て製造されている。
Usually, the raw material of the foamed ceramic material is inexpensive, and natural glass or artificial glass that melts at a relatively low temperature is used as a main raw material, and the foamed raw material is added to the raw material.

【0011】そして、上記した原料に炭酸ソーダ、珪酸
ソーダ、硼砂等の熔融原料を添加して、より焼成温度を
低下させて生産の効率を上げる方法も採られるが、熔融
原料が水溶性であることにより乾燥に問題がある。
A method of adding a melting raw material such as sodium carbonate, sodium silicate, borax, etc. to the above-mentioned raw materials to further lower the firing temperature to improve the production efficiency can be adopted. However, the melting raw material is water-soluble. Therefore, there is a problem in drying.

【0012】すなわち、造粒した直後の粒子そのものは
強度が弱くて、増強用にPVAやメチルセルロース等の
バインダーを添加しても、このようなバインダー類は乾
燥して初めて効果が発揮できるものであって、ロータリ
ードライヤのように粒子を動かしながら乾燥すると粒子
が破壊してしまうことから、乾燥容器かネット上かある
いは板上等に敷き詰めないと乾燥できない。
That is, the particles themselves just after granulation have low strength, and even if a binder such as PVA or methylcellulose is added for reinforcement, such binders can exert their effect only after being dried. Since the particles are destroyed when they are dried while moving like a rotary dryer, they cannot be dried unless they are spread on a drying container, a net, or a plate.

【0013】しかし、このような状態で乾燥すると、乾
燥時に水の蒸発に伴って水溶性の熔融原料が充填体の表
面へ移動してしまって、充填体の中心部の粒子と表面の
粒子とでは組成にばらつきが生じて、焼成時の発泡が不
均一になってしまう欠点がある。
However, when dried in such a state, the water-soluble melting raw material moves to the surface of the filling body as water evaporates during the drying, so that the particles at the central portion of the filling body and the particles on the surface become. However, there is a drawback in that the composition varies and the foaming during firing becomes uneven.

【0014】例え乾燥工程が無くて直接焼成したとして
も、焼成の過程で当然乾燥が伴うから、結果的には同様
の欠点が発生することになる。
Even if the baking is carried out directly without the drying step, the drying is naturally involved in the baking process, and as a result, the same drawbacks occur.

【0015】[0015]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、請求項1の発明は、焼成によって発泡
するスラリー状の無機質原料を、スプレードライヤで造
粒する構成とし、請求項2の発明は、請求項1の発明に
おいて、無機質原料に水溶性の原料が含まれている構成
とした。
As a means for solving the above-mentioned problems, the invention of claim 1 has a constitution in which a slurry-like inorganic raw material foamed by firing is granulated by a spray dryer. According to the invention of claim 1, in the invention of claim 1, the inorganic raw material contains a water-soluble raw material.

【0016】[0016]

【発明の作用及び効果】本発明は上記構成になり、比較
的細粒子で粒度分布の狭い原料でも容易に製造すること
ができるとともに、原料に水溶性の熔融原料を用いたと
しても、発泡にばらつきの無い製品を製造することがで
きる。
The present invention has the above-mentioned structure and can be easily produced even with a raw material having relatively fine particles and a narrow particle size distribution. Even if a water-soluble melting raw material is used as the raw material, foaming can be performed. It is possible to manufacture products without variations.

【0017】すなわち、適宜調整された無機原料の調合
物を、ボールミルに水とともに投入して所定時間粉砕し
て得られたスラリーか、または、原料が粉体で粉砕が不
必要な場合はミキサーで原料と水とを混合して得たスラ
リーを、所定温度に保たれたスプレードライヤの乾燥室
内へノズルにより滴状に噴霧することにより、滴状のス
ラリーが乾燥室内の高温の雰囲気に触れて、瞬時に粒形
を保ったまま乾燥するもので、得られた造粒物はスプレ
ードライヤの特性上、パン型造粒機等に比べて粒度分布
は狭く、かつ、強度の強い粒子が得られる。
That is, an appropriately prepared inorganic raw material mixture is put into a ball mill together with water and pulverized for a predetermined time, or a slurry is obtained, or if the raw material is a powder and pulverization is unnecessary, a mixer is used. The slurry obtained by mixing the raw material and water, by spraying droplets into the drying chamber of the spray dryer kept at a predetermined temperature with a nozzle, the droplet-shaped slurry touches the high temperature atmosphere in the drying chamber, The granules are instantly dried while maintaining the grain shape, and the obtained granules have narrower particle size distribution and stronger particles than the bread type granulator due to the characteristics of the spray dryer.

【0018】そして、粒度分布の調整は、主にスラリー
の濃度とノズル径によって決定されるから、いずれかを
適宜選択することにより、希望する粒度分布の造粒原料
が容易に得られる。さらに、湿式粉砕であることから、
湿潤した原料の乾燥工程やスラリーの乾燥工程と乾燥物
を粉末にするための二次の粉砕工程が不要となる。
The adjustment of the particle size distribution is mainly determined by the concentration of the slurry and the nozzle diameter, and by appropriately selecting one of them, the granulation raw material having the desired particle size distribution can be easily obtained. Furthermore, since it is wet crushing,
There is no need for a step of drying the wet material, a step of drying the slurry, and a secondary crushing step for powdering the dried material.

【0019】また、原料中に水溶性の熔融原料を含む場
合は、スプレードライヤで乾燥造粒した粒子は中空状
(内部が細かい泡の集合したような状態)に乾燥するた
め、水溶性の熔融原料は微細な泡を形成する薄い皮殻の
僅かな厚み方向に移動するだけであるから、一粒の粒子
の内部と表面部との差は無視できる。
When the raw material contains a water-soluble melting raw material, since the particles dried and granulated by a spray dryer are dried in a hollow shape (a state in which fine bubbles are gathered inside), the water-soluble melting raw material is melted. Since the raw material moves only in the slight thickness direction of the thin shell forming fine bubbles, the difference between the inside and the surface of one particle can be ignored.

【0020】このように本発明は、造粒して使用する発
泡セラミックス材料の原料の製造方法としてきわめて有
用な手段であって、従来発生していた欠点を効果的に解
決できるものである。
As described above, the present invention is a very useful means as a method for producing a raw material of a foaming ceramic material to be used after granulation, and can effectively solve the drawbacks that have occurred conventionally.

【0021】[0021]

【実施例】以下、本発明方法の実施例を説明する。EXAMPLES Examples of the method of the present invention will be described below.

【0022】実施例1:主体原料である長野白土12%
及び人造ガラス粉85%、そして発泡熔融原料としてド
ロマイト3%からなる調合物を1200Kg、水655l
とともに2トンボールミルに投入して15時間湿式粉
砕した。
Example 1: 12% of Nagano clay which is the main raw material
And a synthetic glass powder (85%) and dolomite (3%) as a raw material for foaming and melting, 1200 kg, 655 liters of water.
It was put into a 2-ton ball mill together and wet-milled for 15 hours.

【0023】得られたスラリーの水分は36%、粉砕粒
度は300メッシュの篩残が4%であった。このスラリ
ーを15Kg/cm2 のポンプ圧でスプレードライヤへ圧送
し、直径2.4mm のノズルより430℃に保たれた乾燥
室内へ噴霧して造粒した。
The resulting slurry had a water content of 36% and a pulverized particle size of 300% sieve residue was 4%. The slurry was pressure fed to a spray dryer with a pump pressure of 15 kg / cm 2 , and sprayed into a drying chamber kept at 430 ° C. from a nozzle having a diameter of 2.4 mm to granulate.

【0024】得られた粒子の水分は2.5% で、粒度分
布は0.1〜0.3mmが14.4% 、0.3〜0.8mmが8
4.3%、0.8〜1.8mmが0.7%で、使用しない粒径
である0.1mm以下と1.8mm以上が0.6%であった。
The particles thus obtained had a water content of 2.5% and a particle size distribution of 0.1-0.3 mm was 14.4% and 0.3-0.8 mm was 8%.
It was 4.3%, 0.7% for 0.8 to 1.8 mm, and 0.6% for unused particle sizes of 0.1 mm or less and 1.8 mm or more.

【0025】この造粒原料をメッシュベルトキルンのメ
ッシュベルト上に1000mmの幅で10mmの厚さに敷き
詰め、1020℃で焼成して発泡板を製造した。得られ
た製品は嵩比重が0.8g/ccで均一に発泡していた。
This granulated raw material was spread on a mesh belt of a mesh belt kiln with a width of 1000 mm to a thickness of 10 mm, and fired at 1020 ° C. to produce a foam plate. The obtained product had a bulk specific gravity of 0.8 g / cc and was uniformly foamed.

【0026】比較例1:実施例1に対する比較例とし
て、実施例1と同一の調合物を、2トンボールミルで粉
砕粒度が実施例1と同一条件となるように18時間乾式
粉砕し、さらに、この原料をパン型造粒機を用いて水を
噴霧しながら造粒した。
Comparative Example 1: As a comparative example to Example 1, the same formulation as in Example 1 was dry-pulverized for 18 hours in a 2 ton ball mill so that the pulverized particle size was the same as in Example 1, and further, This raw material was granulated while spraying water using a pan granulator.

【0027】得られた造粒原料の水分は12%で、粒度
分布は0.1〜0.3mmが4.1% 、0.3〜0.8mmが1
6.5%、0.8〜1.8mmが52.3%で、使用しない粒
径である0.1mm以下と1.8mm以上が27.1%であっ
た。
The granulation raw material thus obtained had a water content of 12%, and the particle size distribution was 4.1% for 0.1 to 0.3 mm and 1 for 0.3 to 0.8 mm.
6.5%, 52.3% was 0.8 to 1.8 mm, and 27.1% was 0.1 mm or less and 1.8 mm or more, which are unused particle sizes.

【0028】以後、実施例1と同一条件で焼成し発泡板
を製造した。得られた製品は嵩比重が0.8g/ccで均一
に発泡していた。
Thereafter, firing was performed under the same conditions as in Example 1 to produce a foam plate. The obtained product had a bulk specific gravity of 0.8 g / cc and was uniformly foamed.

【0029】実施例2:主体原料である人造ガラス粉5
6%、ロー石30%に、いずれも水溶性の熔融原料であ
る炭酸ソーダ5%、硝酸ソーダ2%、硼砂7%からなる
調合物を1200Kg、水675l とともに2トンボー
ルミルに投入して15時間湿式粉砕した。この調合の場
合は主に硝酸ソーダが発泡原料として作用する。
Example 2: Artificial glass powder 5 as the main raw material
A mixture consisting of 6% and 30% of roe stones, which are all water-soluble melting raw materials of 5% sodium carbonate, 2% sodium nitrate, and 7% borax, was put into a 2 ton ball mill with 1200 kg of water and 675 l of water for 15 hours. Wet milled. In the case of this formulation, sodium nitrate mainly acts as a foaming raw material.

【0030】得られたスラリーの水分は36%、粉砕粒
度は300メッシュの篩残が2%であった。このスラリ
ーを15Kg/cm2 のポンプ圧でスプレードライヤへ圧送
し、直径2.4mm のノズルより430℃に保たれた乾燥
室内へ噴霧して造粒した。
The resulting slurry had a water content of 36% and a pulverized particle size of 300% sieve residue of 2%. The slurry was pressure fed to a spray dryer with a pump pressure of 15 kg / cm 2 , and sprayed into a drying chamber kept at 430 ° C. from a nozzle having a diameter of 2.4 mm to granulate.

【0031】得られた造粒原料の水分は1.8% 以下
で、粒度分布は0.1〜0.3mmが11.5% 、0.3〜
0.8mmが77.6%、0.8〜1.8mmが9.3%で、使
用しない粒径である0.1mm以下と1.8mm以上が1.6
%であった。
The water content of the obtained granulation raw material is 1.8% or less, and the particle size distribution is 0.1% to 0.3 mm, 11.5%, 0.3 to.
0.8 mm is 77.6%, 0.8-1.8 mm is 9.3%, and the unused particle size of 0.1 mm or less and 1.8 mm or more is 1.6.
%Met.

【0032】この造粒原料をメッシュベルトキルンのメ
ッシュベルト上に1000mmの幅で10mmの厚さに敷き
詰めて800℃で焼成したところ、得られた製品は嵩比
重が0.26g/ccで均一に発泡していた。
This granulation raw material was spread on a mesh belt of a mesh belt kiln with a width of 1000 mm to a thickness of 10 mm and fired at 800 ° C., and the obtained product had a bulk specific gravity of 0.26 g / cc and was uniform. It was foaming.

【0033】比較例2:実施例2に対する比較例とし
て、実施例2と同一の調合物を、2トンボールミルで粉
砕粒度が実施例1と同一条件となるように18時間粉砕
した。この原料をパン型造粒機を用いて水を噴霧しなが
ら造粒した。
Comparative Example 2: As a comparative example to Example 2, the same formulation as in Example 2 was pulverized with a 2 ton ball mill for 18 hours so that the pulverized particle size would be the same as in Example 1. This raw material was granulated while spraying water using a pan granulator.

【0034】得られた造粒原料の水分は11.8%で、
粒度分布は0.1〜0.3mmが5.2%、0.3〜0.8mm
が21.3%、0.8〜1.8mmが48.7%で、使用しな
い粒径である0.1mm以下と1.8mm以上が24.8%で
あった。
The water content of the obtained granulation raw material was 11.8%,
The particle size distribution is 0.1% to 0.3 mm, 5.2%, 0.3 to 0.8 mm
Was 21.3%, 0.8-1.8 mm was 48.7%, and particle sizes not used 0.1 mm or less and 1.8 mm or more were 24.8%.

【0035】この造粒原料を乾燥しないで、実施例2と
同一条件で焼成し発泡板を製造したところ、得られた製
品は表層部とネット部が激しい発泡を起こし、中心部分
は未発泡の状態が見受けられ、製品価値はなかった。
The granulated raw material was not dried, but was fired under the same conditions as in Example 2 to produce a foamed plate. The obtained product was vigorously foamed in the surface layer portion and the net portion, and the central portion was not foamed. The condition was apparent and was not worth the product.

【0036】この原因は、焼成の過程で当然乾燥が伴う
から、熔融原料が水溶性であることより、乾燥時に水の
蒸発に伴って水溶性の熔融原料が充填物の表層部および
ネット部に移動してしまって、表層部とネット部の熔融
温度が低下し、反対に中心部は熔融温度が上昇したため
である。
The reason for this is that the melting raw material is naturally water-soluble during the firing process, and therefore the water-soluble melting raw material is present in the surface layer portion and the net portion of the packing due to the evaporation of water during drying. This is because the melting temperature of the surface layer portion and the net portion is lowered and the melting temperature of the central portion is increased on the contrary.

【0037】実施例3:実施例2と同様な方法で得られ
たスラリーに水をさらに150l 加えてスラリーの水
分を41%とし、このスラリーを15Kg/cm2 のポンプ
圧でスプレードライヤへ圧送し、直径2.4mm のノズル
より430℃に保たれた乾燥室内へ噴霧して造粒した。
Example 3: 150 l of water was further added to the slurry obtained in the same manner as in Example 2 to make the water content of the slurry 41%, and this slurry was pumped to a spray dryer with a pump pressure of 15 kg / cm 2. , And was granulated by spraying from a nozzle having a diameter of 2.4 mm into a drying chamber kept at 430 ° C.

【0038】得られた造粒原料の水分は2.4% 以下
で、粒度分布は0.1〜0.5mmが92.3% で、0.1m
m以下と1.8mm以上が7.7%であった。
The granulation raw material thus obtained had a water content of 2.4% or less and a particle size distribution of 0.1-0.5 mm was 92.3% and 0.1 m.
7.7% was below m and above 1.8 mm.

【0039】この造粒原料をメッシュベルトキルンのメ
ッシュベルト上に1000mmの幅で10mmの厚さに敷き
詰めて800℃で焼成したところ、得られた製品は嵩比
重が0.25g/ccで、実施例2と比較して一層均一に発
泡しているとともに、表面の凹凸が少なく滑らかであっ
た。
This granulation raw material was spread on a mesh belt of a mesh belt kiln with a width of 1000 mm to a thickness of 10 mm and baked at 800 ° C. The obtained product had a bulk specific gravity of 0.25 g / cc. As compared with Example 2, the foaming was more uniform, and the surface was smooth with few irregularities.

【0040】実施例4:実施例2及び実施例3で得られ
た未焼成の造粒原料を、各々外熱式のロータリーキルン
で800℃で焼成したところ、レトルトへの熔着もなく
粒子間の熔着のない製品が得られた。
Example 4: The unsintered granulation raw materials obtained in Examples 2 and 3 were each calcined at 800 ° C. in an externally heated rotary kiln. A product without welding was obtained.

【0041】比較例3:比較例2で得られた造粒原料を
同じく外熱式のロータリーキルンで800℃で焼成した
ところ、レトルトへの熔着や粒子間の熔着が多かった。
Comparative Example 3: When the granulation raw material obtained in Comparative Example 2 was fired at 800 ° C. in a rotary kiln of the same external heating type, there was much welding on the retort and between particles.

【0042】これは、ロータリーキルンへの投入時の衝
撃、あるいは焼成初期の乾燥以前にレトルトの回転に伴
う衝撃によって、粒子の一部が破壊して粉体となり、レ
トルト内で滞留してしまって、所定の温度より上昇した
ためである。
This is because a part of the particles are broken into powder by the impact at the time of charging into the rotary kiln or the impact caused by the rotation of the retort before the drying in the initial stage of firing, and the particles are retained in the retort. This is because the temperature has risen above the predetermined temperature.

【0043】以上のように、実施例1では従来方法であ
る比較例1と比べて、造粒工程におけるロス(使用しな
い粒径)の少ない、すなわち、造粒歩留まりの高い結果
が得られた。
As described above, in Example 1, as compared with Comparative Example 1 which is a conventional method, the loss (particle size not used) in the granulation step was small, that is, the granulation yield was high.

【0044】実施例2では従来方法である比較例2と比
べて、水溶性の原料を用いても発泡のばらつきのない製
品が得られた。
In Example 2, as compared with Comparative Example 2 which is a conventional method, a product having no foaming variation was obtained even if a water-soluble raw material was used.

【0045】実施例3では実施例1より細粒子域の造粒
品を用いるもので、従来の造粒方法の細粒子域における
極端な造粒歩留まりの悪さを、水分を調整することで効
率良く製造するものであって、製造された製品も好結果
が得られた。
In the third embodiment, a granulated product in the fine particle region is used as compared with the first embodiment, and the extreme poor granulation yield in the fine particle region of the conventional granulation method is efficiently adjusted by adjusting the water content. Goods have been obtained with the manufactured products.

【0046】実施例4では造粒した粒子の強度が、従来
方法である比較例3と比べて高いことを実証するもので
あり、希望する粒径、比重の製品を得ることができた。
ロータリーキルンに限定するものではなく、流動層式の
加熱方法でも同様な結果が得られた。
Example 4 demonstrates that the strength of the granulated particles is higher than that of Comparative Example 3 which is a conventional method, and a product having a desired particle size and specific gravity could be obtained.
The same result was obtained not only by the rotary kiln but also by the fluidized bed heating method.

【0047】実施例2と実施例4と同一の条件で造粒し
た原料を焼成温度のみを変えて試験した結果は、それぞ
れ720℃のときは嵩比重が1.55g/cc、1.51g/
cc、750℃のときは嵩比重が0.63g/cc、0.6g/
cc、820℃のときは嵩比重が0.21g/cc、0.19g
/ccであって、焼成温度の選択によって希望する発泡倍
率(嵩比重)の製品が得られる。
When the raw materials granulated under the same conditions as in Examples 2 and 4 were tested by changing only the firing temperature, the bulk specific gravity was 1.55 g / cc and 1.51 g / cc at 720 ° C., respectively.
Bulk specific gravity is 0.63 g / cc, 0.6 g /
Bulk specific gravity is 0.21g / cc, 0.19g at cc and 820 ℃
/ Cc, and a desired expansion ratio (bulk specific gravity) can be obtained by selecting the firing temperature.

【0048】比較例2の場合はいずれの温度域でも、ネ
ット部及び表層部と中心部では発泡の差がきわめて大き
く、製品としては適さなかった。
In the case of Comparative Example 2, the difference in foaming between the net portion, the surface layer portion and the central portion was extremely large in any temperature range, and it was not suitable as a product.

【0049】なお、主原料はガラス質または焼成により
ガラス化するものであればよく、天然ガラス材料である
長野白土、シラス、黒曜石、真珠岩、抗火石等、また、
人造ガラス原料であるガラス粉、フリット等が好適であ
り、いずれか単独でも、あるいは複数を使用してもよ
い。
The main raw material may be glassy or vitrified by firing. Natural glass materials such as Nagano clay, shirasu, obsidian, pearlite, anti-firestone, etc.
Glass powder, frit, etc., which are artificial glass raw materials, are suitable, and any one of them may be used alone, or a plurality of them may be used.

【0050】また、発泡熔融原料に水溶性の原料を用い
た理由は、安価で熔融効果が大きいためであり、使用量
は発泡倍率や焼成温度によって任意に調整すればよい。
The reason why the water-soluble raw material is used as the foaming and melting raw material is that it is inexpensive and has a large melting effect, and the amount used may be arbitrarily adjusted depending on the foaming ratio and the firing temperature.

【0051】スラリーの製造に当たっては、すべての原
料及び水をボールミルに投入する必要はなく、あらかじ
め希望する粒度にまで粉砕した原料を用いるときは、ボ
ールミル等での粉砕は必要ないから、撹拌機等に水と原
料を入れて単に撹拌混合するだけでよく、一部の原料の
粒度が希望する粒度より粗い場合は、その原料をボール
ミル等で湿式あるいは乾式で粉砕した後、撹拌機で他の
原料と撹拌混合してもよい。
In the production of the slurry, it is not necessary to add all the raw materials and water to the ball mill, and when using raw materials pulverized to a desired particle size in advance, pulverization with a ball mill or the like is not necessary. Simply add water and raw materials to the mixture and stir and mix.If the grain size of some raw materials is coarser than the desired grain size, grind the raw materials wet or dry with a ball mill etc. May be mixed with stirring.

【0052】すべての実施例と比較例にバインダーとし
て有機のメチルセルロースを0.3%添加したものの造
粒原料の強度は、実施例の方は強度が格段に向上するの
に対し、比較例の方は僅かに向上したに過ぎない。
With respect to the strength of the granulating raw material, the strength of the granulating raw materials of all the examples and the comparative examples to which 0.3% of organic methyl cellulose was added as a binder is markedly improved, while the strength of the granulating raw materials is remarkably improved. Is only slightly improved.

【0053】その他、バインダーとして有機系ではセル
ロース類やPVA、糖蜜等、無機系では水ガラス等が効
果的であって、添加量は固形物に換算して1%以下が適
当である。
In addition, as the binder, celluloses, PVA, molasses, etc. are effective in the organic system, and water glass, etc. are effective in the inorganic system, and the addition amount is appropriately 1% or less in terms of solid matter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今橋 一夫 東京都調布市つつじケ丘4−23 神代団地 27−402 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuo Imahashi 4-23 Tsutsujigaoka, Chofu-shi, Tokyo Kamidai housing complex 27-402

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼成によって発泡するスラリー状の無機
質原料を、スプレードライヤで造粒することを特徴とす
る発泡セラミックス材料に用いる原料の製造方法。
1. A method for producing a raw material used for a foamed ceramic material, which comprises granulating a slurry-like inorganic raw material that is foamed by firing with a spray dryer.
【請求項2】 前記無機質原料に水溶性の原料が含まれ
ていることを特徴とする請求項1記載の発泡セラミック
ス材料に用いる原料の製造方法。
2. The method for producing a raw material used for a foam ceramic material according to claim 1, wherein the inorganic raw material contains a water-soluble raw material.
JP14867494A 1994-06-06 1994-06-06 Production of starting material used for expanded ceramic material Pending JPH07330463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14867494A JPH07330463A (en) 1994-06-06 1994-06-06 Production of starting material used for expanded ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14867494A JPH07330463A (en) 1994-06-06 1994-06-06 Production of starting material used for expanded ceramic material

Publications (1)

Publication Number Publication Date
JPH07330463A true JPH07330463A (en) 1995-12-19

Family

ID=15458085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14867494A Pending JPH07330463A (en) 1994-06-06 1994-06-06 Production of starting material used for expanded ceramic material

Country Status (1)

Country Link
JP (1) JPH07330463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230909A (en) * 2007-03-20 2008-10-02 National Institute For Materials Science Porous composite and its production method
CN115259674A (en) * 2022-07-28 2022-11-01 广东金绿能科技有限公司 Composite sound-absorbing material, preparation process and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230909A (en) * 2007-03-20 2008-10-02 National Institute For Materials Science Porous composite and its production method
CN115259674A (en) * 2022-07-28 2022-11-01 广东金绿能科技有限公司 Composite sound-absorbing material, preparation process and application thereof

Similar Documents

Publication Publication Date Title
US3699050A (en) Spray dried product for feed in the manufacture of hollow glass spheres and process for forming said spray dried product
US4059423A (en) Process for the preparation of expansible beads
US4332907A (en) Granulated foamed glass and process for the production thereof
US3931036A (en) Compacted alkali metal silicate
JPH07330463A (en) Production of starting material used for expanded ceramic material
US3585260A (en) Chromic acid bonded chromic oxide agglomerates produced by spray drying
US20190135676A1 (en) Hollow glass microspheres and method for producing same
JP2006160570A (en) Method for manufacturing vitreous bulk foamed body
JPS61236621A (en) Production of foamed fine glass grain
JPH08157244A (en) Production of artificial lightweight aggregate
JP3895831B2 (en) Method for producing a foamable ceramic material
RU2302390C2 (en) Method of production of granulated porous materials
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
JPS61236643A (en) Glass shell covered particle and manufacture
JPS6365617B2 (en)
JPH0867576A (en) Production of lightweight ceramic material
JPH08253377A (en) Highly strong inorganic foamed granule and its production
JP3523376B2 (en) Method for producing foamed building material and foamed building material
JP3635288B2 (en) Manufacturing method of artificial lightweight aggregate
JPS61251530A (en) Production of glass coated shell granule
JP2000026142A (en) Production of artificial lightweight aggregate
RU1813756C (en) Method of claydite producing
WO2023153936A1 (en) Thermally bonded granulate
JP3586319B2 (en) Ultralight fine particles having high strength and method for producing the same
JPH09255383A (en) Production of super lightweight aggregate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A02 Decision of refusal

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A02