JP3581008B2 - Manufacturing method of vitreous foam - Google Patents

Manufacturing method of vitreous foam Download PDF

Info

Publication number
JP3581008B2
JP3581008B2 JP05621498A JP5621498A JP3581008B2 JP 3581008 B2 JP3581008 B2 JP 3581008B2 JP 05621498 A JP05621498 A JP 05621498A JP 5621498 A JP5621498 A JP 5621498A JP 3581008 B2 JP3581008 B2 JP 3581008B2
Authority
JP
Japan
Prior art keywords
powder
weight
less
product
vitreous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05621498A
Other languages
Japanese (ja)
Other versions
JPH11236232A (en
Inventor
敬哉 戸部
徳治 森重
明彦 佐野
和哉 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP05621498A priority Critical patent/JP3581008B2/en
Publication of JPH11236232A publication Critical patent/JPH11236232A/en
Application granted granted Critical
Publication of JP3581008B2 publication Critical patent/JP3581008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟弱地盤改良材、水捌け材、軽量骨材、断熱材、吸音材などの各種土木用資材、建築用資材として用いるガラス質発泡体の製造法に関する。
【0002】
【従来の技術】
従来、ガラス質発泡体の製造法として、ビンガラスや板ガラスを粉砕し、これに石灰粉末を混合した原料を造粒後、810〜960℃で加熱することにより、軽量で断熱性に優れ、且つ大きな強度を有する板状泡ガラスを低コストで得る方法、(特開昭58−60634号公報)、ソーダ石灰ガラス粉末に3重量%以上のジルコニウム、チタン等の遷移金属化合物と0.5重量部以上のアルカリ土類金属化合物を添加混合し、加熱することにより、硼珪酸ガラスから作られる泡ガラスに匹敵する強度、硬度、耐熱性及び吸水性に優れた泡ガラスを得る方法、(特開昭59−929944号公報)、発泡材を硝子粉に混入して造粒して成る原料ペレットを筒状をなす竪型焼却炉内に連続的に投入し、加熱発泡することにより粒状泡硝子を連続焼成する方法、(特開昭61−6141号公報)などが知られている。
【0003】
【発明が解決しようとする課題】
しかし乍ら、上記従来の技術は、加熱処理する前の段階でガラス粉末を造粒しペーストとする工程が必要であったり、高価なジルコニウム、チタンなどの化合物を使用する必要があり、また、その泡ガラスを使用した場合には、重金属が溶出する恐れがあり、環境を汚染する不都合をもたらし、土木資材として使用することに適しない。また、その他の公知のガラス質発泡体の製造法に徴しても、特に、軽量であり、地盤沈下などを防止する土木用資材や軽量骨材などの軽量な建築用資材として適したものは見当たらない。
一方、従来、廃棄されたガラスびんを再利用する技術として、ガラスびんは、粉末化し加熱成形し再びビンとして利用すること、ビールビン、一升瓶などを回収し、洗浄して再びびんとして利用すること、ガラスびんを粉砕し、タイル、レンガなどの建材として再利用することに限られて居り、その再利用率は極めて低く、年間約40万トンの大量の空ビンが再利用されることなく無駄に廃棄されている。
また、最近、特に、土木用資材の需要が、建築物の不燃化、地盤改良、道路網の拡充、公共施設の充実などのために益々増大しつゝある一方で、地盤改良や建築用骨材として使用される川砂、砂利、砕石などの天然の資材は不足ぎみであり、また、環境破壊などの問題から採掘可能量の制約により、需要の増大に見合う量を確保することが難しくなってきている。
また、最近の容器包装リサイクル法の実施に伴い、空びんは、地方自治体がその収集メーカーサイドがその再資源化を行うことが義務づけられているが、再資源化については、いまだに目処がたゝない状況にある。
一方、最近の傾向として土木、建築業界では、作業者の老齢化や地震対策などの理由から特に建築、構築用資材やその構築、建築物が軽量であることが求められておる。
このような状況に鑑み、大量に廃棄される空びんなどのガラス質廃材を粉砕し、軽量な建築、構築材として製造でき、これを例えば盛土、埋戻し、裏込めなどの土木用途、或いはコンクリートやアスファルト用の軽量骨材、断熱材、防音材などの建築用途などの膨大な需要に応え、地方自治体のガラス集積場所で、簡易且つ安価に製造でき、砕石なみの価格で供給できるようなガラス質発泡体の製造方法の開発が求められている。
上記の従来の課題と要望に鑑み、本願の発明者らは、上記の課題を解消し、且つ上記のように大量に廃棄されるガラス質廃材から安価に製造され、大量の需要に応え得る軽量な土木用並びに建築用資材として再利用に適したガラス質発泡体を安価に且つ確実に得られる製造法の開発を目的とし、本発明に至った。
【0004】
【課題を解決するための手段】
上記の課題を解決し、且つ上記の目的を達成した本発明のかさ密度1.2g/cm 3 以下、吸水率20%以下であるガラス質発泡体の製造法は、ガラス質廃材を粉砕して得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96〜80重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉4〜20重量%とを配合して成るガラス質配合粉に、該ガラス質配合粉に対して0.1〜3重量%の炭化珪素粉を閉塞壁の補強剤として添加、混合して成る混合粉を700〜980℃の温度で加熱焼成し、次で冷却することを特徴とする。
更に本発明は、上記のガラス質混合粉に、更に該ガラス質配合粉に対して0.05〜2重量%の炭酸塩粉の少なくとも1種を添加、混合して成る混合粉を700〜980℃の温度で加熱焼成し、次で冷却することを特徴とする。
更に本発明は、700〜980℃の温度での加熱焼成処理において、その加熱温度保持時間は、30分乃至0分であることを特徴とする
0005】
【発明の実施の形態】
本発明者らは、ガラス質廃材から、できる限り容易且つ製造コストを安価にし、取り扱い性、作業性が容易な土木用、建築用に適したガラス質発泡体を製造することを目的とし、先ず、ガラスびんを安価なハンマーミルなどの粗粉砕機で粗く粉砕して得られた粒径約3mm〜5mm程度の粒径分布を有する粗粉砕ガラス粉のみを700〜900℃で加熱焼成してみたが、かさ密度が極めて大きいガラスとなり、目的とする製品が得られなかった。
逆に、ガラスびんを高価なボールミルなどの微粉砕機により0.21mm未満の微細粉ガラス粉のみを作製し、これを同様に加熱焼成してみたところ、かさ密度1.2g/cm3 以下のガラス質発泡体は得られるが、微粉砕ガラス粉の製造コストが高くなり、微細粉粒子のため互いに融合し易く、独立気孔が潰れ易く、加熱焼成時のコントロールが困難であり、容易且つ1.2g/cm3 以下の製品が確実に得られない不都合があった。
種々、試行錯誤した結果、安価な粗粉砕機で得られる粉砕作業が容易である0.21以上、2.38mm以下の粒度分布を有する粗粉砕ガラス粉を96重量%以下と篩分けして得られる0.21mm未満の微粉砕ガラス粉を4重量%以上とを配合したものに0.1〜3重量%以上の炭化珪素粉を添加混合したものを700〜980℃の温度で30分から0分加熱焼成し、目的とするかさ密度1.2g/cm3 以下、吸水性の低い吸水率20%以下のガラス質発泡体が安価に且つ確実に得られることを見出した。
【0006】
本発明のガラス質発泡体の製造法に用いる原料は、各種のガラス質廃材である。例えば、廃棄されたガラスびん、板ガラス、窓ガラス、テレビやパソコンの前面ガラスパネル、ガラス製品工場からのスクラップなどである。これらの廃材は、ガラス質として見た場合、珪酸塩ガラス、アルミノほうけい酸ガラス、ほうけい酸塩ガラス、アルミノ珪酸塩ガラスなどが含まれている。このようなガラス質の廃材のうち、ガラスびん、板ガラス、窓ガラスの廃材は、比較的多量に回収ができるので、大量に生産でき有利である。
【0007】
本発明によれば、ガラス質廃材を市販のガラス破砕機、例えばハンマーミルなどの衝撃型破砕機を用いて粉砕し、その粉砕物を篩分けし得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96〜80重量%と0.21mm未満の粒度分布を有する微粉ガラス粉4〜20重量%とを配合して成るガラス質配合粉を調製する。
本発明によれば、0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラスの粒度分布の内訳の1例は、0.21〜0.297mm17%、0.297〜0.42mm25%、0.42〜0.59mm29%、0.59〜0.84mm16%、0.84〜1.19mm8%、1.19mm〜2.38mm5%であり、0.21mm未満の微粉砕ガラス粉の粒度分布の内訳の1例は、0.20〜0.105mm73%、0.105〜0.074mm20%、0.074mm以下%である。
粗粉砕ガラス粉の粒度分布の内訳は、勿論種々変えることができるが、平均粒径としては、0.5mm又はそれ以上のものを使用することが好ましい。
【0008】
粗粉砕ガラス粉の粒度が2.38mmを超える粗粒は再び粉砕し、本発明の特定する上記の粒度分布の範囲内の粗粉砕ガラス粉と微粉砕ガラス粉とに篩分けして使用する。
粗粉砕ガラス粉の粒度分布の上限を2.38mmの粒度とする理由は、2.38mmを超える粒径のものを原料として用いると、製品中にそのまゝの状態として残存し易く、均一な発泡組織が得られないからである。
【0009】
このように、本発明によれば、0.21mm以上2.3mm以下の粒度分布を有する粗粉砕ガラス粉がガラス質配合粉の大部分を占める場合は、ガラス廃材を粗粉砕できる比較的安価な粉砕機を使用して安価に粉砕原料を得ることができ、全てを0.2mm以下に微粉砕するボールミルやレイノルズミルなどのような高価な微粉砕機を使用する必要がなくなる。
【0010】
本発明のような配合ガラス粉を調製するには、1つのハンマーミルなどの安価な衝撃型破砕機を使用し、一挙に粒度分布の粗粉砕ガラス粉と副産物として少量の上記特定の微粉砕ガラス粉が分取できる。しかし乍ら、勿論、各種の粗粉砕機や微粉砕機により各別に得た粗粉砕ガラス粉から、本発明の特定の粒度分布を有する粗粉砕ガラス粉と微粉砕ガラス粉を配合して配合ガラス粉を調製することもできる。
【0011】
本発明は、上記したように、即ち、該粗粉砕ガラス粉と微粉砕ガラス粉を配合したガラス質配合粉を調製する必要があるが、このようなガラス質配合粉とする必要性の原理を添付の図1(a)(b)を参考に下記に明らかにする。即ち、例えば、粒径0.21mm未満の該微粉砕ガラス粉を全く混ぜないで粒径2mm以下の粒度分布を有する粗粉砕ガラス粉のみを原料とし加熱焼成すると、図1(a)(b)(c)(d)に示すように、加熱前の常温では互いに接触する粗粒子Cで囲まれ形成される空隙Gは、粗粉粒Gの焼結性が悪いため、500〜600℃の焼結温度ではまだ粗粒子相互は焼結が充分に行われないので閉塞孔とならず、この間粗粒子から発生するガスは外部に抜ける。その後、700℃の焼結温度でやっと粗粒子間の焼結が充分に行われて該空隙Gは閉塞し、孤立したポア(独立気孔)Pが生成するが、その大きさは極めて小さい。更に700℃以上の焼成昇温時では既に独立気孔P内のガスが少量のため、そのポアPは大きくならず、小さいまゝであり、大きな独立気孔が得られないことが判明した。
これに対し、本発明のように2mm程度の粗粒ガラス粉間に0.2mm以下の微粒砕ガラス粉が介在した状態で加熱焼成を行うと、図1(A)(B)(C)(D)のように進行する。然るときは、加熱前の常温では、該粗粒子C間に微粒子Fが介在した状態で形成される比較的大きい空隙Gは、500〜600℃の焼結温度で微粒子Fは焼結し易いので、その微粒子Fと接触している各粗粒子Cとは、この500〜600℃の低い焼結温度でも互いに焼結し、該空隙Gは閉塞され、包囲壁Wをつくり、その内部にこれら粒子から発生するガスを閉じ込めた大きな孤立したポアPを生成する。更に高温の700℃の焼結で更に軟化焼結が進行し、粗粒は融合し、該独立気孔Pの周囲を囲む良好な融合壁Wとなり、これによりポアは被包されると共に大きなPを維持する。更に700℃以上に昇温すれば、ポアP内のガスは膨脹し、従って、独立気泡Pが膨脹し、大きな独立した気孔Pとなり、極めて軽量で且つ吸水性の小さい泡ガラス体が得られる。
かくして、本発明の微粒ガラス粉の添加で、例えば空隙率40%の混合粉の常温での充填状態Bから、ポアPの熱膨張分が加算され、空隙率約50%と増大し、かさ密度1.2g/cm3 以下のガラス質発泡体を作製することができる。
上記の理由により、多くの試験、研究の結果、上記の粗粉砕ガラス粉のみ或いは上記の微粉砕ガラス粉のみでは目的とする軽量な泡ガラスは得られず、上記に特定した粒度の粗粉砕ガラス粉と微粉砕ガラス粉を上記に特定の配合割合で混在せしめることにより独立気泡の生成が早期に且つ確実に得られることが判った。
【0012】
尚、この場合、本発明者らは、図1(C)の閉塞壁Wにより閉塞された独立気泡Pを形成し、700℃以上に昇温し、ガス膨脹により図1(D)のガス膨脹した状態を維持するには、少量の炭化珪素粉を添加しておくと、これにより、閉塞壁Wを内部のガス膨脹により破裂して連続気孔となることを防止し、強靭に抵抗し乍ら大きく膨脹せしめる閉塞壁の補強剤として役立つことを知見した。
【0013】
而して、本発明によれば、前記のように配合したガラス質混合粉に、これに対し0.1〜3重量%の炭化珪素を添加、混合した混合粉を調製し、これをガラスの軟化点以上に、上記の焼成温度500℃以上に加熱し、上記のように昇温し、少なくとも700℃以上で焼成昇温した後、急冷又は徐冷により冷却することにより、強靭なガラス質壁Wで覆われた大きな独立気泡を無数に有するかさ比重1.2g/cm3 以下、吸水率20%以下のガラス質発泡体が得られる。
炭化珪素は通常、コークスと酸化珪素が主体である珪砂から製造されるが、本目的に使用される炭化珪素は必ずしも充分に精製されていなくてもよい。例えば、純度が85%程度のものとか、製造中、微粉末としてバッグフィルターなどで回収されるものでもよい。
炭化珪素粉の添加量をガラス質配合粉に対し0.1〜3重量%に限定する理由は、その添加量が0.1重量%未満であると、かさ密度が1.2g/cm3 以下と充分な軽量特性をもつ製品をつくることが困難となる。一方、その添加量が3重量%を超えても充分な軽量特性をもつ製品をつくることができるが、製品単価が高価となり好ましくないので、経済上3重量%までにとゞめる。
また、本発明は、該ガラス質配合粉とそのガラス質の軟化点以上に加熱焼成するのであるが、この軟化点は夫々のガラス原料の種類によって異なる。珪酸塩ガラスの場合には750℃以上が一般であり、特に好ましい温度域は840〜980℃の範囲である。980℃を越えた高温では不必要なエネルギーを使用するなど不経済であるので、980℃までにとゞめ、製造コストをできるだけ低くし安価な製品を得るようにすることができる。
【0014】
本発明の上記のガラス質配合粉は、所定の成形型枠に入れ加熱焼成した後徐冷すれば、レンガ、壁材などの板状の成形品とすることができるが、急冷すれば、板状成形体に亀裂を生じ、図4に示すような不定形の塊状に壊れた無数の製品1として得られる。
【0015】
更に、本発明によれば、前記の配合ガラス粉に炭化珪素粉を0.1重量%以上添加したものに、更に該ガラス質配合粉に対し発泡剤として0.05〜2重量%の炭酸塩の少なくとも1種を添加、混合して成る混合粉を、ガラスの軟化点以上に加熱焼成し、次で冷却することにより、更に極めて軽量なかさ比重1g/cm3 以下の製品が確実に得られる効果をもたらす。添加量が0.05重量%未満では、上記の添加効果が得られない。
【0016】
本発明により調製した混合物粉を、加熱焼成する作業につき更に詳述する。長尺で且つその幅方向の両側に枠壁をもつ横断面コ字状の広幅のベルト状の搬送型枠内に投入し所定の高さまで堆積し、且つ均一な厚さにならしたものを加熱炉内に装填した後、加熱し所要の加熱焼成温度まで上昇せしめる。この場合、ガラス質が珪酸塩ガラスの場合は、好ましくは840℃〜980℃に昇温する。例えば900℃まで昇温させるに要する時間は、その被処理物層の厚さにもよるが、厚さが10mmであれば10分、20mmであれば20分程度とすることが好ましい。また最高温度に達した後の高温保持時間は、最高温度が低ければ保持時間を長く、逆に最高温度が高ければ保持時間を短くするようにする。例えば、その保持時間は一般に30〜0分の範囲である。ここで0分とは、最高温度に達したら直ちに冷却することを意味する。30分以上の長い保持時間は経済的に好ましくない。尚、配合ガラス粉に水分が多量に含まれている場合には、200℃付近で完全に水分を蒸発してから、上記の昇温を行うべきである。
尚また、ガラス質廃材からは、予め、出来る限りこれらに混在している陶器片、磁器片、金属、土、砂、砂利などの無機系不燃物やプラスチック、紙、木片などの夾触物を除去するが、本発明の軽量な泡ガラス製品を製造するに差支えない限り、極めて少量であるならば、混ざっていても差支えない。
【0017】
上記の高温保持時間を経たのち冷却工程に入るが、この冷却時間は、目的製品の形状を形成させるために重要な要因である。不定型塊状のガラス質発泡体の製造を目的とする場合は、この冷却を急速に行う。然るときは、冷却中、その所定の均一な厚さの発泡体はクラックを生じ、自然に壊され、無数の、大きさのまちまちな例えば粒径10〜60mmの不定型塊状のガラス質発泡体として得られる。
一方、一定の形状、例えば、レンガ、板状、その他、任意の形状を有する成型品を作る場合は徐冷する。例えば、上記の高温保持時間後、200℃まで徐々に冷却する。この場合の冷却速度は、できるだけ遅い方が好ましい。本発明者らの研究によれば、最も好ましい徐冷却速度は、毎分2℃で200℃以下まで冷却する。然る後、該焼成炉外に製品を取り出すとクラックを生ずることなく所定の板状のガラス質発泡体成形体が得られる。
本発明の製造方は、バッチ方式、連続方式のいずれの方式でも可能である。
【0018】
次に本発明の更に具体的な実施例を比較例と共に詳述する。
実施例1
大量の空びんを衝撃型ハンマーミルにかけて得られる0.21mm〜2.38mmの粒度分布(粒度分布内訳:0.21〜0.297mm17%、0.297〜0.42mm25%、0.42〜0.59mm29%、0.59〜0.84mm16%、0.84〜1.19mm8%、1.19mm〜2.38mm5%)を有する粗粉砕ガラス粉96重量%と同衝撃型ハンマーミルの作動中バッグフィルターで回収される粒度分布0.21mm未満の粒度分布(粒度分布内訳:0.209〜0.105mm73%、0.105〜0.074mm20%、0.074以下7%)を有する微粉砕ガラス粉4重量%を配合して配合ガラス粉10gを調製した。この配合粉ガラス粉に純度98%の炭化珪素粉0.05グラム(即ち0.5重量%)をポリエチレンの袋の中に入れて良く振とうして混合し、混合粉を調製した。これをアルミナるつぼの中に入れ、これをニクロム線を熱源とする自動制御型電気炉内に置き、約1時間で900℃に達するまで昇温させた。900℃に15分保った後、るつぼ鋏でるつぼを取り出し、室温になるまで放冷してガラス質発泡体製品を得た。これを破砕して顕微鏡で観察すると、発泡ガラス体に生成した気泡の大部分は、お互いに独立していることが確認された。また、この製品のかさ密度は、アルキメデス法で測定すると1.11g/cm3 であった。また、この製品は、製造直後の吸水率は0%であったが、これを水中に5分間浸漬後、吸水率を測定した。その吸水率は5.9%であった。
吸水率は、以下の方法で求めた。先ず、測定するサンプルの乾燥状態での重量W0 を測定する。次に水中に発泡ガラスを沈めた状態で5分保持し、取り出した後、表面を湿った布で拭き、重量W1 を測定した。吸水率は、(W1 −W0 )/W0 ×100を算出して求めた。
実施例2
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉94重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉6重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.95g/cm3 、吸水率16.7%であった。
実施例3
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉92重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉8重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.95g/cm3 、吸水率5.9%であった。
実施例4
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉90重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉10重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.87g/cm3 、吸水率11.8%であった。
実施例5
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉88重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉12重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度1.01g/cm3 、吸水率11.8%であった。
実施例6
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉86重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉14重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.93g/cm3 、吸水率2.1%であった。
実施例7
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉84重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉16重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.88g/cm3 、吸水率6.8%であった。
実施例8
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉82重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉18重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.76g/cm3 、吸水率9.8%であった。
実施例9
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉80重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉20重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度0.87g/cm3 、吸水率13.1%であった。
【0019】
以上のように、実施例1〜9の全ての製品は、独立気泡が無数に有り、開放孔は少ないため、軽量で且つ吸水性特性を有するので、取り扱い作業が容易で軽量な土木用、建築用資材として適することが判った。
【0020】
次に、比較例として、本発明の粗粉砕ガラス粉と微粉砕ガラス粉との配合割合を逸脱した場合の比較試験を示す。
比較例1
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉100重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉0重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度1.45g/cm3 、吸水率2.2%であった。従って、この製品は、充分な軽量特性を有する土木用、建築用資材として適しないものであることが判った。
比較例2
0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉98重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉2重量%とを配合してガラス質配合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。該製品は、かさ密度1.31g/cm3 、吸水率1.82%であった。この製品も又、比較例1と同様に充分な軽量特性を有する土木用、建築用資材として適しないことが判った。
これから明らかなように、粗粉砕ガラス粉と微粉砕ガラス粉の配合割合が、本発明の範囲であっても、炭化珪素を添加しない限り、本発明の目的とするかさ密度1.2g/cm3 以下のガラス発泡体は製造できないことが分かる。
【0021】
更に、炭珪素の添加効果を明らかにするため、次のような比較試験を行った。
比較例3
炭化珪素を含有しないこと以外は実施例1と同じ条件で実施し、製品を得た。該製品は、試験を行い、かさ密度2.45g/cm3 、吸水率0%であった。この製品は重量が重く、土木、建築用資材に適しないことが判った。
本発明の効果を理解し易くするため、上記の実施例1〜9及び比較例1〜3のデータを下記表1及び図2に示す。
【0022】
【表1】

Figure 0003581008
【0023】
次に、発泡材として添加する炭酸塩の添加効果を明らかにする実施例を下記に示す。
実施例10
実施例1で調製したガラス質配合粉10グラムに0.05グラムの炭化珪素粉を添加して成る混合粉に、該ガラス質配合粉に対し0.5重量%、即ち、0.05グラムの炭酸カルシウム粉を添加、混合して混合粉を調製した以外は、実施例1と同じ条件で実施し、製品を得た。得られた製品を充分破砕して顕微鏡で観察すると、ガラス体に生成した気泡の大部分は、お互いに独立していた。また、この製品は、かさ密度0.63g/cm3 、吸水率8.7%であった。このことから、炭酸カルシウムの添加により特に軽量特性を有する超軽量の土木用、建築用資材に適した製品をもたらすことが判った。
【0024】
実施例11
実施例10で添加した炭酸カルシウムに代えて、炭酸ナトリウムを該配合ガラス粉に対し0.1重量%の、即ち、0.1グラム添加、混合して混合粉を調製したこと及び約1時間で840℃まで昇温させ、840℃に15分間保ったこと以外は、実施例1と同じ条件で実施し、製品を得た。得られた製品を充分破砕して顕微鏡で観察すると、ガラス体に生成した気泡の大部分は、お互いに独立していた。また、この製品は、かさ密度0.41g/cm3 、吸水率13.4%であった。このことから、炭酸ナトリウムの添加により、特に著しく軽量な超軽量用の土木、建築用資材として適した製品をもたらすことが判った。
尚、具体的な実施例として示さないが、炭酸カルシウムと炭酸ナトリウム以外の炭酸マグネシウムなどの所望の炭酸塩であればよく、これらの炭酸塩の1種又は2種以上を添加することにより、同様に著しく軽量なガラス質発泡体をもたらす添加効果をもたらす。
【0025】
実施例12
炭化珪素の添加量を0.01グラム(0.1重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.19g/cm3 、吸水率3.8%であった。
実施例13
炭化珪素の添加量を0.02グラム(0.2重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.17g/cm3 、吸水率3.3%であった。
実施例14
炭化珪素の添加量を0.03グラム(0.3重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.05g/cm3 、吸水率7.1%であった。
実施例15
炭化珪素の添加量を0.10グラム(1.0重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.10g/cm3 、吸水率4.0%であった。
実施例16
炭化珪素の添加量を0.2グラム(2.0重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.05g/cm3 、吸水率4.8%であった。
実施例17
炭化珪素の添加量を0.3グラム(3.0重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.13g/cm3 、吸水率4.2%であった。
比較例4
炭化珪素の添加量を5ミリグラム(0.05重量%)とした以外は、実施例1と同じ条件で実施し製品を得た。該製品は、かさ密度1.68g/cm3 、吸水率0.8%であった。
【0026】
本発明の炭化珪素の効果を容易に理解するため実施例1、実施例12〜17及び比較例4の結果のデータを表2及び図3に示す。
【0027】
【表2】
Figure 0003581008
【0028】
上記表2及び図3から明らかなように、炭化珪素粉の添加量が0.1〜3.0重量%の範囲において実施例12〜17の製品は、かさ密度が1.19g/cm3 以下と軽量で且つ吸水率7.1%以下と小さく土木用、建築用に適したものとして得られるが、その添加量が0.1%未満であるとそのかさ密度は1.68g/cm3 と著しく大きくなり、軽量な土木用、建築用に不適な製品をもたらすことが判る。
【0029】
上記の実施例1〜17において、加熱昇温したときの最高保持温度は900℃としたが、好ましくは、700℃〜980℃の範囲であるときは、同様に、かさ密度1.2g/cm3 以下、吸水率17%以下の優れた特性を有するものが確実に得られる。
【0030】
次に、工業的生産規模で実施した本発明の実施例につき詳述する。
実施例18
珪酸塩ガラスから成る空びんの多数個を、ハンマーミルにより粉砕し、得られた0.21〜2.38mmの粒度分布を有する粗粉砕ガラス粉90重量%と、0.21mm未満の粒度分布を有する微細粉ガラス粉10重量%とを配合し混合してガラス質配合粉100Kgに、炭化珪素粉2Kg及び炭酸カルシウム粉1Kgを添加、撹拌し、混合粉原料を調製し、これを模型の電気加熱炉内に装備した断面コ字状の広幅の耐熱性のコンベヤベルト上に幅一般に均一な厚さ10〜20mm程度に堆積してその中央に移行させて該加熱部で昇温し、最高温度850℃にで20分間加熱した後、再び移行させ、冷風を送り、急冷して取り出す。然るときは、その板状のガラス発泡体に亀裂が入り、不定形塊状の粒度10〜60mmの極めて軽量な青灰色のガラス発泡体が多量に得られた。これを破壊して顕微鏡で観察すると、無数の独立気泡を有する状態が観察された。
【0031】
更に、上記の製品につき、各種の特性を調べたところ、かさ密度は0.4g〜0.8/cm3 、製造時の含水率0%、吸水率10%前後であった。また、一軸圧縮強さは35〜40Kgf/cm2 、温度、熱などの変化に強く、スレーキング率は略0.1%であった。この製品の用途は、上記の特性を生かし、例えば、軟弱土壌の強化、埋め戻し、盛土などの土木用資材、建築用の断熱材、防音材などとして利用でき、その軽量なため、取り扱い作業性が良い。また、鉱物製無機質であるため、化学的に安定しており、腐食や環境を汚染することがない。また、独立発泡であるため、シロアリなどの害虫類の巣になることがないなど有利である。
従って、従来、ESP工法、発泡モルタルを利用する軽量化工法に比べ、下準備や養生期間が必要がなく、施工時間が短縮される。また、配管などの既設埋設物があっても、ESP材では不可能であったその配管の下部に埋め戻し作業が可能となるなど施工上、種々の便利をもたらす。
【0032】
上記の製品を、土木用の例として、軽量埋戻し材として使用する場合には、土留めによる開削工事を行った後、ボックスカルバートを構築し、その上に本製品を投入し、所望厚さに敷設した後、1ton振動ローラーにより締め固めて埋め戻し作業を完成することができ、土壌に代わり軽量な施工が簡単にできる。この間、軽量であるので、作業員の労力は軽減できる。締め固め時の密度は0.3t/m3 、透水試験1.2×10°cm/sで透水係数は×10°オーダーの値であり、排水性が良好である。
【0033】
【発明の効果】
このように請求項1に係る発明によるときは、ガラス質廃材を粉砕して得られる0.21mm〜2.38mmの粒度分布を有する粗粉砕ガラス粉96〜80重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉4〜20重量%とを配合して成るガラス質配合粉に、該ガラス質配合粉に対して0.1〜3重量%の炭化珪素粉を閉塞壁の補強剤として添加、混合して成る混合粉を700〜980℃の温で加熱焼成し、次で冷却することにより、配合原料として発泡剤を添加することなく、かさ密度1.2g/cm3 以下、吸水率20%以下の軽量で且つ作業性の良い土木、建築用資材として用いることができる特性を有するガラス質発泡体を安価に且つ確実に製造することができる。
請求項2に係る発明によれば、上記の混合物に更に該ガラス質配合粉に対し0.05〜2重量%の炭酸塩粉の少なくとも1種を添加、混合したものを上記特定の温度範囲で加熱焼成するときは、著しく軽量な上記の特性を有するガラス質発泡体を製造することができる。
請求項3に係る発明によれば、700〜980℃の加熱焼成処理において、その加熱保持時間を30分〜0分とすることにより、上記の特性を有するガラス質発泡体を経済的に得られる。
【図面の簡単な説明】
【図1】(a)(b) 本発明の製造法の原理を説明する図。
【図2】粗粉砕ガラス粉と微粉砕ガラス粉の配合割合と製品のかさ密度及び吸水率との関係を示すグラフ。
【図3】炭化珪素の添加量と製品のかさ密度と吸水率との関係を示すグラフ。
【図4】本発明の製造法により得られたガラス発発泡体の1例の斜視図。
【符号の説明】
C 粗粒子 F 微粒子 P 独立気泡
W 閉塞壁 1 製品[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to the production of glassy foams used as civil engineering materials such as soft ground improvement materials, drainage materials, lightweight aggregates, heat insulating materials, sound absorbing materials, etc., and building materials.To the lawRelated.
[0002]
[Prior art]
Conventionally, as a method for producing a vitreous foam, a bottle glass or a sheet glass is pulverized, and a raw material obtained by mixing lime powder with the crushed granule is heated at 810 to 960 ° C., thereby being lightweight, excellent in heat insulation, and large. Method for obtaining plate-like foamed glass having strength at low cost (Japanese Patent Application Laid-Open No. 58-60634), a method in which soda-lime glass powder contains 3% by weight or more of a transition metal compound such as zirconium or titanium and 0.5% by weight or more A method of obtaining a foam glass excellent in strength, hardness, heat resistance and water absorption comparable to a foam glass made of borosilicate glass by adding, mixing and heating the alkaline earth metal compound of No. 929944), raw material pellets obtained by mixing a foaming material into glass powder and granulating are continuously charged into a vertical incinerator having a cylindrical shape, and heated and foamed to continuously burn the granular foam glass. How to, and the like are known (JP 61-6141 JP).
[0003]
[Problems to be solved by the invention]
However, the above-mentioned conventional technique requires a step of granulating glass powder to form a paste before the heat treatment, or requires the use of expensive compounds such as zirconium and titanium. When the foam glass is used, heavy metals may be eluted, causing a problem of polluting the environment and not suitable for use as a civil engineering material. In addition, even in terms of other known methods for producing a vitreous foam, it is found that, particularly, a material that is lightweight and is suitable as a lightweight construction material such as a civil engineering material or a lightweight aggregate for preventing land subsidence or the like. Absent.
On the other hand, conventionally, as a technology of recycling discarded glass bottles, glass bottles are powdered, heat molded and reused as bottles, beer bottles, single bottles are collected, washed and reused as bottles, Limited to crushing glass bottles and reusing them as building materials such as tiles and bricks, the rate of reuse is extremely low, and a large amount of empty bottles of about 400,000 tons per year are wasted without being reused. Has been discarded.
In recent years, in particular, demand for civil engineering materials has been increasing due to fire-retarding buildings, ground improvement, expansion of road networks, and enhancement of public facilities. Natural resources such as river sand, gravel, and crushed stone used as materials are in short supply, and due to problems such as environmental destruction, it is becoming difficult to secure sufficient amounts to meet the growing demand due to restrictions on minable amounts. ing.
In addition, with the recent enforcement of the Containers and Packaging Recycling Law, local governments are obliged to collect and recycle empty bottles, but there is still a prospect for recycling. There is no situation.
On the other hand, in the civil engineering and construction industries, there is a recent tendency that construction, construction materials, the construction thereof, and buildings are particularly required to be lightweight for reasons such as aging of workers and measures against earthquakes.
In view of this situation, glassy waste materials such as empty bottles that are discarded in large quantities can be crushed and manufactured as lightweight construction and construction materials, for example, for civil engineering applications such as embankment, backfilling, backfilling, or concrete. Glass that can be manufactured easily and inexpensively at the local government's glass collection site and can be supplied at a price comparable to crushed stone, responding to the huge demand for architectural uses such as lightweight aggregate for asphalt, asphalt, heat insulation material, sound insulation material, etc. There is a demand for the development of a method for producing a porous foam.
In view of the above-mentioned conventional problems and demands, the inventors of the present application have solved the above-mentioned problems, and have been inexpensively manufactured from vitreous waste materials that are discarded in large quantities as described above, and are lightweight enough to meet large demands. SUMMARY OF THE INVENTION The present invention has been made for the purpose of developing a production method capable of reliably and inexpensively obtaining a vitreous foam suitable for reuse as a material for civil engineering and construction, and the present invention.
[0004]
[Means for Solving the Problems]
According to the present invention, which solves the above problems and achieves the above objects,Bulk density 1.2g / cm Three Below, the water absorption is 20% or less.The method for producing a vitreous foam has a coarse ground glass powder having a particle size distribution of 0.21 mm or more and 2.38 mm or less obtained by pulverizing vitreous waste material, having a particle size distribution of 96 to 80% by weight and a particle size of less than 0.21 mm. 0.1 to 3% by weight of silicon carbide powder as a reinforcing agent for the closing wall is added to and mixed with the vitreous compound powder obtained by mixing 4 to 20% by weight of the finely ground glass powder with respect to the vitreous compound powder. The mixed powder thus obtained is heated and fired at a temperature of 700 to 980 ° C., and then cooled.
The present invention further provides a mixed powder obtained by adding and mixing at least one of 0.05 to 2% by weight of a carbonate powder to the above-mentioned vitreous mixed powder with respect to the vitreous mixed powder, to 700 to 980. It is characterized in that it is heated and fired at a temperature of ° C. and then cooled.
Further, in the present invention, in the heating and baking treatment at a temperature of 700 to 980 ° C., the heating temperature holding time is 30 minutes to 0 minutes.Characterized by.
[[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors aimed at producing a vitreous foam suitable for civil engineering and construction, which is as easy and cost-effective as possible from glassy waste material, and which is easy to handle and work. A glass bottle was coarsely crushed with a coarse crusher such as a hammer mill or the like, and only a coarsely crushed glass powder having a particle size distribution of about 3 mm to 5 mm obtained by heating and firing at 700 to 900 ° C. However, the glass had an extremely large bulk density, and the desired product could not be obtained.
Conversely, a glass bottle was prepared using a fine pulverizer such as an expensive ball mill to produce only fine powdered glass powder having a size of less than 0.21 mm, which was similarly heated and fired to obtain a bulk density of 1.2 g / cm.ThreeThe following vitreous foam can be obtained, but the production cost of the finely ground glass powder is high, the fine powder particles are easily fused with each other, the independent pores are easily crushed, the control during heating and firing is difficult, and 1.2g / cmThreeThere was an inconvenience that the following products could not be obtained reliably.
As a result of various trials and errors, a coarsely ground glass powder having a particle size distribution of 0.21 or more and 2.38 mm or less, which is easy to grind with an inexpensive coarse grinder, is obtained by sieving to 96% by weight or less. 30% to 0 minutes at a temperature of 700 to 980 ° C. by adding and mixing 0.1 to 3% by weight or more of silicon carbide powder to a mixture of 4% by weight or more of finely ground glass powder of less than 0.21 mm. Baking under heating, the desired bulk density of 1.2 g / cmThreeHereinafter, it has been found that a vitreous foam having a low water absorption and a water absorption of 20% or less can be obtained inexpensively and reliably.
[0006]
Raw materials used in the method for producing a vitreous foam of the present invention are various kinds of vitreous waste materials. For example, discarded glass bottles, flat glass, window glass, front glass panels of televisions and personal computers, scraps from glassware factories, and the like. When viewed as vitreous, these waste materials include silicate glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass, and the like. Among such vitreous waste materials, glass bottle, plate glass, and window glass waste materials can be recovered in a relatively large amount, and thus can be advantageously produced in large quantities.
[0007]
According to the present invention, a vitreous waste material is crushed using a commercially available glass crusher, for example, an impact crusher such as a hammer mill, and the crushed material is sieved to obtain a particle size of 0.21 mm or more and 2.38 mm or less. Coarsely ground glass powder 96 having a distribution~ 80weight%WhenFine glass powder 4 having a particle size distribution of less than 0.21 mm 4~ 20weight%WhenTo prepare a vitreous blended powder.
According to the present invention, one example of a breakdown of the particle size distribution of coarsely ground glass having a particle size distribution of 0.21 mm to 2.38 mm is 0.21 to 0.297 mm 17%, 0.297 to 0.42 mm 25%, 0%. 0.42 to 0.59 mm 29%, 0.59 to 0.84 mm 16%, 0.84 to 1.19 mm 8%, 1.19 mm to 2.38 mm 5%, and the particle size distribution of the finely ground glass powder of less than 0.21 mm. One example of the breakdown is 0.20 to 0.105 mm 73%, 0.105 to 0.074 mm 20%, 0.074 mm or less7%.
Although the details of the particle size distribution of the coarsely ground glass powder can of course be variously changed, it is preferable to use those having an average particle size of 0.5 mm or more.
[0008]
Coarse particles having a particle size exceeding 2.38 mm are coarsely ground again and sieved into coarsely ground glass particles and finely ground glass powder within the above-mentioned particle size distribution specified by the present invention.
The reason for setting the upper limit of the particle size distribution of the coarsely ground glass powder to a particle size of 2.38 mm is that when a material having a particle size exceeding 2.38 mm is used as a raw material, it tends to remain in the product as it is, and is uniform. This is because a foamed structure cannot be obtained.
[0009]
As described above, according to the present invention, when the coarsely ground glass powder having a particle size distribution of 0.21 mm or more and 2.3 mm or less occupies most of the vitreous blended powder, a relatively inexpensive glass waste material can be roughly ground. A pulverizing raw material can be obtained at low cost by using a pulverizer, and it is not necessary to use an expensive pulverizer such as a ball mill or a Reynolds mill that pulverizes all of the raw material to 0.2 mm or less.
[0010]
In order to prepare the compounded glass powder as in the present invention, a single inexpensive impact-type crusher such as a hammer mill is used. Powder can be collected. However, it is needless to say that, from the coarsely ground glass powder separately obtained by various coarse and fine grinders, the coarsely ground glass powder having the specific particle size distribution of the present invention and the finely ground glass powder are blended to form a compounded glass. Flour can also be prepared.
[0011]
As described above, the present invention requires the preparation of a vitreous blended powder obtained by blending the coarsely ground glass powder and the finely ground glass powder. This will be clarified below with reference to the attached FIGS. 1 (a) and 1 (b). That is, for example, when only the coarsely ground glass powder having a particle size distribution of 2 mm or less is used as a raw material without mixing the finely ground glass powder having a particle diameter of less than 0.21 mm at all, heating and firing are performed as shown in FIGS. (C) As shown in (d), at normal temperature before heating, the voids G formed by being surrounded by the coarse particles C that are in contact with each other are poor in sinterability of the coarse particles G, so that the sintering at 500 to 600 ° C. At the sintering temperature, the coarse particles still do not sufficiently sinter, so that they do not become closed holes, and during this time the gas generated from the coarse particles escapes to the outside. After that, at a sintering temperature of 700 ° C., the sintering between the coarse particles is sufficiently performed, and the gaps G are closed and isolated pores (independent pores) P are formed, but the size is extremely small. Further, it was found that when the firing temperature was raised to 700 ° C. or more, the pores P were not large and remained small because the gas in the independent pores P was already small, so that large independent pores could not be obtained.
On the other hand, when heating and sintering is performed in a state where finely ground glass powder of 0.2 mm or less is interposed between coarse glass powder of about 2 mm as in the present invention, FIG. 1 (A) (B) (C) ( Proceed as in D). At that time, at room temperature before heating, the relatively large voids G formed in a state where the fine particles F are interposed between the coarse particles C are easily sintered at a sintering temperature of 500 to 600 ° C. Therefore, each coarse particle C in contact with the fine particles F sinters each other even at the low sintering temperature of 500 to 600 ° C., the void G is closed, and an enclosing wall W is formed. A large isolated pore P containing gas generated from particles is generated. Further softening sintering proceeds at a higher temperature of 700 ° C., and the coarse particles fuse to form a good fusion wall W surrounding the closed pores P, whereby the pores are encapsulated and a large P is formed. maintain. If the temperature is further raised to 700 ° C. or higher, the gas in the pores P expands, so that the closed cells P expand to become large independent pores P, and a very lightweight foam glass body having a small water absorption is obtained.
Thus, by the addition of the fine glass powder of the present invention, for example, the thermal expansion of the pore P is added from the filling state B at room temperature of the mixed powder having a porosity of 40%, the porosity increases to about 50%, and the bulk density increases. 1.2g / cmThreeThe following vitreous foams can be made:
For the above reasons, as a result of many tests and studies, the above-mentioned coarsely ground glass powder alone or the above-mentioned finely ground glass powder alone cannot be used to obtain the intended lightweight foam glass, and the coarsely ground glass having the particle size specified above is not obtained. Powder and finely ground glass powderAboveIt has been found that by mixing them at a specific mixing ratio, the generation of closed cells can be obtained early and reliably.
[0012]
In this case, the present inventors form a closed cell P closed by the closing wall W in FIG. 1C, raise the temperature to 700 ° C. or more, and expand the gas in FIG. In order to maintain this state, a small amount of silicon carbide powder should be added, thereby preventing the closed wall W from being ruptured due to gas expansion inside and becoming continuous pores, and having a strong resistance. It has been found that it is useful as a reinforcing agent for a large inflated obstruction wall.
[0013]
Thus, according to the present invention, 0.1 to 3% by weight of silicon carbide is added to the vitreous mixed powder compounded as described above.powderWas added and mixed to prepare a mixed powder, which was heated above the softening point of the glass, at the above-mentioned firing temperature of 500 ° C. or more, heated as described above, and then heated and heated at least at 700 ° C. or more, Cooling by quenching or gradual cooling has a myriad of large closed cells covered with a tough vitreous wall W and a bulk specific gravity of 1.2 g / cm.ThreeHereinafter, a vitreous foam having a water absorption of 20% or less is obtained.
Although silicon carbide is usually produced from silica sand mainly composed of coke and silicon oxide, the silicon carbide used for this purpose does not necessarily have to be sufficiently purified. For example, it may have a purity of about 85%, or may be collected as a fine powder during manufacture by a bag filter or the like.
The reason why the addition amount of the silicon carbide powder is limited to 0.1 to 3% by weight based on the glassy compound powder is that if the addition amount is less than 0.1% by weight, the bulk density becomes 1.2 g / cm.ThreeIt becomes difficult to produce a product having the following lightweight characteristics. On the other hand, a product having sufficient light-weight characteristics can be produced even if the amount of addition exceeds 3% by weight. However, since the unit price of the product is high and is not preferable, it is economically limited to 3% by weight.
In the present invention, the glassy compound powder and the glassy material are heated and fired at a temperature higher than the softening point of the glassy material. The softening point differs depending on the type of each glass material. In the case of silicate glass, the temperature is generally 750 ° C or higher, and a particularly preferred temperature range is 840 to 980 ° C. Since it is uneconomical to use unnecessary energy at a high temperature exceeding 980 ° C., it is possible to reduce the manufacturing cost as much as possible and obtain an inexpensive product by limiting it to 980 ° C.
[0014]
The vitreous blended powder of the present invention can be made into a plate-like molded product such as brick, wall material, etc. Cracks are formed in the shaped body, and the product is obtained as innumerable products 1 broken into an irregular mass as shown in FIG.
[0015]
Furthermore, according to the present invention, the above-mentioned compounded glass powder to which silicon carbide powder is added in an amount of 0.1% by weight or more is further added with 0.05 to 2% by weight of a carbonate as a foaming agent with respect to the glassy compounded powder.powderThe powder mixture obtained by adding and mixing at least one of the following is heated and fired at a temperature higher than the softening point of the glass, and then cooled to obtain a very light bulk specific gravity of 1 g / cm.ThreeThe following products have effects that can be reliably obtained. If the amount is less than 0.05% by weight, the above-mentioned effect cannot be obtained.
[0016]
The operation of heating and firing the mixture powder prepared according to the present invention will be described in more detail. It is loaded into a long, belt-shaped transporting form with a U-shaped cross section, which has a frame wall on both sides in the width direction, and is deposited to a predetermined height and heated to a uniform thickness. After loading into the furnace, it is heated and raised to the required heating and firing temperature. In this case, when the vitreous material is a silicate glass, the temperature is preferably raised to 840 ° C to 980 ° C. For example, the time required to raise the temperature to 900 ° C. depends on the thickness of the object layer, but it is preferably about 10 minutes when the thickness is 10 mm and about 20 minutes when the thickness is 20 mm. The high-temperature holding time after reaching the maximum temperature is such that the holding time is long if the maximum temperature is low, and the holding time is short if the maximum temperature is high. For example, the retention time generally ranges from 30 to 0 minutes. Here, 0 minutes means that cooling is performed immediately after reaching the maximum temperature. Long holding times of more than 30 minutes are not economically favorable. When a large amount of water is contained in the compounded glass powder, the temperature should be raised after completely evaporating the water at around 200 ° C.
In addition, from glassy waste materials, inorganic incombustibles such as pottery pieces, porcelain pieces, metals, soil, sand, gravel, etc., and contaminants such as plastics, paper, wood chips, etc., which are mixed in these materials as much as possible in advance. It is removed, but it can be mixed if it is in very small amounts, as long as it does not interfere with the production of the lightweight foam glass product of the present invention.
[0017]
After the high-temperature holding time, the cooling process is started. This cooling time is an important factor for forming the shape of the target product. When the purpose is to produce an amorphous vitreous foam, the cooling is rapidly performed. Then, during cooling, the foam of a given uniform thickness cracks and breaks down spontaneously, resulting in a myriad of irregularly shaped vitreous foams of various sizes, e.g. Obtained as a body.
On the other hand, when forming a molded article having a given shape, for example, a brick, a plate, or any other shape, the cooling is performed slowly. For example, after the above high temperature holding time, the temperature is gradually cooled to 200 ° C. The cooling rate in this case is preferably as low as possible. According to our studies, the most preferred slow cooling rate is 2 ° C per minute to cool to 200 ° C or less. Thereafter, when the product is taken out of the firing furnace, a predetermined plate-like vitreous foam molded article can be obtained without cracks.
The production method of the present invention can be any of a batch method and a continuous method.
[0018]
Next, more specific examples of the present invention will be described in detail together with comparative examples.
Example 1
Particle size distribution of 0.21 mm to 2.38 mm obtained by subjecting a large amount of empty bottles to an impact hammer mill (breakdown of particle size: 0.21 to 0.297 mm 17%, 0.297 to 0.42 mm 25%, 0.42 to 0 96% by weight of coarsely ground glass powder having 0.59 mm 29%, 0.59 to 0.84 mm 16%, 0.84 to 1.19 mm 8%, 1.19 mm to 2.38 mm 5%) and a bag during operation of the same impact type hammer mill Finely ground glass powder having a particle size distribution of less than 0.21 mm (particle size distribution: 0.209 to 0.105 mm 73%, 0.105 to 0.074 mm 20%, 0.074 or less 7%) collected by the filter 4% by weight was blended to prepare 10 g of blended glass powder. 0.05 g of silicon carbide powder having a purity of 98% (that is, 0.5% by weight) was placed in a polyethylene bag and mixed with the mixed glass powder by shaking well to prepare a mixed powder. This was placed in an alumina crucible, placed in an automatically controlled electric furnace using a nichrome wire as a heat source, and heated to 900 ° C. in about 1 hour. After keeping at 900 ° C. for 15 minutes, the crucible was taken out with crucible scissors and allowed to cool to room temperature to obtain a vitreous foam product. When this was crushed and observed with a microscope, it was confirmed that most of the bubbles generated in the foamed glass body were independent of each other. The bulk density of this product was 1.11 g / cm when measured by the Archimedes method.ThreeMet. In addition, this product had a water absorption of 0% immediately after production. After immersing the product in water for 5 minutes, the water absorption was measured. Its water absorption was 5.9%.
The water absorption was determined by the following method. First, the weight W of the sample to be measured in a dry state0Is measured. Next, the foamed glass was held for 5 minutes in a state where the foamed glass was submerged in water, and after taking out, the surface was wiped with a damp cloth to obtain a weight W1Was measured. The water absorption is (W1-W0) / W0× 100 was calculated and determined.
Example 2
Except that 94% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 6% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.95 g / cmThreeAnd a water absorption of 16.7%.
Example 3
Except that 92% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 8% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.95 g / cmThreeAnd a water absorption of 5.9%.
Example 4
Except that 90% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 10% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.87 g / cmThreeAnd a water absorption of 11.8%.
Example 5
Except that 88% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 12% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 1.01 g / cmThreeAnd a water absorption of 11.8%.
Example 6
Except that 86% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 14% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.93 g / cmThreeAnd a water absorption of 2.1%.
Example 7
Except that 84% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 16% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.88 g / cmThreeAnd a water absorption of 6.8%.
Example 8
Except that 82% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 18% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.76 g / cmThreeAnd a water absorption of 9.8%.
Example 9
Except that 80% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 20% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 0.87 g / cmThreeAnd a water absorption of 13.1%.
[0019]
As described above, all the products of Examples 1 to 9 have countless closed cells and a small number of open holes, so they are lightweight and have water absorbing properties. It turned out to be suitable as a material for use.
[0020]
Next, as a comparative example, a comparative test in the case where the blending ratio of the coarsely ground glass powder and the finely ground glass powder of the present invention is deviated will be described.
Comparative Example 1
Except that 100% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 0% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 1.45 g / cmThreeAnd a water absorption of 2.2%. Therefore, this product was found to be unsuitable as a material for civil engineering and construction having sufficient lightweight characteristics.
Comparative Example 2
Except that 98% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm and 2% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm were blended to prepare a glassy compound powder. The operation was performed under the same conditions as in Example 1 to obtain a product. The product has a bulk density of 1.31 g / cmThreeAnd a water absorption of 1.82%. This product was also found to be unsuitable as a material for civil engineering and construction having sufficient lightweight properties as in Comparative Example 1.
As is clear from this, even if the mixing ratio of the coarsely ground glass powder and the finely ground glass powder is within the range of the present invention, the bulk density of the object of the present invention is 1.2 g / cm unless silicon carbide is added.ThreeIt turns out that the following glass foams cannot be manufactured.
[0021]
Furthermore, charcoalConversionThe following comparative test was performed to clarify the effect of adding silicon.
Comparative Example 3
A product was obtained under the same conditions as in Example 1 except that silicon carbide was not contained. The product was tested and had a bulk density of 2.45 g / cmThreeThe water absorption was 0%. This product was found to be heavy and unsuitable for civil engineering and construction materials.
In order to easily understand the effects of the present invention, the data of Examples 1 to 9 and Comparative Examples 1 to 3 are shown in Table 1 below and FIG.
[0022]
[Table 1]
Figure 0003581008
[0023]
Next, examples for clarifying the effect of adding a carbonate added as a foaming material will be described below.
Example 10
To a powder mixture obtained by adding 0.05 g of silicon carbide powder to 10 g of the glassy compound powder prepared in Example 1, 0.5% by weight based on the glassy compound powder, that is, 0.05 g, was added. A product was obtained under the same conditions as in Example 1 except that a mixed powder was prepared by adding and mixing calcium carbonate powder. When the obtained product was sufficiently crushed and observed with a microscope, most of the bubbles generated in the glass body were independent of each other. This product has a bulk density of 0.63 g / cm.ThreeAnd a water absorption of 8.7%. From this, it has been found that the addition of calcium carbonate results in a product that is particularly lightweight and has a light weight characteristic and is suitable for civil engineering and building materials.
[0024]
Example 11
Sodium carbonate instead of calcium carbonate added in Example 10powderWas added to 0.1% by weight of the compounded glass powder, that is, 0.1 g was added and mixed to prepare a mixed powder, and the temperature was raised to 840 ° C. in about 1 hour and kept at 840 ° C. for 15 minutes. Except for this, the procedure was performed under the same conditions as in Example 1 to obtain a product. When the obtained product was sufficiently crushed and observed with a microscope, most of the bubbles generated in the glass body were independent of each other. This product has a bulk density of 0.41 g / cm.ThreeAnd a water absorption of 13.4%. From this, it has been found that the addition of sodium carbonate leads to a product which is particularly remarkably lightweight and is suitable as an ultralight civil engineering and building material.
Although not shown as a specific example, any desired carbonate such as magnesium carbonate other than calcium carbonate and sodium carbonate may be used. By adding one or more of these carbonates, the same Has an additive effect which results in a significantly lighter vitreous foam.
[0025]
Example 12
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide added was 0.01 g (0.1% by weight). The product has a bulk density of 1.19 g / cmThreeAnd a water absorption of 3.8%.
Example 13
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide was changed to 0.02 g (0.2% by weight). The product has a bulk density of 1.17 g / cmThreeAnd a water absorption of 3.3%.
Example 14
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide was changed to 0.03 g (0.3% by weight). The product has a bulk density of 1.05 g / cmThreeAnd a water absorption rate of 7.1%.
Example 15
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide added was 0.10 g (1.0% by weight). The product has a bulk density of 1.10 g / cmThreeAnd a water absorption of 4.0%.
Example 16
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide added was 0.2 g (2.0% by weight). The product has a bulk density of 1.05 g / cmThreeAnd a water absorption of 4.8%.
Example 17
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide added was 0.3 g (3.0% by weight). The product has a bulk density of 1.13 g / cmThreeAnd a water absorption of 4.2%.
Comparative Example 4
A product was obtained under the same conditions as in Example 1 except that the amount of silicon carbide added was 5 mg (0.05% by weight). The product has a bulk density of 1.68 g / cmThreeAnd a water absorption of 0.8%.
[0026]
In order to easily understand the effect of the silicon carbide of the present invention, the data of the results of Example 1, Examples 12 to 17 and Comparative Example 4 are shown in Table 2 and FIG.
[0027]
[Table 2]
Figure 0003581008
[0028]
As is clear from Table 2 and FIG. 3, the products of Examples 12 to 17 have a bulk density of 1.19 g / cm when the addition amount of the silicon carbide powder is in the range of 0.1 to 3.0% by weight.ThreeIt is light and has a water absorption of 7.1% or less and is suitable for civil engineering and construction. However, if its addition amount is less than 0.1%, its bulk density is 1.68 g / cm.ThreeIt can be seen that the product becomes unsuitable for lightweight civil engineering and construction.
[0029]
In the above Examples 1 to 17, the maximum holding temperature at the time of heating and raising the temperature was 900 ° C., preferably, when it is in the range of 700 ° C. to 980 ° C., similarly, the bulk density is 1.2 g / cm.ThreeHereinafter, those having excellent characteristics with a water absorption of 17% or less can be reliably obtained.
[0030]
Next, examples of the present invention implemented on an industrial production scale will be described in detail.
Example 18
A large number of silicate glass bottles are pulverized by a hammer mill to obtain 90% by weight of coarsely ground glass powder having a particle size distribution of 0.21 to 2.38 mm, and a particle size distribution of less than 0.21 mm. And 10 kg by weight of fine powdered glass powder, and 2 Kg of silicon carbide powder and 1 Kg of calcium carbonate powder are added to 100 Kg of vitreous mixed powder and stirred to prepare a mixed powder raw material, which is electrically heated by a model. A generally uniform thickness of about 10 to 20 mm is deposited on a heat-resistant conveyor belt having a U-shaped cross section provided in a furnace and having a wide U-shape. After heating at 20 ° C. for 20 minutes, the process is shifted again, cooled air is blown, rapidly cooled and taken out. At that time, the plate-like glass foam was cracked, and a large amount of amorphous blue-light glass foam having an irregular mass and a particle size of 10 to 60 mm was obtained. When this was broken and observed with a microscope, a state having countless closed cells was observed.
[0031]
Further, when various characteristics of the above product were examined, the bulk density was 0.4 g to 0.8 / cm.ThreeThe water content at the time of production was 0% and the water absorption was around 10%. The uniaxial compressive strength is 35 to 40 kgf / cm.Two, Temperature, heat, etc., and the slaking rate was about 0.1%. This product can be used as a material for civil engineering such as strengthening, backfilling, embankment, etc. of soft soil, heat insulation for construction, soundproofing material, etc. Is good. Further, since it is a mineral made of mineral, it is chemically stable and does not corrode or pollute the environment. In addition, since the cells are independent foamed, they are advantageous in that they do not become nests of pests such as termites.
Therefore, compared to the conventional ESP method and the lightweight method using foam mortar, no preparation or curing period is required, and the construction time is shortened. In addition, even if there is an existing buried object such as a pipe, it is possible to perform backfilling work below the pipe, which was impossible with the ESP material, and thus various conveniences are brought about in construction.
[0032]
When the above product is used as a lightweight backfill material as an example for civil engineering, after performing digging work with earth retaining, construct a box culvert, put this product on it, and add the desired thickness After laying it, it can be compacted with a 1-ton vibrating roller to complete the backfilling work, and lightweight construction can be easily performed instead of soil. During this time, the labor is reduced because of the light weight. Density at compaction is 0.3t / mThreeThe water permeability was 1.2 × 10 ° cm / s, and the water permeability was a value on the order of × 10 °, and the drainage was good.
[0033]
【The invention's effect】
Thus, according to the invention of claim 1, 96-80% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm to 2.38 mm obtained by pulverizing vitreous waste material, and a particle size of less than 0.21 mm 0.1 to 3% by weight of silicon carbide powder with respect to the vitreous compound powder as a reinforcing agent for the closing wall to a vitreous compound powder obtained by mixing 4 to 20% by weight of finely ground glass powder having a distribution. The powder mixture obtained by addition and mixing is heated and calcined at a temperature of 700 to 980 ° C., and then cooled, whereby a bulk density of 1.2 g / cm is obtained without adding a foaming agent as a compounding raw material.ThreeHereafter, it can be used as a civil engineering and building material which is lightweight and has good workability with a water absorption of 20% or less.Has characteristicsA vitreous foam can be produced at low cost and reliably.
According to the invention of claim 2, at least one of 0.05 to 2% by weight of carbonate powder based on the glassy compound powder is further added to and mixed with the above mixture in the above specific temperature range. When firing, AuthorCool and lightweightHas the above characteristicsA vitreous foam can be produced.
According to the invention according to claim 3, in the heating and baking treatment at 700 to 980 ° C., the heating holding time is set to 30 minutes to 0 minutes, wherebyHas characteristicsA vitreous foam can be obtained economically.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams illustrating the principle of the production method of the present invention.
FIG. 2 is a graph showing the relationship between the mixing ratio of coarsely ground glass powder and finely ground glass powder, and the bulk density and water absorption of the product.
FIG. 3 is a graph showing the relationship between the amount of silicon carbide added, the bulk density of a product, and the water absorption.
FIG. 4 is a perspective view of one example of a glass foam obtained by the production method of the present invention.
[Explanation of symbols]
C Coarse particle F Fine particle P Closed cell
W Closed wall 1 product

Claims (3)

ガラス質廃材を粉砕して得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96〜80重量%と0.21mm未満の粒度分布を有する微粉砕ガラス粉4〜20重量%とを配合して成るガラス質配合粉に、該ガラス質配合粉に対して0.1〜3重量%の炭化珪素粉を閉塞壁の補強剤として添加、混合して成る混合粉を700〜980℃の温度で加熱焼成し、次で冷却することを特徴とするかさ密度1.2g/cm 3 以下、吸水率20%以下であるガラス質発泡体の製造法。96 to 80% by weight of coarsely ground glass powder having a particle size distribution of 0.21 mm or more and 2.38 mm or less and 4 to 20% by weight of finely ground glass powder having a particle size distribution of less than 0.21 mm obtained by pulverizing vitreous waste material Is added to the vitreous compound powder obtained by mixing 0.1 to 3% by weight with respect to the vitreous compound powder as a reinforcing agent for the closing wall, and a mixed powder obtained by mixing is added to 700 to 980. A method for producing a vitreous foam having a bulk density of 1.2 g / cm 3 or less and a water absorption of 20% or less, characterized by heating and sintering at a temperature of ° C. and then cooling. 請求項1記載のガラス質混合粉に、更に該ガラス質配合粉に対して0.05〜2重量%の炭酸塩粉の少なくとも1種を添加、混合して成る混合粉を700〜980℃の温度で加熱焼成し、次で冷却することを特徴とするかさ密度1.2g/cm 3 以下、吸水率20%以下であるガラス質発泡体の製造法。The mixed powder obtained by further adding and mixing at least one of 0.05 to 2% by weight of carbonate powder to the glassy mixed powder according to claim 1 at 700 to 980 ° C. A method for producing a vitreous foam having a bulk density of 1.2 g / cm 3 or less and a water absorption of 20% or less, characterized by heating and firing at a temperature and then cooling. 前記の700〜980℃の温度での加熱焼成処理において、その加熱温度保持時間は、30分乃至0分であることを特徴とする請求項1又は2記載のかさ密度1.2g/cm 3 以下、吸水率20%以下であるガラス質発泡体の製造法。The bulk density of 1.2 g / cm < 3 > or less according to claim 1, wherein the heating temperature holding time in the heating and baking treatment at a temperature of 700 to 980 ° C. is 30 minutes to 0 minutes. And a method for producing a vitreous foam having a water absorption of 20% or less .
JP05621498A 1998-02-20 1998-02-20 Manufacturing method of vitreous foam Expired - Lifetime JP3581008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05621498A JP3581008B2 (en) 1998-02-20 1998-02-20 Manufacturing method of vitreous foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05621498A JP3581008B2 (en) 1998-02-20 1998-02-20 Manufacturing method of vitreous foam

Publications (2)

Publication Number Publication Date
JPH11236232A JPH11236232A (en) 1999-08-31
JP3581008B2 true JP3581008B2 (en) 2004-10-27

Family

ID=13020865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05621498A Expired - Lifetime JP3581008B2 (en) 1998-02-20 1998-02-20 Manufacturing method of vitreous foam

Country Status (1)

Country Link
JP (1) JP3581008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208024A (en) * 2008-03-05 2009-09-17 Nippon Kensetsu Gijutsu Kk Water purification apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638572B2 (en) * 2000-05-19 2011-02-23 株式会社トリム Foamed material made from glass powder and method for producing the same
JP4906318B2 (en) * 2005-11-11 2012-03-28 学校法人早稲田大学 Low frequency sound absorber made of closed cell glass foam
JP2011220062A (en) * 2010-04-14 2011-11-04 Yazaki Corp Gravel and sandbag
CN103524022B (en) * 2013-09-22 2015-10-28 清华大学 Print and the desulfurization fume exhaust chimney method of construction of borosilicate glass based on 3D

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208024A (en) * 2008-03-05 2009-09-17 Nippon Kensetsu Gijutsu Kk Water purification apparatus

Also Published As

Publication number Publication date
JPH11236232A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
US7780781B2 (en) Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
González-Corrochano et al. Production of lightweight aggregates from mining and industrial wastes
US10106461B2 (en) Masonry blocks
US7655088B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
Liao et al. Glass foam from the mixture of reservoir sediment and Na2CO3
EP1841708A2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US8171751B1 (en) Foamed glass composite material and a method of producing same
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
Rabelo Monich et al. Strong porous glass-ceramics from alkali activation and sinter-crystallization of vitrified MSWI bottom ash
CN113956015B (en) Household garbage incineration ash concrete and preparation method thereof
EP1853531A2 (en) Pyroprocessed aggregates comprising iba and low calcium silicoaluminous materials and methods for producing such aggregates
JP3581008B2 (en) Manufacturing method of vitreous foam
Bandura et al. Microstructural characterization and the influence of the chemical composition of the raw material mix on the physicochemical characteristics of waste-derived ceramic aggregates
JPH11209130A (en) Manufacture of super-lightweight aggregate
WO2020104727A1 (en) Process for producing foam glass
Mohsin et al. Investigation of Wastes Plastic and Glass to Enhance Physical-Mechanical Properties of Fired Clay Brick
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP6614537B2 (en) Method for manufacturing closed foam tile and closed foam tile
Pandey et al. Preparation and characterization of high-strength insulating porous bricks by reusing coal mine overburden waste, red mud and rice husk
JP2000144748A (en) Execution method of lightweight mixed soil utilizing glass waste material
Mardi et al. Compressibility and Foaming behavior of steel slag/waste glass compositesby particle size distribution and foam agents
JP3634717B2 (en) Manufacturing method of lightweight foam glass tile
JP3604334B2 (en) Slope protection structure and spray material used for the same
JP2001064025A (en) Sintered body and its production
JP2000144746A (en) Execution method of lightweight mixed soil utilizing glass waste material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term