JP3634717B2 - Manufacturing method of lightweight foam glass tile - Google Patents

Manufacturing method of lightweight foam glass tile Download PDF

Info

Publication number
JP3634717B2
JP3634717B2 JP2000116669A JP2000116669A JP3634717B2 JP 3634717 B2 JP3634717 B2 JP 3634717B2 JP 2000116669 A JP2000116669 A JP 2000116669A JP 2000116669 A JP2000116669 A JP 2000116669A JP 3634717 B2 JP3634717 B2 JP 3634717B2
Authority
JP
Japan
Prior art keywords
glass
particle size
lightweight foam
weight
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000116669A
Other languages
Japanese (ja)
Other versions
JP2001302261A (en
Inventor
忍 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2000116669A priority Critical patent/JP3634717B2/en
Publication of JP2001302261A publication Critical patent/JP2001302261A/en
Application granted granted Critical
Publication of JP3634717B2 publication Critical patent/JP3634717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming

Description

【0001】
【産業上利用の分野】
本発明は、粉砕した使用済みガラスを使用した軽量発泡ガラスタイル及びその製造法に関する。
【0002】
【従来の技術】
従来、使用済みガラス瓶は、粗破砕されカレットとして再びガラス瓶の製造に利用されるが、多くの場合、瓶の回収、色選別、洗浄に手間どり年間150万トンが埋立地に投棄されている。
また、色選別することなく粗破砕された、いわゆるコミガラスカレットは、アスファルト混合物に混ぜて光る舗装材として利用され始めているが、まだごく一部にすぎない。
そして、コミガラスカレットを微粉砕して得られる超軽量骨材は、0.3〜5mmの焼成体で、セメント製品や樹脂製品の軽量化等に用いられるとしているが、実際にはコンクリートの強度を維持するために使用量に限界があり、断熱性や吸音性等はコンクリートの特性を引き継ぎ、さほどの効果はない。
【0003】
また一般に普及している従来断熱工法では、有機質の保温材や断熱材は引火性や耐水性に欠点がある他、夏季における壁内結露が問題となっている。
そこで、特公昭52−15603号公報のように、耐火性無機材料の粉末を主骨材とし、これに無機炭酸塩5%以下及び前記無機炭酸塩の分解温度以下の低融点のガラス粉末40〜85%を添加したものを主体とし、これを成形後、前記無機炭酸塩が分解して、発泡作用を呈するための炭酸ガスが放出する程度に焼成してなる軽量化セラミックス建築用保温材の製造法が知られている。
【0004】
また、特開平7−267660号公報で示されるように、0.1〜2重量%の窒化ケイ素を含有し、かつ互いに窒化ケイ素含有量が異なる少なくとも2種類以上のシリカ粉末を、外側に窒化ケイ素含有量の少ない粉末、内部に窒化ケイ素含有量の多い粉末となるように、シリカと反応しにくい材質からなる容器に充填し、無酸素雰囲気中、1700℃〜1850℃の温度で加熱し、発泡させた発泡石英ガラス構造体の製造方法が知られている。
【0005】
一般にガラスと異種物質を混合して焼成した場合は熱膨張の差によって微細な亀裂を生じ易く、この際、発生する微細な亀裂は強度的には問題にならないが耐水性を著しく悪化させ、さらに凍結時の膨張で破壊される。
また、粒度調整しない単一粒度のガラス粉末を炭酸カルシウムで自由発泡させると表面は緻密な層で覆われるものの得られる形状は原形とは異なる角のないドーム状に発泡してしまい一定形状にはならずタイル等には到底使えない。
【0006】
【発明が解決しようとする課題】
以上の点に鑑み、本発明は、使用済みのガラスの有効利用をはかり軽量化された軽量発泡ガラスタイルと、自由発泡の優れている点を残し発泡後の形状がタイルのように角がシャープで平滑な面が得られるような軽量発泡ガラスタイル製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の軽量発泡ガラスタイルの製造方法は、粉砕したガラスの平均粒径50μ粗粒と平均粒径14μ細粒の重量混合比を35:5〜25:15なるようにし、ガラス粉重量の1.0〜2.0重量%炭酸カルシウムを発泡剤とし、ガラス粉重量の15%の水を加えて混練物を形成し、該混練物を乾燥させずに400kg/cm2の圧力で成形し、750〜800℃で30分加熱し発泡させるものである。
【0008】
以下、本発明を詳細に説明する。
本発明は、粉砕された使用済みガラスを主体に炭酸カルシウムなどガラスの溶融温度で無害な分解ガスを発生できる無機質塩類とよく混合し、水を媒体に所要形状に加圧成形してから、焼成によりガラスの軟化溶融が起こり、次いで発泡剤として加えた無機質塩類がガラスと反応し、あるいは分解し短時間のうちに炭酸ガスを発生し周囲の溶融したガラスに閉じ込められる結果、発泡体を形成する。
【0009】
発泡体の機械的強度は細かな気泡ほど高く、短時間にガスが発生するような温度条件が望ましい。
さらに、ガラス粉同士が作る空隙をコントロールすることで発泡する形状を成形時の形状に相似形にすることができる。
【0010】
本発明で使用するガラス原料は、単一組成のガラスが望ましく、由来や色は問わないが、紙や金属等の異物の混入は欠陥や着色の原因となり極力避けることが必要である。
従って、粗粉砕や微粉砕機械のガラスとの接触部は金属性ではないものが望ましい。
【0011】
微粉砕にはボールミルを使用し、粉砕時間によって粗粒、細粒とするが、粗粒は45μ以上が55%で平均粒径50μ、細粒は45μ以上が25%で平均粒径14μとなるように微粉砕する。
粗粒と細粒の組み合わせは、重量比で35:5〜25:15、好ましくは30:10である。
【0012】
前記炭酸カルシウムは発泡剤として添加するが、純度は工業用でも試薬でも構わないが、粒子径によって発泡量が大きく変化するので一定寸法のものが望ましい。
炭酸カルシウムの平均粒径30μの場合は、発泡量が少なく、1μでは発泡量が多過ぎて強度が低下するので、使用する炭酸カルシウムは平均粒径15μが好ましい。
発泡剤の量は、ガラス粉末100部あたり1.0〜2.0部、望ましくは1.5部とする。
【0013】
ガラス粉末100部に対して所定の炭酸カルシウムを加え機械的に均一に混合した後、水15部をバインダーとして加えよく混練し、混練物を形成する。
前記混練物を手に持っても崩れない程度の水分であればよく水15部にはこだわらない。
【0014】
成形圧力と焼成体のかさ密度の関係は希薄だが、前記混練物を型に充填して400〜600kg/cm2の圧力で成形し、成形体を形成する。
前記成形体は乾燥させずに成形した直後に焼成する。
【0015】
焼成は、均一な発泡を得るために発熱体からの距離が均等になるよう配慮した電気炉を用い、アルミナ粉を散布したアルミナ板に載せた成形体を400℃/時間の昇温速度700℃まで加熱し20分間保持、さらに750℃まで昇温させ30分間保持し発泡させた。
その後、電源を切ってそのまま炉内で室温になるまで冷却した。
なお、連続的に焼成する場合は、700℃に設定した余熱ゾーンに直接挿入し、750℃に設定した焼成ゾーン、徐冷ゾーンの3ブロックを時間とともに移動させることで連続的に焼成することができる。
【0016】
焼成で得られる発泡体は、平面で覆われた角がシャープな形状で0.4〜0.7g/cm3のかさ密度で100〜200μの独立気泡の構造を有し、表面は緻密な層で覆われている。
【0017】
この発泡体を京都電子のKemthermQTM−D3で測定した熱伝導率は(λ)=0.07〜0.08Kcal/mh℃(293〜335J/mh℃)、比較のために測定した一般の磁器質タイルの熱伝導率は1.232Kcal/mh℃であった。
また、試料の裏から25Wの電球の熱による試料表面の温度上昇を恒温室で観測したところ約50分で安定し、一般の磁器質タイルで+23℃、この発泡体では+8℃、となり、この発泡体が良好な断熱性を示した。
【0018】
【実施例】
次に本発明の実施例を詳細に説明するが、本発明はこれに限定されるものではない。
実施例
ガラス粉末(粗粒) 66部
ガラス粉末(細粒) 22部
炭酸カルシウム 1.32部
水 13.2部
廃棄された液晶用ガラスを破砕した後、ボールミルで微粉砕し粗粒、微粒の2種類の粉体を調整した。
これらの平均粒径はそれぞれ50μ、14μであった。
この2種類のガラス粉末各々66部、22部に炭酸カルシウム1.32部をよく混合し、さらに水を13.2部加えて均一にした混練物を成形ダイスに充填し、プレス圧力400kg/cm2で成形し60mm×60mm×19mmの成形体を作成した。
ダイスから成形体を静かに取り出しアルミナ粉を散布したアルミナ製のトレーに載せ、電気炉で時間当り400℃の昇温速度で室温から700℃まで焼成し20分保持、更に750℃に昇温後30分保持したところで急速に発泡した。
そのまま炉内で室温まで冷却し、表面は緻密で内部に独立気泡を有した単一組成ガラスで構成されたシェル構造の軽量発泡ガラスタイルを得た。
【0019】
大きさは、平面で覆われた95mm×95mm×24mmで比重0.4、曲げ強度は200N/cm2であった。
表面が光沢のある緻密な堅い層で覆われており吸水性は認められなかった。
焼成体の内部は、直径約0.2mmの細かな独立した気泡が均一に充満していた。
【0020】
【効果】
本発明は、使用済みのガラスの有効利用をはかり軽量化された軽量発泡ガラスタイルとすることにより従来工法の欠点を補い、断熱性や吸音性を兼ね備え機械的強度並びに耐水性の優れた外壁材とすることができる。
緻密な表面による耐水性と特に気泡構造による断熱性が優れることによって従来の内部断熱工法に代わる建築構造物の外壁断熱材を提供することにより躯体の持つ顕熱を利用できる結果、室内温度変化を最小にできるものとして省エネ効果が期待される。
本発明は、単一組成のガラスを粉末にする過程で大粒と小粒を作り一定の割合に組み合わせることにより、常に一定形状の角がシャープで平滑な面の焼成体が得られることにより、直径約0.2mmの均一な独立気泡からなる軽量で断熱性をもち形状的に優れた軽量発泡ガラスタイルが得られる。
つまり同一組成のガラス粉末の空隙を粒度調整することで型よる拘束をしなくとも原形に相似的に発泡したシャープな角を持った平面が得られ、しかも自由発泡特有の緻密な表層に覆われた軽量発泡ガラスタイルが得られる。
[0001]
[Field of industrial use]
The present invention relates to a lightweight foam glass tile using crushed used glass and a method for producing the same.
[0002]
[Prior art]
Conventionally, used glass bottles are roughly crushed and used again as cullet for the production of glass bottles. In many cases, however, 1.5 million tons are dumped in landfills every year due to the time required to collect, color sort and wash the bottles.
In addition, so-called Komi glass cullet that has been roughly crushed without color selection has begun to be used as a paving material that shines by mixing with an asphalt mixture, but it is still only a small part.
The ultra-light aggregate obtained by finely pulverizing Komi glass cullet is a fired body of 0.3 to 5 mm and is used for weight reduction of cement products and resin products. There is a limit to the amount used to maintain the heat resistance, sound absorption, etc., inheriting the properties of concrete and not so effective.
[0003]
In addition, in the conventional heat insulation method that has been widely used, organic heat insulating materials and heat insulating materials have drawbacks in flammability and water resistance, and condensation in the walls in summer is a problem.
Therefore, as disclosed in Japanese Examined Patent Publication No. 52-15603, a refractory inorganic material powder is used as a main aggregate, and a glass powder having a low melting point of 40% or less of an inorganic carbonate of 5% or less and a decomposition temperature of the inorganic carbonate or less. Mainly composed of 85% added, and after molding this, the inorganic carbonate is decomposed and fired to the extent that carbon dioxide gas for releasing foam is released. The law is known.
[0004]
Further, as disclosed in JP-A-7-267660, at least two kinds of silica powders containing 0.1 to 2% by weight of silicon nitride and having different silicon nitride contents are formed on the outer side of silicon nitride. Filled into a container made of a material that does not easily react with silica so that it has a low content and a high content of silicon nitride inside, it is heated at a temperature of 1700 ° C to 1850 ° C in an oxygen-free atmosphere, and foamed. A method for producing a foamed quartz glass structure is known.
[0005]
In general, when glass and dissimilar materials are mixed and fired, fine cracks are likely to occur due to the difference in thermal expansion. At this time, the generated fine cracks do not cause a problem in strength, but the water resistance is remarkably deteriorated. Destroyed by freezing expansion.
In addition, when glass powder of a single particle size that is not adjusted in particle size is freely foamed with calcium carbonate, the surface is covered with a dense layer, but the resulting shape foams into a dome shape with no corners different from the original shape. It cannot be used for tiles.
[0006]
[Problems to be solved by the invention]
In view of the above points, the present invention is a lightweight foam glass tile that has been made lighter by making effective use of used glass, and the shape after foaming is sharp like a tile, leaving excellent free foaming. It is to provide a lightweight foam glass tile manufacturing method that can obtain a smooth surface.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, lightweight foam glass tile manufacturing method of the present invention, the average particle size 14μ fines weight mixing ratio between the average particle size 50μ grit glass milled 35: 5-25: 15 and As a foaming agent, calcium carbonate having a weight of 1.0 to 2.0% by weight of the glass powder is used as a foaming agent, and a kneaded product is formed by adding 15% of water to the weight of the glass powder. The kneaded product is 400 kg / cm 2 without drying . It is molded by pressure and heated at 750 to 800 ° C. for 30 minutes for foaming.
[0008]
Hereinafter, the present invention will be described in detail.
The present invention mixes well with inorganic salts that can generate harmless decomposition gas at the melting temperature of glass, such as calcium carbonate, mainly from pulverized used glass, and then press-molds water into a required shape and then fires it. Causes the glass to soften and melt, and then the inorganic salt added as a foaming agent reacts with the glass or decomposes to generate carbon dioxide within a short time and become trapped in the surrounding molten glass, forming a foam. .
[0009]
The mechanical strength of the foam is higher for fine bubbles, and it is desirable that the temperature conditions be such that gas is generated in a short time.
Furthermore, the foaming shape can be made similar to the shape at the time of molding by controlling the gap formed by the glass powder.
[0010]
The glass raw material used in the present invention is preferably a glass having a single composition and may be of any origin or color, but it is necessary to avoid contamination of foreign matters such as paper and metal as a cause of defects and coloring as much as possible.
Therefore, it is desirable that the contact portion with the glass of the coarse pulverization or fine pulverization machine is not metallic.
[0011]
A ball mill is used for fine pulverization, and coarse and fine particles are obtained depending on the pulverization time. The coarse particles are 45% or more 55% and the average particle size is 50μ, and the fine particles 45μ or more are 25% and the average particle size is 14μ. Grind as follows.
The combination of coarse and fine particles is 35: 5 to 25:15, preferably 30:10, by weight.
[0012]
The calcium carbonate is added as a foaming agent, but the purity may be industrial or a reagent, but the foaming amount varies greatly depending on the particle diameter, so that a fixed size is desirable.
When the average particle size of calcium carbonate is 30 μm, the amount of foaming is small, and when 1 μm, the amount of foaming is too much and the strength is lowered. Therefore, the calcium carbonate used preferably has an average particle size of 15 μm.
The amount of the blowing agent is 1.0 to 2.0 parts, preferably 1.5 parts, per 100 parts of the glass powder.
[0013]
Predetermined calcium carbonate is added to 100 parts of glass powder and mixed mechanically uniformly, and then 15 parts of water is added as a binder and kneaded well to form a kneaded product.
It is sufficient that the water content does not collapse even if the kneaded product is held in hand, and the water content is not particular to 15 parts.
[0014]
Although the relationship between the molding pressure and the bulk density of the fired body is thin, the kneaded product is filled in a mold and molded at a pressure of 400 to 600 kg / cm 2 to form a molded body.
The molded body is fired immediately after being molded without being dried.
[0015]
Firing is performed using an electric furnace in which the distance from the heating element is made uniform in order to obtain uniform foaming, and the molded body placed on the alumina plate on which the alumina powder is dispersed is heated at a heating rate of 700 ° C. at 400 ° C./hour. And heated for 20 minutes, further heated to 750 ° C. and held for 30 minutes for foaming.
Thereafter, the power was turned off and the system was cooled down to room temperature in the furnace.
In addition, in the case of continuous firing, it is possible to perform continuous firing by inserting directly into the preheating zone set at 700 ° C. and moving three blocks of the firing zone and slow cooling zone set at 750 ° C. over time. it can.
[0016]
The foam obtained by baking has a shape of closed cells with a sharp corner covered with a flat surface, a bulk density of 0.4 to 0.7 g / cm 3 and a closed cell of 100 to 200 μm, and the surface is a dense layer. Covered.
[0017]
The thermal conductivity of this foam measured by Kyoto Electronics Kemtherm QTM-D3 is (λ) = 0.07 to 0.08 Kcal / mh ° C. (293 to 335 J / mh ° C.). The thermal conductivity of the tile was 1.232 Kcal / mh ° C.
Moreover, when the temperature rise of the sample surface due to the heat of a 25 W light bulb was observed from the back of the sample in a thermostatic chamber, it stabilized in about 50 minutes, becoming + 23 ° C for a general porcelain tile and + 8 ° C for this foam. The foam showed good thermal insulation.
[0018]
【Example】
Next, examples of the present invention will be described in detail, but the present invention is not limited thereto.
Example Glass powder (coarse) 66 parts Glass powder (fine granules) 22 parts Calcium carbonate 1.32 parts Water 13.2 parts After crushing the discarded glass for liquid crystal, it is finely pulverized with a ball mill. Two types of powders were prepared.
These average particle diameters were 50 μ and 14 μ, respectively.
66 parts and 22 parts of each of these two kinds of glass powders were mixed well with 1.32 parts of calcium carbonate, and further, 13.2 parts of water was added and the kneaded material was uniformly filled into a forming die, and the press pressure was 400 kg / cm 2. To form a molded body of 60 mm × 60 mm × 19 mm.
Gently remove the compact from the die and place it on an alumina tray on which alumina powder has been sprinkled, fire it from room temperature to 700 ° C at a heating rate of 400 ° C per hour in an electric furnace, hold for 20 minutes, and further raise the temperature to 750 ° C When kept for 30 minutes, foaming rapidly occurred.
As it was cooled in the furnace to room temperature, a lightweight foam glass tile having a shell structure composed of a single composition glass having a dense surface and having closed cells inside was obtained.
[0019]
The size was 95 mm × 95 mm × 24 mm covered with a flat surface, the specific gravity was 0.4, and the bending strength was 200 N / cm 2.
The surface was covered with a glossy dense hard layer and no water absorption was observed.
The inside of the fired body was uniformly filled with fine independent bubbles having a diameter of about 0.2 mm.
[0020]
【effect】
The present invention compensates for the disadvantages of conventional methods by making effective use of used glass and reducing the weight of the foamed glass tile, and has excellent heat resistance and sound absorption, and has excellent mechanical strength and water resistance. It can be.
By providing the outer wall insulation material of the building structure that replaces the conventional internal heat insulation method due to the excellent water resistance due to the dense surface and especially the heat insulation property due to the bubble structure, the sensible heat of the frame can be used, resulting in a change in indoor temperature The energy saving effect is expected as what can be minimized.
In the process of making a single composition glass into a powder, the present invention combines large particles and small particles in a certain ratio, so that a sintered body having a sharp and smooth surface with a constant shape is always obtained. A lightweight foamed glass tile composed of 0.2 mm of uniform closed cells is obtained which is lightweight, heat-insulating and excellent in shape.
In other words, by adjusting the particle size of the glass powder of the same composition, a flat surface with sharp corners foamed similar to the original shape can be obtained without restriction by the mold, and it is covered with a dense surface layer unique to free foaming. A lightweight foam glass tile is obtained.

Claims (1)

粉砕したガラスの平均粒径50μ粗粒と平均粒径14μ細粒の重量混合比を35:5〜25:15なるようにし、ガラス粉重量の1.0〜2.0重量%炭酸カルシウムを発泡剤とし、ガラス粉重量の15%の水を加えて混練物を形成し、該混練物を乾燥させずに400kg/cm2の圧力で成形し、750〜800℃で30分加熱し発泡させることを特徴とする軽量発泡ガラスタイルの製造法。The average particle size 50μ coarse particles and the average particle size 14μ fines mixing weight ratio of the milled glass 35: 5-25: as a 15, and 1.0 to 2.0 weight percent calcium carbonate of the glass powder by weight and a blowing agent In addition, 15% of the glass powder weight water is added to form a kneaded product, the kneaded product is molded at a pressure of 400 kg / cm 2 without drying, and heated at 750 to 800 ° C. for 30 minutes to be foamed. production how of lightweight foam glass style to.
JP2000116669A 2000-04-18 2000-04-18 Manufacturing method of lightweight foam glass tile Expired - Fee Related JP3634717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116669A JP3634717B2 (en) 2000-04-18 2000-04-18 Manufacturing method of lightweight foam glass tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116669A JP3634717B2 (en) 2000-04-18 2000-04-18 Manufacturing method of lightweight foam glass tile

Publications (2)

Publication Number Publication Date
JP2001302261A JP2001302261A (en) 2001-10-31
JP3634717B2 true JP3634717B2 (en) 2005-03-30

Family

ID=18628105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116669A Expired - Fee Related JP3634717B2 (en) 2000-04-18 2000-04-18 Manufacturing method of lightweight foam glass tile

Country Status (1)

Country Link
JP (1) JP3634717B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030316A (en) * 2011-10-08 2013-04-10 德世股份有限公司 Light aggregate and preparation method thereof as well as cemented and solidified block material comprising light aggregate
WO2013154499A1 (en) * 2012-04-11 2013-10-17 Ngee Ann Polytechnic A method for producing a foam glass with high open pore content
KR101582710B1 (en) * 2012-06-28 2016-01-05 단국대학교 산학협력단 Production method for the colorful foamed glass block and the colorful foamed glass block by the method
CN106064891A (en) * 2016-06-08 2016-11-02 江苏新光环保工程有限公司 A kind of foam glass and preparation method thereof

Also Published As

Publication number Publication date
JP2001302261A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
KR900003320B1 (en) Process for producing the foamed ceramic body
US3744984A (en) Process for the manufacture of foamed porcelain-like shaped articles
US6818055B2 (en) Porous silicate granular material and method for producing it
US9376344B2 (en) Foamed glass ceramic composite materials and a method for producing the same
JPH0543666B2 (en)
KR100306866B1 (en) Thermally insulating building material
US8171751B1 (en) Foamed glass composite material and a method of producing same
US3441396A (en) Process for making cellular materials
Ercenk The effect of clay on foaming and mechanical properties of glass foam insulating material
CN108483929A (en) Glass ceramics and preparation method thereof are melted in a kind of foaming for interior wall
JP3634717B2 (en) Manufacturing method of lightweight foam glass tile
KR100580230B1 (en) Lightweight aggregate having a dual foam cell, and process for preparing thereof
JPH11209130A (en) Manufacture of super-lightweight aggregate
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
EP3656747B1 (en) Process for producing foam glass
JPS5815045A (en) Production of foam glass
JP3581008B2 (en) Manufacturing method of vitreous foam
Panov et al. High-performance thermal insulation material based on waste glass
JP2004107191A (en) Method of manufacturing lightweight board
JPH1143336A (en) Production of raw materials for foamed glass
RU2149146C1 (en) Blend for preparing foam glass
RU2255058C1 (en) Method of preparing blend for fabricating glass foam
US4451415A (en) Method for manufacture of foamed ceramic article
JPH11343128A (en) Glass expanded body and its production
RU2237031C1 (en) Method of manufacturing heat-insulating block glass foam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees