JPH09255383A - Production of super lightweight aggregate - Google Patents

Production of super lightweight aggregate

Info

Publication number
JPH09255383A
JPH09255383A JP8994096A JP8994096A JPH09255383A JP H09255383 A JPH09255383 A JP H09255383A JP 8994096 A JP8994096 A JP 8994096A JP 8994096 A JP8994096 A JP 8994096A JP H09255383 A JPH09255383 A JP H09255383A
Authority
JP
Japan
Prior art keywords
sodium silicate
weight
rhyolite
parts
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8994096A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Harada
至克 原田
Junji Asaumi
順治 浅海
Hiroyuki Hayano
博幸 早野
Hiroaki Matsusato
広昭 松里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP8994096A priority Critical patent/JPH09255383A/en
Publication of JPH09255383A publication Critical patent/JPH09255383A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of super lightweight aggregate capable of firing a pellet after granulating as in hydrated state and stably obtaining a super lightweight aggregate having the specific gravity of <=0.8 in absolute dry condition and >=80kgf collapse strength. SOLUTION: The super lightweight aggregate is produced by adjusting the particle size of the pellet, which is obtained by granulating a rhyolite based vitreous mineral, a foaming agent and a sodium silicate aq, solution, and firing as in hydrated state. (1) The ryholite based vitreous mineral has 10-40μm average particle diameter, (2) in the sodium silicate, the molar ratio (SiO2 /Na2 O) of silicon dioxide to sodium oxide is 1.0-2.5, (3) the composition of the pellet is 0.1-2.0 pts.wt. foaming agent and the quantity of the sodium silicate equivalent to >=2.0 pts.wt. Na2 O in the sodium silicate per 100 pts.wt. ryholife based vitreous mineral and (4) the firing temp. is 900-1300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カーテンウォール
等のコンクリート製品やコンクリート構造物に用いられ
る軽量コンクリート用の骨材として適用可能な超軽量骨
材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultralight aggregate that can be applied as an aggregate for lightweight concrete used for concrete products such as curtain walls and concrete structures.

【0002】[0002]

【従来の技術】近年の構造物の超高層化、および量産住
宅用のカーテンウォール板の大型化に伴い、気乾比重が
1.0〜1.4、圧縮強度が300kgf/cm2以上
の軽量コンクリートが望まれている。このような軽量コ
ンクリートを実現するには、絶乾比重が0.8以下、圧
壊強度が80kgf以上の超軽量骨材が必要となる。
2. Description of the Related Art With the recent increase in the structure of super high-rise structures and the increase in the size of curtain wall plates for mass-produced houses, the air-dry specific gravity is 1.0 to 1.4 and the compressive strength is 300 kgf / cm 2 or more. Concrete is desired. In order to realize such lightweight concrete, it is necessary to use an ultralight aggregate having an absolute dry specific gravity of 0.8 or less and a crush strength of 80 kgf or more.

【0003】従来より、超軽量骨材の製造方法として、
抗火石、流紋岩の如き火山ガラス質鉱物の粉末に発泡剤
および粘着材を加えて造粒し、該造粒物を乾燥した後、
1000〜1300℃にて焼成発泡させる製造方法が知
られている。例えば、特公昭62−12186号公報に
は、抗火石、流紋岩の如き火山ガラス質鉱物を20μm
以下の粒子が70%以上の微粉末となし、これに発泡材
および粘着材を加えて造粒し、1000〜1300℃に
て焼成発泡させる超軽量骨材の製造法が開示されてい
る。
Conventionally, as a method for producing an ultralight aggregate,
After adding a foaming agent and an adhesive to the powder of volcanic glassy minerals such as anti-firestone and rhyolite, and granulating the granulated material, and drying the granulated material,
A manufacturing method of firing and foaming at 1000 to 1300 ° C. is known. For example, Japanese Examined Patent Publication No. 62-12186 discloses a volcanic glassy mineral such as anti-firestone and rhyolite at 20 μm.
Disclosed is a method for producing an ultralight aggregate in which the following particles form a fine powder of 70% or more, and a foaming material and an adhesive material are added to the mixture to granulate it, followed by firing and foaming at 1000 to 1300 ° C.

【0004】[0004]

【発明が解決しようとする課題】従来の超軽量骨材の製
造方法において、抗火石、流紋岩の如き火山ガラス質鉱
物の粉末、発泡剤および粘着材からなる造粒物は、含水
状態のまま焼成した場合、クラックやスポーリンクが生
じるため、含水状態で焼成することはできず、焼成する
前に乾燥しなければならなかった。そして該造粒物の乾
燥は、100〜200℃で長時間乾燥しなければならな
かったため、時間と手間がかかっていた。さらに、従来
の超軽量骨材の製造方法では、軽量コンクリートを実現
するのに必要な、絶乾比重が0.8以下、圧壊強度が8
0kgf以上の超軽量骨材は得られがたかった。上記特
公昭62−12186号公報に記載された超軽量骨材の
製造法でも、抗火石、流紋岩の如き火山ガラス質鉱物を
20μm以下の粒子が70%以上の微粉末となし、これ
に発泡材および粘着材を加えて造粒した造粒物は、焼成
する前に乾燥しなければならず時間と手間がかかる。ま
た、この超軽量骨材の製造法で製造された超軽量骨材
は、比重が0.4〜0.85であり、これを用いること
によりコンクリートの軽量化は可能であるが、構造用軽
量コンクリートを実現するのに必要な圧壊強度が80k
gf以上の超軽量骨材は得られがたく、また、得られた
としても焼成温度を厳密にコントロールする必要があ
り、実用的でない。
DISCLOSURE OF THE INVENTION In a conventional method for producing an ultralight aggregate, granules composed of powders of volcanic glassy minerals such as anti-firestone and rhyolite, a foaming agent, and an adhesive material are in a water-containing state. If it is baked as it is, cracks and sporing will occur, so it cannot be baked in a water-containing state, and it must be dried before baking. Since drying of the granulated product had to be performed at 100 to 200 ° C. for a long time, it took time and labor. Furthermore, in the conventional method for manufacturing ultra-light aggregate, the absolute dry specific gravity required for realizing lightweight concrete is 0.8 or less, and the crush strength is 8
It was difficult to obtain an ultralight aggregate of 0 kgf or more. Also in the method for producing an ultralight aggregate described in Japanese Patent Publication No. 62-12186, volcanic glassy minerals such as anti-firestones and rhyolites are formed into 70% or more fine powders having a particle size of 20 μm or less. The granulated product obtained by adding the foaming material and the adhesive material to the granules must be dried before firing, which requires time and labor. In addition, the ultra-light aggregate produced by this method for producing ultra-light aggregate has a specific gravity of 0.4 to 0.85, and it is possible to reduce the weight of concrete by using this, but it is structurally lightweight. Crush strength required to realize concrete is 80k
It is difficult to obtain an ultralight aggregate of gf or more, and even if it is obtained, it is necessary to strictly control the firing temperature, which is not practical.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
造粒後のペレットを含水状態のまま焼成することがで
き、かつ、絶乾比重が0.8以下、圧壊強度が80kg
f以上の超軽量骨材が安定して得られる超軽量骨材の製
造方法について鋭意研究した結果、流紋岩系ガラス質鉱
物の平均粒径を調整すること、ケイ酸分とナトリウム分
のモル比(SiO 2/Na2O)が特定の範囲であるケイ
酸ナトリウムの水溶液を用いること、そしてペレットの
原料配合を特定すればよいとの知見を得、本発明を完成
した。
Means for Solving the Problems Accordingly, the present inventors have
It is possible to bake the granulated pellets in the water-containing state.
And the absolute dry density is 0.8 or less, and the crush strength is 80 kg.
Manufacture of ultra-light aggregate that can stably obtain ultra-light aggregate of f or more
As a result of diligent research on the construction method, rhyolite glassy ore
Adjusting the average particle size of the product, silicic acid content and sodium content
Molar ratio of (SiO Two/ NaTwoO) is a specific range
Using an aqueous solution of sodium acidate, and
Completed the present invention with the knowledge that the raw material blend should be specified
did.

【0006】即ち本発明は、流紋岩系ガラス質鉱物、発
泡剤およびケイ酸ナトリウム水溶液を造粒して得られる
ペレットを粒度調整し、含水状態のまま焼成する超軽量
骨材の製造方法であって、(1)流紋岩系ガラス質鉱物
は、平均粒径が10〜40μmであり、(2)ケイ酸ナ
トリウムは、二酸化ケイ素と酸化ナトリウムのモル比
(SiO2/Na2O)が1.0〜2.5であり、(3)
ペレットの配合は、流紋岩系ガラス質鉱物100重量部
に対して発泡剤が0.1〜2.0重量部およびケイ酸ナ
トリウムがケイ酸ナトリウム中のNa2Oが2.0重量
部以上となる量であり、(4)焼成温度が900〜13
00℃である、ことを特徴とする超軽量骨材の製造方法
である。
That is, the present invention is a method for producing an ultralight aggregate in which pellets obtained by granulating a rhyolite glassy mineral, a foaming agent and an aqueous sodium silicate solution are subjected to particle size adjustment and fired in a water-containing state. Therefore, (1) rhyolite glassy mineral has an average particle size of 10 to 40 μm, and (2) sodium silicate has a molar ratio of silicon dioxide and sodium oxide (SiO 2 / Na 2 O). 1.0-2.5, (3)
The pellets are compounded with 0.1 to 2.0 parts by weight of a foaming agent and 2.0 parts by weight or more of Na 2 O in sodium silicate based on 100 parts by weight of rhyolite glassy mineral. And (4) firing temperature is 900 to 13
The method for producing an ultralight aggregate is characterized in that the temperature is 00 ° C.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0008】本発明でいう流紋岩系ガラス質鉱物として
は、例えば真珠岩や黒曜石を含むマレカナイト、抗火石
等が挙げられる。流紋岩系ガラス質鉱物は、流紋岩系ガ
ラス質鉱物塊を乾燥後、平均粒径が10〜40μm、好
ましくは15〜30μmになるように粉砕した粉末又は
粉砕後粒度調整した粉末を用いる。流紋岩系ガラス質鉱
物の平均粒径が10μm未満では、粉砕が困難になるう
え、ペレットの緻密性が高いため、焼成時の発泡の際、
内部クラックが生じやすくなり、超軽量骨材の圧壊強度
が80kgf未満になる。また、流紋岩系ガラス質鉱物
の平均粒径が40μmを越えると、ペレットの造粒が困
難となるうえ、ペレットの緻密性が低いため、焼成時の
発泡の際、内部の気泡が拡大し内部欠陥としての空隙と
なり、超軽量骨材の圧壊強度が80kgf未満になる。
なお、流紋岩系ガラス質鉱物の粉砕は、例えば、ロール
ミル、ボールミル等の粉砕機を用いて行えばよい。ま
た、粒度調整を行う場合は、分級機を用いて行えばよ
い。さらに、流紋岩系ガラス質鉱物の平均粒径の測定
は、レーザー回折式粒度分布測定装置等の粒度分布測定
装置を用いて行えばよい。
Examples of the rhyolite glassy mineral used in the present invention include malecanite containing pearlite and obsidian, and anti-firestone. As the rhyolite-based glassy mineral, a powder obtained by drying the rhyolite-based glassy mineral lump and then crushing it so that the average particle diameter becomes 10 to 40 μm, preferably 15 to 30 μm, or a powder whose particle size is adjusted after crushing is used. . If the average particle size of the rhyolite glassy mineral is less than 10 μm, it becomes difficult to pulverize, and since the pellet is highly dense, when foaming during firing,
Internal cracks easily occur, and the crush strength of the ultralight aggregate becomes less than 80 kgf. Also, if the average particle size of the rhyolite glassy mineral exceeds 40 μm, it becomes difficult to granulate the pellets, and since the pellets are not dense, internal bubbles expand during foaming during firing. It becomes voids as internal defects, and the crush strength of the ultralight aggregate becomes less than 80 kgf.
The rhyolite glassy mineral may be crushed using a crusher such as a roll mill or a ball mill. When adjusting the particle size, a classifier may be used. Furthermore, the average particle size of the rhyolite glassy mineral may be measured using a particle size distribution measuring device such as a laser diffraction type particle size distribution measuring device.

【0009】発泡剤としては、SiC、Si34等が挙
げられるが、SiCが特に好ましい。発泡剤は、流紋岩
系ガラス質鉱物100重量部に対して、0.1〜2.0
重量部添加する。発泡剤の添加量が流紋岩系ガラス質鉱
物100重量部に対して0.1重量部未満では、超軽量
骨材の絶乾比重が0.8を越える。また、発泡剤の添加
量が流紋岩系ガラス質鉱物100重量部に対して2.0
重量部を越えると、超軽量骨材の圧壊強度が80kgf
未満になる。
Examples of the foaming agent include SiC, Si 3 N 4 and the like, but SiC is particularly preferable. The foaming agent is 0.1 to 2.0 with respect to 100 parts by weight of rhyolite glassy mineral.
Add by weight. If the amount of the foaming agent added is less than 0.1 part by weight with respect to 100 parts by weight of the rhyolite glassy mineral, the ultralight specific gravity of the ultralight aggregate exceeds 0.8. Further, the amount of the foaming agent added is 2.0 with respect to 100 parts by weight of the rhyolite glassy mineral.
If it exceeds the weight part, the crushing strength of the ultralight aggregate is 80kgf.
Less than.

【0010】ケイ酸ナトリウムは、二酸化ケイ素と酸化
ナトリウムのモル比(SiO2/Na2O)が1.0〜
2.5であるケイ酸ナトリウムの水溶液を用いる。二酸
化ケイ素と酸化ナトリウムのモル比が1.0未満のケイ
酸ナトリウムの水溶液を用いたペレットは含水状態のま
ま焼成するとクラックやスポーリングが生じる。また、
二酸化ケイ素と酸化ナトリウムのモル比が2.5を越え
るケイ酸ナトリウムの水溶液を用いたペレットも含水状
態のまま焼成するとクラックやスポーリングが生じる。
一方、粉末状のケイ酸ナトリウムでは超軽量骨材の圧壊
強度が80kgf未満になる。
Sodium silicate has a molar ratio of silicon dioxide to sodium oxide (SiO 2 / Na 2 O) of 1.0 to.
An aqueous solution of sodium silicate of 2.5 is used. Pellets using an aqueous solution of sodium silicate in which the molar ratio of silicon dioxide and sodium oxide is less than 1.0 cause cracks and spalling when fired in a water-containing state. Also,
Pellets using an aqueous solution of sodium silicate in which the molar ratio of silicon dioxide and sodium oxide exceeds 2.5 also cause cracks and spalling when fired in a water-containing state.
On the other hand, in the case of powdery sodium silicate, the crush strength of the ultralight aggregate is less than 80 kgf.

【0011】ケイ酸ナトリウムは、流紋岩系ガラス質鉱
物100重量部に対して、ケイ酸ナトリウム中のNa2
Oが2.0重量部以上、好ましくは2.0〜4.0重量
部となるように添加する。流紋岩系ガラス質鉱物100
重量部に対してケイ酸ナトリウム中のNa2Oが2.0
重量部未満となるケイ酸ナトリウムの添加量では超軽量
骨材の圧壊強度が80kgf未満になる。また、流紋岩
系ガラス質鉱物100重量部に対してケイ酸ナトリウム
中のNa2Oが4.0重量部を越えるケイ酸ナトリウム
の添加量では焼成時に融着が生じ易くなるので融着防止
剤が必要となり好ましくない。
Sodium silicate is Na 2 in sodium silicate based on 100 parts by weight of rhyolite glassy mineral.
O is added in an amount of 2.0 parts by weight or more, preferably 2.0 to 4.0 parts by weight. Rhyolite glassy mineral 100
2.0 parts by weight of Na 2 O in sodium silicate relative to parts by weight
If the amount of sodium silicate added is less than 1 part by weight, the crush strength of the ultralight aggregate is less than 80 kgf. Further, if the amount of sodium silicate added exceeds 4.0 parts by weight of Na 2 O in the sodium silicate to 100 parts by weight of rhyolite-based glassy minerals, fusion will easily occur during firing, and thus fusion prevention will occur. It is not preferable because an agent is required.

【0012】ケイ酸ナトリウム水溶液の濃度は、30重
量%以上のケイ酸ナトリウム水溶液とするのが好まし
い。ケイ酸ナトリウム水溶液の濃度が30重量%未満で
は、ペレットの造粒の際、隣接したペレット同士の団粒
が生じ易くなるので好ましくない。流紋岩系ガラス質鉱
物に対するケイ酸ナトリウム中のNa2Oの配合割合
は、ケイ酸ナトリウム水溶液の濃度や造粒時におけるペ
レットの含水率を調整することにより、変えることがで
きる。
The concentration of the sodium silicate aqueous solution is preferably 30% by weight or more. When the concentration of the aqueous sodium silicate solution is less than 30% by weight, aggregated particles of adjacent pellets are likely to occur during granulation of pellets, which is not preferable. The mixing ratio of Na 2 O in sodium silicate to the rhyolite glassy mineral can be changed by adjusting the concentration of the sodium silicate aqueous solution and the water content of the pellet during granulation.

【0013】ペレットの造粒は、例えば、パン型ペレタ
イザー等の造粒機や、ディスクペレッター等の押し出し
造粒機に流紋岩系ガラス質鉱物、発泡剤およびケイ酸ナ
トリウムの水溶液を入れ、ペレットの含水率が好ましく
は15〜25重量%となるように水を添加しながら/又
は添加しないで造粒する。ペレットの含水率が15重量
%未満では造粒が困難になるので好ましくない。また、
ペレットの含水率が25重量%を越えると隣接したペレ
ット同士の団粒が生じ易くなるので好ましくない。
Pellet granulation is carried out, for example, by putting the rhyolitic glassy mineral, a foaming agent and an aqueous solution of sodium silicate in a granulator such as a pan pelletizer or an extrusion granulator such as a disk pelleter, The pellets are granulated with or without addition of water so that the water content of the pellets is preferably 15 to 25% by weight. If the water content of the pellets is less than 15% by weight, granulation becomes difficult, which is not preferable. Also,
If the water content of the pellets exceeds 25% by weight, aggregates of adjacent pellets are likely to occur, which is not preferable.

【0014】上記ペレットは、粒径が5〜15mmのも
のを選定する。選定の方法は、特に限定しないが、例え
ば、JIS規格に適合する5mmおよび15mmの篩を
用いて篩い分けすることにより行う。5〜15mm以外
のペレットは、平均粒径が10〜40μmになるように
粉砕した後、混合工程に戻し、原料として使用しても良
い。
The pellets having a particle size of 5 to 15 mm are selected. The selection method is not particularly limited, but it is performed by sieving using, for example, 5 mm and 15 mm sieves conforming to the JIS standard. Pellets other than 5 to 15 mm may be pulverized to have an average particle size of 10 to 40 μm and then returned to the mixing step to be used as a raw material.

【0015】本発明のペレットは、造粒後に含水状態の
まま焼成することが可能である。すなわち、造粒後の1
5〜25重量%の含水率であるペレットを900〜13
00℃で、好ましくは、流紋岩系ガラス質鉱物100重
量部に対してケイ酸ナトリウム中のNa2Oが2.0〜
3.0重量部である該ペレットに対しては1100〜1
300℃で、流紋岩系ガラス質鉱物100重量部に対し
てケイ酸ナトリウム中のNa2Oが3.0〜4.0重量
部である該ペレットに対しては900〜1100℃で焼
成するのがよい。焼成温度が900℃未満では十分な発
泡が生じず超軽量骨材の絶乾比重が0.8を越える。ま
た、焼成温度が1300℃を越えると超軽量骨材の圧壊
強度が80kgf未満になる。なお、焼成時間は、いず
れの場合も5〜15分が好ましい。
The pellets of the present invention can be fired in a water-containing state after granulation. That is, 1 after granulation
The pellets having a water content of 5 to 25% by weight are 900 to 13
At 00 ° C., preferably, Na 2 O in sodium silicate is 2.0 to 100 parts by weight with respect to the rhyolite glassy mineral.
1100-1 for the pellets which are 3.0 parts by weight
At 300 ° C., the pellets having Na 2 O in sodium silicate of 3.0 to 4.0 parts by weight with respect to 100 parts by weight of rhyolite glassy mineral are fired at 900 to 1100 ° C. Is good. If the firing temperature is less than 900 ° C, sufficient foaming does not occur and the ultralight specific gravity of the ultralight aggregate exceeds 0.8. If the firing temperature exceeds 1300 ° C., the crush strength of the ultralight aggregate becomes less than 80 kgf. The firing time is preferably 5 to 15 minutes in any case.

【0016】なお、必要に応じて、融着防止剤を添加し
て焼成してもよい。融着防止剤として、水酸化アルミニ
ウム、酸化アルミニウム等が挙げられる。
If necessary, an anti-fusion agent may be added and the mixture may be fired. Examples of the fusion preventing agent include aluminum hydroxide and aluminum oxide.

【0017】焼成は、従来からあるロータリーキルン等
の焼成装置を使用して行えばよい。
The firing may be carried out using a conventional firing device such as a rotary kiln.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
The present invention will be described in more detail.

【0019】1.使用材料 使用した材料を以下に示す。 流紋岩系ガラス質鉱物;奥尻産マレカナイト 発泡剤 ;SiC(太平洋ランダム(株)製) ケイ酸ナトリウム ;a:メタけい酸ソーダ(日本化学工業(株)製) SiO2/Na2O(モル比)=1.0 b:けい酸ソーダ1号(日本化学工業(株)製) SiO2/Na2O(モル比)=2.0 c:けい酸ソーダ2号(日本化学工業(株)製) SiO2/Na2O(モル比)=2.5 d:セスキけい酸ソーダ(日本化学工業(株)製) SiO2/Na2O(モル比)=0.67 e:けい酸ソーダ3号(日本化学工業(株)製) SiO2/Na2O(モル比)=3.0 奥尻産マレカナイトは、ボールミルを用いて粉砕した。
表1に、奥尻産マレカナイトの平均粒径を示す。なお、
平均粒径の測定は、セイシン企業社製のSKLASER
MICRON SIZERを用いた。
1. Materials used The materials used are shown below. Rhyolite glassy minerals; Malekanite from Okushiri Foaming agent; SiC (manufactured by Pacific Random Co., Ltd.) Sodium silicate; a: Sodium metasilicate (manufactured by Nippon Chemical Industry Co., Ltd.) SiO 2 / Na 2 O (moles) Ratio) = 1.0 b: Sodium silicate No. 1 (manufactured by Nippon Kagaku Kogyo Co., Ltd.) SiO 2 / Na 2 O (molar ratio) = 2.0 c: Sodium silicate No. 2 (Nippon Kagaku Kogyo Co., Ltd.) SiO 2 / Na 2 O (molar ratio) = 2.5 d: sodium sesquisilicate (manufactured by Nippon Kagaku Kogyo Co., Ltd.) SiO 2 / Na 2 O (molar ratio) = 0.67 e: sodium silicate No. 3 (manufactured by Nippon Kagaku Kogyo Co., Ltd.) SiO 2 / Na 2 O (molar ratio) = 3.0 Okushiri produced malecanite was crushed using a ball mill.
Table 1 shows the average particle size of the malecanite produced in Okushiri. In addition,
The average particle size is measured by SKLASER manufactured by Seishin Enterprise Co., Ltd.
MICRON SIZER was used.

【0020】2.配合および造粒 上記使用材料を表1に示す配合割合で、不二パウダル社
製パン型ペレタイザーに入れ、表1に示す含水率となる
ように水を噴霧しながら、回転数8.5rpmでペレッ
トを造粒した。なお、一部の配合は、不二パウダル社製
ディスクペレッター(F−20型)を用いて押し出し造
粒を行った。得られたペレットをJIS規格に適合する
5mmおよび15mmの篩を用いて、粒径が5〜15m
mとなるように篩い分けした。
2. Mixing and granulation The above-mentioned materials are put in a bread type pelletizer manufactured by Fuji Paudal Co., Ltd. at a mixing ratio shown in Table 1, and pellets are formed at a rotation speed of 8.5 rpm while spraying water so that the water content shown in Table 1 is obtained. Was granulated. A part of the ingredients was extruded and granulated using a disk pelleter (F-20 type) manufactured by Fuji Paudal Co. The obtained pellets have a particle size of 5 to 15 m using a 5 mm and 15 mm sieve that conforms to JIS standards.
It screened so that it might become m.

【0021】3.焼成および軽量骨材の性状 表1の配合のペレットについて、ロータリーキルンを使
用して、880〜1320℃で焼成した。得られた超軽
量骨材の絶乾比重を「JIS A 1135(構造用軽
量粗骨材の比重及び吸水率試験方法)」に準じて測定し
た。また、オリエンテック社製材料試験機を用いて圧壊
強度を測定した。なお、圧壊強度は粒径が14mmの骨
材50個の平均値とした。結果を表1に示した。
3. Properties of Firing and Lightweight Aggregate The pellets having the formulations shown in Table 1 were fired at 880 to 1320 ° C. using a rotary kiln. The ultra-dry specific gravity of the obtained ultralight aggregate was measured according to "JIS A 1135 (Testing method for specific gravity and water absorption of lightweight coarse aggregate for structure)". In addition, the crush strength was measured using a material testing machine manufactured by Orientec. The crushing strength was an average value of 50 aggregates having a particle size of 14 mm. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例1〜3は、焼成温度を変えて評価を
行ったものであるが、本発明で規定する900〜130
0℃の範囲では、絶乾比重が0.8以下で、かつ、圧壊
強度が80kgf以上の超軽量骨材が得られた。一方、
比較例1に示すように焼成温度の低い880℃のもの
は、絶乾比重が0.8を越えた。また、比較例2に示す
ように焼成温度の高い1320℃のものは、圧壊強度が
80kgf未満であった。
Examples 1 to 3 were evaluated by changing the firing temperature, and 900 to 130 specified in the present invention.
In the range of 0 ° C., an ultralight aggregate having an absolute dry specific gravity of 0.8 or less and a crush strength of 80 kgf or more was obtained. on the other hand,
As shown in Comparative Example 1, the one having a low firing temperature of 880 ° C. had an absolute dry specific gravity of more than 0.8. Further, as shown in Comparative Example 2, the one having a high firing temperature of 1320 ° C. had a crushing strength of less than 80 kgf.

【0024】実施例4、5は、SiCの配合割合を変え
て評価を行ったものであるが、本発明で規定する奥尻産
マレカナイト100重量部に対して0.1〜2.0重量
部の範囲では、絶乾比重が0.8以下で、かつ、圧壊強
度が80kgf以上の超軽量骨材が得られた。一方、比
較例3に示すように配合割合の小さい0.08重量部の
ものは、絶乾比重が0.8より大きかった。また、比較
例4に示すように配合割合の大きい2.1重量部のもの
は、圧壊強度が80kgf未満であった。
In Examples 4 and 5, the evaluation was conducted by changing the mixing ratio of SiC, but 0.1 to 2.0 parts by weight of 100 parts by weight of Okushiri-made malecanite specified in the present invention was used. In the range, an ultralight aggregate having an absolute dry specific gravity of 0.8 or less and a crushing strength of 80 kgf or more was obtained. On the other hand, as shown in Comparative Example 3, the one having a small compounding ratio of 0.08 parts by weight had an absolute dry specific gravity of more than 0.8. Further, as shown in Comparative Example 4, the crushing strength of 2.1 parts by weight with a large mixing ratio was less than 80 kgf.

【0025】実施例6、7は、奥尻産マレカナイトに対
するけい酸ソーダ中のNa2Oの配合割合を変えて評価
を行ったものであるが、奥尻産マレカナイト100重量
部に対してけい酸ソーダ中のNa2Oが2重量部以上で
は、絶乾比重が0.8以下で、かつ、圧壊強度が80k
gf以上の超軽量骨材が得られた。一方、比較例5に示
すようにけい酸ソーダ中のNa2Oの配合割合の小さい
1.9重量部のものは、圧壊強度が80kgf未満であ
った。
In Examples 6 and 7, the evaluation was carried out by changing the mixing ratio of Na 2 O in sodium silicate with respect to the malekanite produced in Okushiri. In 100 parts by weight of malecanite produced in Okushiri, sodium silicate was used. When the Na 2 O content is 2 parts by weight or more, the absolute dry specific gravity is 0.8 or less and the crush strength is 80 k.
An ultralight aggregate of gf or more was obtained. On the other hand, as shown in Comparative Example 5, 1.9 parts by weight of Na 2 O in sodium silicate having a small compounding ratio had a crushing strength of less than 80 kgf.

【0026】実施例8、9は、二酸化ケイ素と酸化ナト
リウムのモル比(SiO2/Na2O)が異なるけい酸ソ
ーダの水溶液を原料とした場合の評価を行ったものであ
るが、本発明で規定する二酸化ケイ素と酸化ナトリウム
のモル比(SiO2/Na2O)が1.0〜2.5の範囲
のけい酸ソーダの水溶液では、絶乾比重が0.8以下
で、かつ、圧壊強度が80kgf以上の超軽量骨材が得
られた。一方、比較例6に示すように二酸化ケイ素と酸
化ナトリウムのモル比(SiO2/Na2O)が小さい
0.67のけい酸ソーダの水溶液では、クラックやスポ
ーリングが生じた。また、比較例7に示すように二酸化
ケイ素と酸化ナトリウムのモル比(SiO2/Na2O)
が大きい3.0のけい酸ソーダの水溶液では、クラック
やスポーリングが生じた。
In Examples 8 and 9, the evaluation was conducted using aqueous solutions of sodium silicate having different molar ratios (SiO 2 / Na 2 O) of silicon dioxide and sodium oxide as raw materials. In the aqueous solution of sodium silicate whose molar ratio (SiO 2 / Na 2 O) between silicon dioxide and sodium oxide is 1.0 to 2.5, the absolute dry specific gravity is 0.8 or less and crushing is performed. An ultralight aggregate having a strength of 80 kgf or more was obtained. On the other hand, as shown in Comparative Example 6, cracks and spalling occurred in an aqueous solution of sodium silicate having a small molar ratio (SiO 2 / Na 2 O) of silicon dioxide and sodium oxide of 0.67. In addition, as shown in Comparative Example 7, the molar ratio of silicon dioxide and sodium oxide (SiO 2 / Na 2 O)
In an aqueous solution of sodium silicate having a large value of 3.0, cracks and spalling occurred.

【0027】実施例10、11は、奥尻産マレカナイト
の平均粒径を変えて評価を行ったものであるが、本発明
で規定する10〜40μmの範囲では、絶乾比重が0.
8以下で、かつ、圧壊強度が80kgf以上の超軽量骨
材が得られた。一方、比較例8に示すように奥尻産マレ
カナイトの平均粒径の小さい8μmのものは、圧壊強度
が80kgf未満であった。また、比較例9に示すよう
に奥尻産マレカナイトの平均粒径の大きい43μmのも
のは、圧壊強度が80kgf未満であった。
In Examples 10 and 11, the evaluation was performed by changing the average particle size of Okushiri-produced malecanite, but in the range of 10 to 40 μm specified in the present invention, the absolute dry specific gravity is 0.1.
An ultralight aggregate of 8 or less and a crush strength of 80 kgf or more was obtained. On the other hand, as shown in Comparative Example 8, the maleukanite produced in Okushiri having a small average particle diameter of 8 μm had a crushing strength of less than 80 kgf. Further, as shown in Comparative Example 9, the maleukanite produced in Okushiri having a large average particle diameter of 43 μm had a crushing strength of less than 80 kgf.

【0028】実施例12〜14は、けい酸ソーダ1号水
溶液の濃度を変えて評価を行ったものであるが、絶乾比
重が0.8以下で、かつ、圧壊強度が80kgf以上の
超軽量骨材が得られた。一方、比較例10に示すように
粉末のけい酸ソーダ1号では、圧壊強度が80kgf未
満であった。
Examples 12 to 14 were evaluated by changing the concentration of the sodium silicate No. 1 aqueous solution, but the ultra-dry specific gravity was 0.8 or less and the crush strength was 80 kgf or more. Aggregate was obtained. On the other hand, as shown in Comparative Example 10, powdered sodium silicate No. 1 had a crushing strength of less than 80 kgf.

【0029】実施例15、16は、含水率を変えたペレ
ットを焼成したものであるが、絶乾比重が0.8以下
で、かつ、圧壊強度が80kgf以上の超軽量骨材が得
られた。
In Examples 15 and 16, pellets having different water contents were fired, and an ultralight aggregate having an absolute dry specific gravity of 0.8 or less and a crushing strength of 80 kgf or more was obtained. .

【0030】実施例17、18は、押し出し造粒により
調製したペレットの評価を行ったものであるが、絶乾比
重が0.8以下で、かつ、圧壊強度が80kgf以上の
超軽量骨材が得られた。
In Examples 17 and 18, the pellets prepared by extrusion granulation were evaluated, and an ultralight aggregate having an absolute dry specific gravity of 0.8 or less and a crush strength of 80 kgf or more was obtained. Was obtained.

【0031】[0031]

【発明の効果】本発明の超軽量骨材の製造方法は、造粒
後のペレットを含水状態のまま焼成することができる。
また、気乾比重が1.0〜1.4、圧縮強度が300k
gf/cm2以上の軽量コンクリート用の骨材として適
用可能な絶乾比重が0.8以下、圧壊強度が80kgf
以上の超軽量骨材が安定して得られる。
According to the method for producing an ultralight aggregate of the present invention, pellets after granulation can be fired in a water-containing state.
Also, the air-dry specific gravity is 1.0 to 1.4 and the compressive strength is 300k.
Applicable as aggregate for lightweight concrete with gf / cm 2 or more, absolute dry specific gravity of 0.8 or less, crushing strength of 80 kgf
The above ultralight aggregate can be stably obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流紋岩系ガラス質鉱物、発泡剤およびケ
イ酸ナトリウム水溶液を造粒して得られるペレットを粒
度調整し、含水状態のまま焼成する超軽量骨材の製造方
法であって、(1)流紋岩系ガラス質鉱物は、平均粒径
が10〜40μmであり、(2)ケイ酸ナトリウムは、
二酸化ケイ素と酸化ナトリウムのモル比(SiO2/N
2O)が1.0〜2.5であり、(3)ペレットの配
合は、流紋岩系ガラス質鉱物100重量部に対して発泡
剤が0.1〜2.0重量部およびケイ酸ナトリウムがケ
イ酸ナトリウム中のNa2Oが2.0重量部以上となる
量であり、(4)焼成温度が900〜1300℃であ
る、ことを特徴とする超軽量骨材の製造方法。
1. A method for producing an ultra-lightweight aggregate in which pellets obtained by granulating a rhyolitic glassy mineral, a foaming agent and an aqueous sodium silicate solution are subjected to particle size adjustment and fired in a water-containing state, (1) Rhyolite glassy mineral has an average particle size of 10 to 40 μm, and (2) sodium silicate is
The molar ratio of silicon dioxide and sodium oxide (SiO 2 / N
a 2 O) is 1.0 to 2.5, and (3) the pellets are mixed in such a manner that the blowing agent is 0.1 to 2.0 parts by weight and the silica is added to 100 parts by weight of the rhyolite glassy mineral. The method for producing an ultralight aggregate, characterized in that sodium acid is in an amount such that Na 2 O in sodium silicate is 2.0 parts by weight or more, and (4) the firing temperature is 900 to 1300 ° C.
JP8994096A 1996-03-21 1996-03-21 Production of super lightweight aggregate Pending JPH09255383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8994096A JPH09255383A (en) 1996-03-21 1996-03-21 Production of super lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8994096A JPH09255383A (en) 1996-03-21 1996-03-21 Production of super lightweight aggregate

Publications (1)

Publication Number Publication Date
JPH09255383A true JPH09255383A (en) 1997-09-30

Family

ID=13984709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8994096A Pending JPH09255383A (en) 1996-03-21 1996-03-21 Production of super lightweight aggregate

Country Status (1)

Country Link
JP (1) JPH09255383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
JP2011042544A (en) * 2009-08-24 2011-03-03 Toko Perlite Kogyo Kk Method for producing ceramic
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549427A1 (en) * 2002-08-23 2005-07-06 James Hardie International Finance B.V. Synthetic hollow microspheres
EP1549427A4 (en) * 2002-08-23 2008-04-16 James Hardie Int Finance Bv Synthetic hollow microspheres
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
JP2011042544A (en) * 2009-08-24 2011-03-03 Toko Perlite Kogyo Kk Method for producing ceramic

Similar Documents

Publication Publication Date Title
US4332907A (en) Granulated foamed glass and process for the production thereof
US3726697A (en) Glass manufacture from prereacted batch and composition
US6296697B1 (en) Thermally insulating building material
RU2191169C1 (en) Charge and method of producing granulated chamotte used as wedging agent
JPH09255383A (en) Production of super lightweight aggregate
US10435328B2 (en) Expanded-glass granular material and method for producing same
GB2143516A (en) Lightweight refractory bricks
JPH09255384A (en) Production of super lightweight aggregate
KR20050103058A (en) Lightweight aggregate having a dual foam cell, and process for preparing thereof
JP3634717B2 (en) Manufacturing method of lightweight foam glass tile
JPH0440095B2 (en)
SU1033465A1 (en) Method for making granulated foamed glass
JPS6339530B2 (en)
RU2255058C1 (en) Method of preparing blend for fabricating glass foam
JPS589833A (en) Preparation of foamed glass bead
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
JPH08253377A (en) Highly strong inorganic foamed granule and its production
EP4361118A1 (en) Lightweight ceramics
RU2758829C1 (en) Method for obtaining foam glass
US4451415A (en) Method for manufacture of foamed ceramic article
JPS5823339B2 (en) Sekidayori Kozoyoujinkokotsuzaio Seizousurhouhou
JPH04367349A (en) Manufacture of spherical molding sand
JPS59223222A (en) Manufacture of light granular alkali carbonate
JP2000272942A (en) Production of artificial lightweight aggregate
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material