JP2021006622A - Foam molding and method for producing the same - Google Patents

Foam molding and method for producing the same Download PDF

Info

Publication number
JP2021006622A
JP2021006622A JP2020104096A JP2020104096A JP2021006622A JP 2021006622 A JP2021006622 A JP 2021006622A JP 2020104096 A JP2020104096 A JP 2020104096A JP 2020104096 A JP2020104096 A JP 2020104096A JP 2021006622 A JP2021006622 A JP 2021006622A
Authority
JP
Japan
Prior art keywords
foaming agent
thermoplastic resin
resin material
molded product
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020104096A
Other languages
Japanese (ja)
Other versions
JP7270887B2 (en
JP2021006622A5 (en
Inventor
章 満永
Akira Mitsunaga
章 満永
平岡 重道
Shigemichi Hiraoka
重道 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mutsuki Electric KK
Original Assignee
Mutsuki Electric KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mutsuki Electric KK filed Critical Mutsuki Electric KK
Publication of JP2021006622A publication Critical patent/JP2021006622A/en
Publication of JP2021006622A5 publication Critical patent/JP2021006622A5/ja
Application granted granted Critical
Publication of JP7270887B2 publication Critical patent/JP7270887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a foam molding of a thermoplastic resin material using a foaming agent of water-soluble alkali silicate, and to obtain a foam molding which secures a large number of air bubble parts by the production method.SOLUTION: There are provided a foam molding that forms a foaming agent 1 by treating water-soluble alkali silicate having a predetermined molar ratio with a predetermined water content, preferably, forms a particulate foaming agent 1 having a particle size of 500 μm or less by treating sodium silicate aqueous solution having a molar ratio of 2-3.2 with a water content of 5-30 wt.%, covers a large number of air bubble parts 1A with a film 2A of a thermoplastic resin material 2 molten by foaming the foaming agent 1 by heating the foaming agent 1 at a temperature equal to or higher than the melting temperature of the thermoplastic resin material 2 in a state of being brought into contact with the thermoplastic material 2, and connects the large number of air bubble parts 1A; and a method for producing the same.SELECTED DRAWING: Figure 1

Description

本発明は、水溶性アルカリ珪酸塩を処理して形成した発泡剤を用いた熱可塑性樹脂材の発泡成形体に関する。The present invention relates to a foamed molded product of a thermoplastic resin material using a foaming agent formed by treating a water-soluble alkaline silicate.

水ガラスなどの水溶性アルカリ珪酸塩の発泡剤を用いた熱可塑性樹脂材の発泡成形体は種々提案されている。Various foamed molded articles of thermoplastic resin materials using a foaming agent of a water-soluble alkaline silicate such as water glass have been proposed.

水ガラスなどの水溶性アルカリ珪酸塩の発泡剤を用いた熱可塑性樹脂材の発泡成形体の単体として、特許文献1にて、重量比でM2O:SiO2:H2O=21〜85:100:3〜150(ただしMはアルカリ金属)で表される発泡性組成物(アルカリ無水珪酸)をポリエチレン、ポリプロピレン、ポリ4弗化エチレン、ポリ塩化ビニール、ポリスチレン、ABS樹脂、ポリメタクリル酸エステル、ポリカーボネート、ポリアミド、飽和ポリエステルなどの熱可塑性樹脂と混合させて、その混合物を約80℃で水和水の一部を放出して水蒸気を発生し、その水蒸気の圧力によって小さな気泡は膨張して互いに連結して気泡内の圧力差によって隔膜が破れ、連続気泡体となった気泡の周囲に熱可塑性樹脂の被膜が形成された発泡体の製造方法が提案されている。According to Patent Document 1, M2O: SiO2: H2O = 21-85: 100: 3 ~ A foamable composition (alkali anhydride silicate) represented by 150 (where M is an alkali metal) is obtained from polyethylene, polypropylene, polytetrafluorinated ethylene, polyvinyl chloride, polystyrene, ABS resin, polymethacrylic acid ester, polycarbonate, polyamide, and the like. It is mixed with a thermoplastic resin such as saturated polypropylene, and the mixture is released at about 80 ° C. to generate water vapor, and the pressure of the water vapor causes small bubbles to expand and connect with each other to form bubbles. A method for producing a foam in which a thermoplastic resin film is formed around bubbles that have become open cells by breaking the diaphragm due to the pressure difference inside has been proposed.

しかし、特許文献1の熱可塑性樹脂の発泡体においては、前記発泡性組成物が酸化アルカリ、無水珪酸、水に換算した重量比を特定して乾燥させているが、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量となるように処理することは開示されておらず、また、発泡剤を熱可塑性樹脂材に接触させた状態で熱可塑性樹脂材の溶融温度以上の加熱により発泡剤を発泡させて溶融した多数個の気泡部の表面を被覆するとともに多数個の気泡部間を連結させることは開示されていない。However, in the foam of the thermoplastic resin of Patent Document 1, although the foaming composition is dried by specifying the weight ratio in terms of alkali oxide, silicic anhydride and water, it is water-soluble with a predetermined molar ratio. It is not disclosed that the alkaline silicate is treated so as to have a predetermined water content, and the foaming agent is heated above the melting temperature of the thermoplastic resin material in a state where the foaming agent is in contact with the thermoplastic resin material. It is not disclosed that the surface of a large number of bubble portions melted by foaming is coated and the large number of bubble portions are connected to each other.

また、水ガラス・硼砂の混合発泡剤を用いてその発泡剤を合成樹脂に添加させる発泡成形体として、特許文献2にて、トリクロルエチレン1000ccに硼砂120gを投入し攪拌して溶解せしめた中に水ガラス(2号)100gを滴下しながら攪拌する作業により大体5mmφ程度の統一された白色の粒状体を成形するマイクロカプセル化にもとづき、発泡剤を100とし、ウレタン樹脂の合成樹脂を100とする割合で加熱して板状に成形した発泡成形体を得ることが開示されている。Further, as a foamed molded product in which the foaming agent is added to the synthetic resin using a mixed foaming agent of water glass and borosand, 120 g of borosand is added to 1000 cc of trichloroethylene and stirred to dissolve it in Patent Document 2. Based on microencapsulation that forms a unified white granule of about 5 mmφ by stirring while dropping 100 g of water glass (No. 2), the foaming agent is set to 100 and the urethane resin synthetic resin is set to 100. It is disclosed that a foamed molded product formed into a plate by heating at a rate is obtained.

しかし、特許文献2の水ガラス・硼砂の混合発泡剤を用いてその発泡剤を合成樹脂に添加させる発泡成形体については開示されているが、特許文献1と同様に所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量となるように処理して発泡剤を形成することや溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできた発泡成形体を得ることは開示されていない。However, although a foamed molded product in which the foaming agent is added to the synthetic resin by using the mixed foaming agent of water glass and borosand of Patent Document 2, it is water-soluble with a predetermined molar ratio as in Patent Document 1. The alkali silicate is treated to have a predetermined water content to form a foaming agent, and the surface of a large number of bubble portions is covered with a film of a molten thermoplastic resin material, and the spaces between the large number of bubble portions are covered. It is not disclosed to obtain a foamed molded product formed by connecting them.

特公昭41−16075号公報Special Publication No. 41-16705 特公昭55−10557号公報Special Publication No. 55-10557

本発明は、上記の問題点を解消するために、水溶性アルカリ珪酸塩を処理して形成した発泡剤を用いた熱可塑性樹脂材の発泡成形体およびその製造方法により多数個の気泡部を確保してできた発泡成形体を得ることを目的とする。In the present invention, in order to solve the above problems, a large number of bubble portions are secured by a foam molded body of a thermoplastic resin material using a foaming agent formed by treating a water-soluble alkaline silicate and a method for producing the same. The purpose is to obtain a foamed molded product thus produced.

本発明の請求項1に記載の発泡成形体は、一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤を熱可塑性樹脂材と接触させた状態で前記熱可塑性樹脂材の溶融温度で発泡させてできた発泡成形体において、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量となるように処理して発泡剤を形成し、前記発泡剤を熱可塑性樹脂材に接触させた状態で熱可塑性樹脂材の溶融温度以上の加熱により前記発泡剤を発泡させて溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできたことを特徴とする。同請求項2に記載の発泡成形体は、請求項1において、前記所定のモル比の珪酸ナトリウム水溶液に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせて所定の含水分量となるように処理して発泡剤を形成したことを特徴とする。同請求項3に記載の発泡成形体は、請求項1または2において、前記所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用い、5〜30重量%の含水分量となるように処理して粒子状の発泡剤を形成し、前記粒子状の発泡剤を前記熱可塑性樹脂材の溶融温度で発泡させて溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできたことを特徴とする。同請求項4に記載の発泡成形体は、請求項1から3の何れかひとつにおいて、前記粒子状の発泡剤は粒径が500μm以下の粒子状の発泡剤であって、前記熱可塑性樹脂材はスーパーエンジニアリングプラスチックであることを特徴とする。同請求項5に記載の発泡成形体の製造方法は、一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤を熱可塑性樹脂材の存在状態で前記熱可塑性樹脂材の溶融温度で発泡させる発泡成形体の製造方法において、前記所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用い、前記モル比が2〜3.2の珪酸ナトリウム水溶液を乾燥させて5〜30重量%の含水分量とする珪酸ナトリウム固体を粉砕して粒子状の発泡剤を得る発泡剤形成工程と、前記粒子状の発泡剤と熱可塑性樹脂材とを混合して混合物とする混合工程と、前記混合物を熱可塑性樹脂材の融点以上の温度で加熱して前記発泡剤を発泡させて多数個の気泡部を形成するとともに前記気泡部の外周に前記溶融した熱可塑性樹脂材の被膜を形成する加熱発泡工程と、冷却することにより前記溶融した熱可塑性樹脂材の被膜が固化して多数個の気泡部間を前記被膜で連結させてできた発泡成形体を得る冷却工程とからなることを特徴とする。同請求項6に記載の発泡成形体の製造方法は、請求項5において、前記発泡剤形成工程は、モル比が2〜3.2の水溶性アルカリ珪酸塩に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理して粒子状の発泡剤を形成することであることを特徴とする。The foamed molded product according to claim 1 of the present invention contains a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio). In a foamed molded product formed by foaming the foaming agent formed by the treatment at the melting temperature of the thermoplastic resin material in a state of being in contact with the thermoplastic resin material, a water-soluble alkali silicate having a predetermined molar ratio is specified. The foaming agent is formed by processing so as to have a water content, and the foaming agent is foamed and melted by heating above the melting temperature of the thermoplastic resin material in a state where the foaming agent is in contact with the thermoplastic resin material. It is characterized in that the surface of a large number of bubble portions is covered with a coating of a plastic resin material and the large number of bubble portions are connected to each other. In claim 1, the foamed molded product according to claim 2 is water-soluble in the sodium silicate aqueous solution having a predetermined molar ratio, such as a boron compound such as borax and boric acid, magnesium hydroxide, calcium hydroxide, and aluminum hydroxide. It is characterized in that a foaming agent is formed by treating one or a combination of two or more metal compounds so as to have a predetermined water content. The foamed molded product according to claim 3 uses an aqueous sodium silicate solution having a molar ratio of 2 to 3.2 as the water-soluble alkali silicate having a predetermined molar ratio in claims 1 or 2, and has a weight of 5 to 30. A large number of particulate foaming agents are formed by treating the mixture so as to have a water content of%, and the particulate foaming agent is foamed at the melting temperature of the thermoplastic resin material to form a melted film of the thermoplastic resin material. It is characterized in that it is formed by covering the surface of the bubble portion of the above and connecting the large number of the bubble portions. In any one of claims 1 to 3, the foamed molded article according to claim 4 is a particulate foaming agent having a particle size of 500 μm or less, and the thermoplastic resin material. Is a super engineering plastic. The method for producing a foamed molded product according to claim 5 is a water-soluble alkaline silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio). In the method for producing a foamed molded product in which the foaming agent formed by the above treatment is foamed at the melting temperature of the thermoplastic resin material in the presence of the thermoplastic resin material, the molar ratio of the water-soluble alkali silicate having the predetermined molar ratio is used. Using a sodium silicate aqueous solution of 2 to 3.2, the sodium silicate aqueous solution having a molar ratio of 2 to 3.2 is dried, and a sodium silicate solid having a water content of 5 to 30% by weight is crushed into particles. A foaming agent forming step of obtaining a foaming agent, a mixing step of mixing the particulate foaming agent and a thermoplastic resin material to form a mixture, and heating the mixture at a temperature equal to or higher than the melting point of the thermoplastic resin material. A heating foaming step of foaming a foaming agent to form a large number of bubble portions and forming a film of the molten thermoplastic resin material on the outer periphery of the bubble portions, and a heating foaming step of forming the molten thermoplastic resin material by cooling. It is characterized by comprising a cooling step of obtaining a foamed molded product formed by solidifying the coating film and connecting a large number of bubble portions with the coating film. The method for producing a foamed molded product according to claim 6, wherein in the foaming agent forming step, a water-soluble alkaline silicate having a molar ratio of 2 to 3.2, a boron compound such as borax or boric acid, or a boron compound is used. One or two or more water-soluble metal compounds such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide are combined, and 5 to 15% by weight of each is mixed and dissolved so as to have a water content of 5 to 30% by weight. It is characterized in that it is processed to form a particulate foaming agent.

本発明の発泡成形体は、一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤を熱可塑性樹脂材と接触させた状態で前記熱可塑性樹脂材の溶融温度で発泡させてできた発泡成形体において、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量となるように処理して発泡剤を形成し、前記発泡剤を熱可塑性樹脂材に接触させた状態で熱可塑性樹脂材の溶融温度以上の加熱により前記発泡剤を発泡させて溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできており、さらに、前記所定のモル比の珪酸ナトリウム水溶液に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせて所定の含水分量となるように処理して発泡剤を形成してガラス被膜が形成された気泡(以下、ガラス被膜状バルーンと表現する)を残存させており、その製造方法を提供することにより、多数個の気泡部を確保できて、スーパーエンジニアリングプラスチックを含み熱可塑性樹脂全般にも利用できる。The foamed molded product of the present invention is a foam formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio). In a foamed molded product formed by foaming the agent at the melting temperature of the thermoplastic resin material in a state of being in contact with the thermoplastic resin material, a water-soluble alkaline silicate having a predetermined molar ratio is adjusted to have a predetermined water content. The foaming agent is formed by treatment, and the foaming agent is foamed and melted by heating above the melting temperature of the thermoplastic resin material in a state where the foaming agent is in contact with the thermoplastic resin material. It is formed by covering the surface of a large number of bubble portions and connecting the large number of bubble portions, and further, boring compounds such as borosand and boric acid and magnesium hydroxide in the sodium silicate aqueous solution having a predetermined molar ratio. Bubbles (hereinafter referred to as glass) in which a glass film is formed by forming a foaming agent by treating one or more water-soluble metal compounds such as calcium hydroxide and aluminum hydroxide so as to have a predetermined water content. (Represented as a film-like balloon) remains, and by providing a method for producing the same, a large number of bubble portions can be secured, and it can be used for all thermoplastic resins including super engineering plastics.

本発明の実施形態1で発泡成形体の断面図である。It is sectional drawing of the foam molded article in Embodiment 1 of this invention. 本発明の実施形態2で発泡成形体の断面図である。It is sectional drawing of the foam molded article in Embodiment 2 of this invention. 本発明の実施形態3で発泡成形体の断面図である。It is sectional drawing of the foam molded article in Embodiment 3 of this invention. 本発明の発泡成形体の周囲に熱可塑性樹脂材の存在状態を示す説明図である。It is explanatory drawing which shows the existence state of the thermoplastic resin material around the foam molded article of this invention. 本発明の発泡成形体の加熱発泡状態を示す説明図である。It is explanatory drawing which shows the heated foaming state of the foam molded article of this invention. 本発明の発泡成形体の製造工程を示す作業図である。It is a work diagram which shows the manufacturing process of the foam molding body of this invention. 本発明の発泡成形体の斜視図である。It is a perspective view of the foam molded article of this invention. 実施例2により得た発泡成形体において図7のAA断面の拡大図である。FIG. 5 is an enlarged view of an AA cross section of FIG. 7 in the foam molded product obtained in Example 2. 実施例3により得た発泡成形体において図7のAA断面の拡大図である。FIG. 5 is an enlarged view of an AA cross section of FIG. 7 in the foam molded product obtained in Example 3.

(本願の発泡成形体における発泡作用)
図1〜図5を参照して、以下、発泡成形体の発泡作用を説明する。なお、本発明における発泡成形体は発泡成形体の単体および複合体を含む。
(Effervescent action in the foam molded product of the present application)
The foaming action of the foamed molded product will be described below with reference to FIGS. 1 to 5. The foamed molded product in the present invention includes a simple substance and a composite of the foamed molded product.

図4において、発泡剤1は、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量に処理して形成されており、好ましくは、前記所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用い、5〜30重量%の含水分量となるように、好ましくは15〜20重量%の含水分量となるように、処理して粒径が500μm以下の粒子状に形成されている。この発泡剤1の周囲には熱可塑性樹脂材2が存在状態にあり、この熱可塑性樹脂材2は発泡剤1と接触させており、好ましくは、熱可塑性樹脂材2は発泡剤1よりも微小な粒径の固体または水分を含む半硬化体で発泡剤1と接触させている。この場合、発泡剤1を熱可塑性樹脂材2と接触させるには、発泡剤1と熱可塑性樹脂材2とを混合して混合物とすればよいので、その混合方法としては、ミキサー装置や吹き付け装置を用いて発泡剤1と熱可塑性樹脂材2とを混合させればよい。In FIG. 4, the foaming agent 1 is formed by treating a water-soluble alkaline silicate having a predetermined molar ratio to a predetermined water content, and is preferably formed as a water-soluble alkaline silicate having a predetermined molar ratio. Is treated with an aqueous sodium silicate solution of 2 to 3.2 so as to have a water content of 5 to 30% by weight, preferably 15 to 20% by weight, and the particle size is 500 μm or less. It is formed in the form of particles. A thermoplastic resin material 2 is present around the foaming agent 1, and the thermoplastic resin material 2 is in contact with the foaming agent 1, preferably, the thermoplastic resin material 2 is smaller than the foaming agent 1. It is in contact with the foaming agent 1 with a solid having a large particle size or a semi-cured material containing water. In this case, in order to bring the foaming agent 1 into contact with the thermoplastic resin material 2, the foaming agent 1 and the thermoplastic resin material 2 may be mixed to form a mixture. Therefore, as a mixing method thereof, a mixer device or a spraying device is used. The foaming agent 1 and the thermoplastic resin material 2 may be mixed using the above.

また、発泡剤1としては、以下、実施形態1、2および3においては、水溶性アルカリ珪酸塩を用いた発泡剤を説明するが、所定のモル比の珪酸ナトリウム水溶液に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせて所定の含水分量となるように処理した発泡剤1も同様であり、その発泡剤1を用いて熱可塑性樹脂材2の被膜を難水溶性あるいは不溶性とするように強化して、難水溶性あるいは不溶性の被膜を残存させた熱可塑性樹脂材2の独立気泡の発泡成形体を得ることができ、連続気泡からなる発泡成形体に比し、強度が向上し、断熱性や誘電率が向上する。この場合、所定のモル比の珪酸ナトリウム水溶液に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせて所定の含水分量となるように処理した発泡剤1としては、好ましくは、モル比が2〜3.2の珪酸ナトリウム水溶液を用い、この珪酸ナトリウム水溶液を用い、珪酸ナトリウム塩固形物に対して硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理して粒径が500μm以下の粒子状に形成されている。Further, as the foaming agent 1, the foaming agent using a water-soluble alkaline silicate will be described below in the first, second and third embodiments, but a borax such as borax and boric acid is added to a predetermined molar ratio of an aqueous sodium silicate solution. The same applies to the foaming agent 1 in which one or more water-soluble metal compounds such as a compound, magnesium hydroxide, calcium hydroxide, and aluminum hydroxide are combined and treated so as to have a predetermined water content. To obtain a closed-cell foam molded product of the thermoplastic resin material 2 in which the film of the thermoplastic resin material 2 is strengthened so as to be poorly water-soluble or insoluble, and the poorly water-soluble or insoluble film remains. Compared to a foamed molded product made of open cells, the strength is improved, and the heat insulating property and dielectric constant are improved. In this case, a predetermined water content is obtained by combining one or more water-soluble metal compounds such as borax and boric acid and water-soluble metal compounds such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide in a sodium silicate aqueous solution having a predetermined molar ratio. As the foaming agent 1 treated so as to be, preferably, an aqueous solution of sodium silicate having a molar ratio of 2 to 3.2 is used, and this aqueous solution of sodium silicate is used, and borax, boric acid, etc. are used with respect to the solid sodium silicate salt. One or two or more water-soluble metal compounds such as borax compound, magnesium hydroxide, calcium hydroxide, and aluminum hydroxide are combined, and 5 to 15% by weight of each is mixed and dissolved to obtain a water content of 5 to 30% by weight. It is processed so as to be formed into particles having a particle size of 500 μm or less.

図1〜図3および図5において、熱可塑性樹脂材2を発泡剤1に接触させた状態で熱可塑性樹脂材2の溶融温度以上に加熱して、気泡部1Aの表面には溶融した熱可塑性樹脂材2の被膜2Aが被覆されている。この場合、一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を用いてこれを熱可塑性樹脂材2の存在状態で熱可塑性樹脂材2の溶融温度で発泡させることのみではなく、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量に処理して形成されてできた発泡剤1を用いて、多数個の気泡部1Aを被覆するとともに多数個の気泡部1A間を連結させた発泡成形体としており、好ましくは、熱制御により急速加熱と冷却を行って、発泡作用と熱可塑性樹脂材2の溶融作用とを同時に行うようにして気泡部1Aを確保させた発泡成形体とする。この場合、好ましい発泡剤1としては、モル比が2〜3.2の珪酸ナトリウム水溶液を用い5〜30重量%の含水分量となるように処理して、粒径が500μm以下の粒子状に形成されており、この発泡剤1を熱可塑性樹脂材2と接触させて熱制御により急速加熱と冷却とを行なって発泡作用と熱可塑性樹脂材2の溶融作用とを同時に行うようにする必要があるので、この熱制御は、形成される発泡成形体の形状や確保する気泡部1Aの用途を考慮して、熱可塑性樹脂材2の素材に応じて発泡剤1の含水分量や粒径さらには熱可塑性樹脂材2と発泡剤1との配合比率にもとづき選定して実施すればよい。In FIGS. 1 to 3 and 5, the thermoplastic resin material 2 is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin material 2 in a state of being in contact with the foaming agent 1, and the surface of the bubble portion 1A is melted. The coating film 2A of the resin material 2 is coated. In this case, the presence of the thermoplastic resin material 2 is obtained by using a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M indicates an alkali metal of sodium or potassium and n indicates a molar ratio). Not only foaming at the melting temperature of the thermoplastic resin material 2 in the state, but also a large number of foaming agents 1 formed by treating a water-soluble alkaline silicate having a predetermined molar ratio to a predetermined water content. It is a foamed molded product in which a large number of bubble portions 1A are covered and a large number of bubble portions 1A are connected to each other.Preferably, rapid heating and cooling are performed by thermal control to foam and melt the thermoplastic resin material 2. A foamed molded product is obtained in which the bubble portion 1A is secured by simultaneously performing the action. In this case, as the preferable foaming agent 1, a sodium silicate aqueous solution having a molar ratio of 2 to 3.2 is used and treated so as to have a water content of 5 to 30% by weight to form particles having a particle size of 500 μm or less. It is necessary to bring the foaming agent 1 into contact with the thermoplastic resin material 2 and perform rapid heating and cooling by thermal control so that the foaming action and the melting action of the thermoplastic resin material 2 are simultaneously performed. Therefore, in this thermal control, the water content, particle size, and heat of the foaming agent 1 are determined according to the material of the thermoplastic resin material 2, in consideration of the shape of the foamed molded product to be formed and the use of the bubble portion 1A to be secured. It may be selected and carried out based on the blending ratio of the thermoplastic resin material 2 and the foaming agent 1.

溶融される熱可塑性樹脂材2の素材としては、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、ポリ塩化ビニール樹脂、ABS樹脂、ポリアミド樹脂、ポリエステル樹脂およびフッ素樹脂さらにはポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、熱可塑ポリイミド(LARC−PAI)、ポリアミドイミド、ポリアリールアミド、ポリエーテルイミド、ポリフェニレンスルホン(PPSU)、ポリメタクリルイミド(PMI)などのスーパーエンジニアリングプラスチックが例示できる。また、これらの素材は2種以上の素材を混合してもよい。これらの素材にカーボン繊維材またはガラス繊維材を混合させてもよい。Examples of the material of the thermoplastic resin material 2 to be melted include olefin resins such as polyethylene and polypropylene, polyvinyl chloride resins, ABS resins, polyamide resins, polyester resins and fluororesins, as well as polyphenylene sulfide (PPS) and polyetheretherketone. (PEEK), thermoplastic polyimide (LARC-PAI), polyamideimide, polyarylamide, polyetherimide, polyphenylene sulfone (PPSU), polymethacrylimide (PMI) and other superengineering plastics can be exemplified. Further, these materials may be a mixture of two or more kinds of materials. Carbon fiber material or glass fiber material may be mixed with these materials.

(実施形態1)
図1は、一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤1を熱可塑性樹脂材2の存在状態で熱可塑性樹脂材2の溶融温度で発泡させてできた発泡成形体の表面状態を示す。
(Embodiment 1)
FIG. 1 shows the heating agent 1 formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio). The surface state of the foamed molded product formed by foaming the thermoplastic resin material 2 at the melting temperature in the presence of the plastic resin material 2 is shown.

図1において、多数個の気泡部1Aのそれぞれの周囲は熱可塑性樹脂材2の被膜2Aで覆われており、その被膜2Aは隣接する気泡部1Aの周囲の被膜2Aと連結されている。この場合、図示する表面と交叉する面も同じ状態であれば、気泡部1Aは独立気泡で構成されていることになり、この独立気泡としてはガラス被膜状バルーンが例示できる。In FIG. 1, each of a large number of bubble portions 1A is covered with a coating film 2A of a thermoplastic resin material 2, and the coating film 2A is connected to a coating film 2A around an adjacent bubble portion 1A. In this case, if the surface intersecting with the illustrated surface is also in the same state, the bubble portion 1A is composed of closed cells, and a glass-coated balloon can be exemplified as the closed cells.

(実施形態2)
図2は、実施形態1と同様に一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤1を熱可塑性樹脂材2の存在状態で熱可塑性樹脂材2の溶融温度で発泡させてできた発泡成形体の表面状態を示す。
(Embodiment 2)
FIG. 2 is formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio) as in the first embodiment. The surface state of the foamed molded product formed by foaming the foaming agent 1 in the presence of the thermoplastic resin material 2 at the melting temperature of the thermoplastic resin material 2 is shown.

図2において、気泡部1Aと隣接する気泡部1Aが接触しており、それぞれの周囲は熱可塑性樹脂材2の被膜2Aで覆われており、その被膜2Aは隣接する気泡部1Aの周囲の被膜2Aと連結されている。この場合、気泡部1Aは連続気泡で構成されている。In FIG. 2, the bubble portion 1A and the adjacent bubble portion 1A are in contact with each other, and the periphery of each is covered with a coating film 2A of the thermoplastic resin material 2, and the coating film 2A is a coating film around the adjacent bubble portion 1A. It is connected with 2A. In this case, the bubble portion 1A is composed of open cells.

(実施形態3)
図3は、実施形態1と同様に一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤1を熱可塑性樹脂材2の存在状態で熱可塑性樹脂材2の溶融温度で発泡させてできた発泡成形体の表面状態を示す。
(Embodiment 3)
FIG. 3 is formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio) as in the first embodiment. The surface state of the foamed molded product formed by foaming the foaming agent 1 in the presence of the thermoplastic resin material 2 at the melting temperature of the thermoplastic resin material 2 is shown.

図3において、気泡部1Aと隣接する気泡部1Aとが連通部1Bで連通しており、それぞれの周囲は熱可塑性樹脂材2の被膜2Aで覆われており、その被膜2Aは隣接する気泡部1Aの周囲の被膜2Aと連結されている。この場合、気泡部1Aは連続気泡で構成されている。In FIG. 3, the bubble portion 1A and the adjacent bubble portion 1A are communicated with each other by the communication portion 1B, and the periphery thereof is covered with the coating film 2A of the thermoplastic resin material 2, and the coating film 2A is the adjacent bubble portion. It is connected to the coating 2A around 1A. In this case, the bubble portion 1A is composed of open cells.

(発泡成形体の製造方法)
図6は、所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用いて上述の発泡成形体の実施形態1〜3を得る発泡成形体の製造工程の作業図を示し、この発泡成形体の製造工程は、発泡剤形成工程101と混合工程102と加熱発泡工程103と冷却工程104とからなる。
(Manufacturing method of foam molded product)
FIG. 6 shows a step of manufacturing a foamed molded article for obtaining embodiments 1 to 3 of the above-mentioned foamed molded article using an aqueous solution of sodium silicate having a molar ratio of 2 to 3.2 as a water-soluble alkaline silicate having a predetermined molar ratio. A work diagram is shown, and the manufacturing process of this foamed molded product includes a foaming agent forming step 101, a mixing step 102, a heating foaming step 103, and a cooling step 104.

図6において、発泡剤形成工程101では、モル比が2〜3.2の珪酸ナトリウム水溶液を5〜30重量%の含水分量となるように乾燥装置(図示せず)にて乾燥させてできた珪酸ナトリウム固体を粉砕してモル比が2.2〜3.2で、含水分量が5〜30重量%で粒径が500μm以下で、好ましくは10〜300μmからなる珪酸ナトリウムの粒子でできた粒子状の発泡剤1を得る。この場合、発泡剤1を粒子状に処理する方法としては、前記珪酸ナトリウム固体を板状に形成して後、その珪酸ナトリウム固体を粉砕装置にて粉砕して粒子状とする方法が例示できる。In FIG. 6, in the foaming agent forming step 101, an aqueous sodium silicate having a molar ratio of 2 to 3.2 was dried by a drying device (not shown) so as to have a water content of 5 to 30% by weight. Particles made of sodium silicate particles having a molar ratio of 2.2 to 3.2, a water content of 5 to 30% by weight, a particle size of 500 μm or less, and preferably 10 to 300 μm after crushing a solid sodium silicate. Obtain the foaming agent 1 in the form. In this case, as a method for treating the foaming agent 1 into particles, a method of forming the sodium silicate solid into a plate shape and then pulverizing the sodium silicate solid with a pulverizer to form particles can be exemplified.

また、発泡剤形成工程101について、上記珪酸ナトリウムの粒子でできた粒子状の発泡剤1に代えて、モル比が2〜3.2の水溶性アルカリ珪酸塩に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理してガラス被膜状バルーンとなる粒子状の発泡剤を得るようにしてもよい。Further, in the foaming agent forming step 101, instead of the particulate foaming agent 1 made of the sodium silicate particles, a water-soluble alkaline silicate having a molar ratio of 2 to 3.2, borax compounds such as borax and boric acid, and boric acid compounds are used. One or two or more water-soluble metal compounds such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide are combined, and 5 to 15% by weight of each is mixed and dissolved so as to have a water content of 5 to 30% by weight. It may be treated to obtain a particulate foaming agent which becomes a glass-coated balloon.

混合工程102では、粒子状の発泡剤1と熱可塑性樹脂材2とを混合して、図4に示すように発泡剤1の周囲に熱可塑性樹脂材2が存在状態となった混合物とする。その混合方法としては双方を混ぜるミキサー装置や一方を他方に吹き付ける吹き付け装置にて行う方法が例示できる。In the mixing step 102, the particulate foaming agent 1 and the thermoplastic resin material 2 are mixed to obtain a mixture in which the thermoplastic resin material 2 is present around the foaming agent 1 as shown in FIG. Examples of the mixing method include a mixer device that mixes both and a spraying device that sprays one to the other.

加熱発泡工程103では、加熱装置(図示せず)にて前記混合物を熱可塑性樹脂材2の融点以上の温度で加熱して発泡剤1を発泡させて、図5に示すように、多数個の気泡部1Aを形成するとともに気泡部1Aの外周に溶融した熱可塑性樹脂材2の被膜2Aを形成する。熱可塑性樹脂材2の融点以上の温度としては、PPS樹脂の場合は300℃で20分間の加熱が例示できる。In the heat foaming step 103, the mixture is heated at a temperature equal to or higher than the melting point of the thermoplastic resin material 2 by a heating device (not shown) to foam the foaming agent 1, and as shown in FIG. A bubble portion 1A is formed, and a film 2A of the molten thermoplastic resin material 2 is formed on the outer periphery of the bubble portion 1A. As the temperature above the melting point of the thermoplastic resin material 2, in the case of the PPS resin, heating at 300 ° C. for 20 minutes can be exemplified.

冷却工程104では、加熱発泡工程103で作業して後、冷却装置(図示せず)にて冷却処理することにより溶融した熱可塑性樹脂材2の被膜2Aが固化して多数個の気泡部1A間を熱可塑性樹脂材2で連結させてできた発泡成形体を得る。In the cooling step 104, after the work is performed in the heating foaming step 103, the coating 2A of the thermoplastic resin material 2 melted by the cooling treatment by a cooling device (not shown) is solidified and between a large number of bubble portions 1A. Is connected with the thermoplastic resin material 2 to obtain a foam molded product.

富士化学株式会社製のモル比3.17の3号珪酸ナトリウムの61%水溶液とモル比2.10の1号珪酸ナトリウムの53%水溶液とからモル比2.5になる配合の珪酸ナトリウムの57%水溶液を用意し、140℃で熱処理して含水分量が23重量%の珪酸ナトリウムの固形体を得て、その固形体を粉砕処理して3種の粒径の粒子状に形成された発泡剤20gとDIC株式会社製PPS樹脂MA−520粉末60gとを混合して、300℃で20分間加熱して、冷却して、図7に示すように縦の長さXが120mmで横の長さYが120mmで厚さZが15mmの板材の発泡成形体を得て3種の粒径の粒子状に形成された発泡剤に対する発泡成形体の気泡部径を観察する発泡成形体の確認サンプルを用意して、発泡剤の粒径毎に気泡部径を観察した結果、下表のとおりとなった。
57 of sodium silicate having a molar ratio of 2.5 from a 61% aqueous solution of No. 3 sodium silicate having a molar ratio of 3.17 and a 53% aqueous solution of No. 1 sodium silicate having a molar ratio of 2.10 manufactured by Fuji Chemical Co., Ltd. % Aqueous solution is prepared and heat-treated at 140 ° C. to obtain a solid body of sodium silicate having a water content of 23% by weight, and the solid body is pulverized to form a foaming agent having three kinds of particle sizes. 20 g and 60 g of PPS resin MA-520 powder manufactured by DIC Co., Ltd. are mixed, heated at 300 ° C. for 20 minutes, cooled, and as shown in FIG. 7, the vertical length X is 120 mm and the horizontal length. A confirmation sample of the foamed molded product was obtained by obtaining a foamed molded product of a plate material having a Y of 120 mm and a thickness Z of 15 mm and observing the bubble portion diameter of the foamed molded product with respect to the foaming agent formed in the form of particles having three kinds of particle sizes. As a result of observing the bubble portion diameter for each particle size of the foaming agent, the results are as shown in the table below.

富士化学株式会社製のモル比3.17の3号珪酸ナトリウムの61%水溶液を用意し、140℃で熱処理して含水分量が20重量%の珪酸ナトリウムの固形体を得て、固形体を粉砕して、粒子状の発泡剤25gと東レ株式会社製PPS樹脂PN−50NNAAの粉末70gとを混合して、300℃で20分間加熱して、冷却して、実施例1と同様に、図7に示すように縦の長さXが120mmで横の長さYが120mmで厚さZが15mmの板材の発泡成形体を得て、3種の粒径の粒子状に形成された発泡剤に対する発泡成形体の気泡部径を観察する発泡成形体の確認サンプルを用意して、発泡剤の粒径毎に気泡部径を観察した結果、下表のとおりとなった。
A 61% aqueous solution of No. 3 sodium silicate having a molar ratio of 3.17 manufactured by Fuji Chemical Co., Ltd. was prepared and heat-treated at 140 ° C. to obtain a solid body of sodium silicate having a water content of 20% by weight, and the solid body was crushed. Then, 25 g of the particulate foaming agent and 70 g of the powder of PPS resin PN-50NNAA manufactured by Toray Co., Ltd. were mixed, heated at 300 ° C. for 20 minutes, cooled, and similarly to Example 1, FIG. As shown in the above, a foamed molded product of a plate material having a vertical length X of 120 mm, a horizontal length Y of 120 mm and a thickness Z of 15 mm was obtained, and the foaming agent formed in the form of particles having three kinds of particle sizes was obtained. Observing the bubble portion diameter of the foamed molded product A confirmation sample of the foamed molded product was prepared, and the bubble portion diameter was observed for each particle size of the foaming agent. As a result, the results are as shown in the table below.

富士化学株式会社製のモル比3.17の3号珪酸ナトリウムの61%水溶液を用意し、この水溶液に珪酸ナトリウム塩固形物に対して12.5重量%の硼砂と5重量%水酸化マグネシウムとを混合してこれを140℃で熱処理して含水分量が18重量%の珪酸ナトリウムの固形体を得て、固形体を粉砕して、粒子状の発泡剤25gと東レ株式会社製PPS樹脂PN−50NNAAの粉末70gとを混合して、300℃で20分間加熱して、冷却して、実施例1と同様に、実施例1および2と同様に、図7に示すように縦の長さXが120mmで横の長さYが120mmで厚さZが15mmの板材の発泡成形体を得て、3種の粒径の粒子状に形成された発泡剤に対する発泡成形体の気泡部径を観察する発泡成形体の確認サンプルを用意して、発泡剤の粒径毎に気泡部径を観察した結果、下表のとおりとなった。
A 61% aqueous solution of No. 3 sodium silicate having a molar ratio of 3.17 manufactured by Fuji Chemical Co., Ltd. was prepared, and 12.5% by weight of borosand and 5% by weight of magnesium hydroxide were added to the aqueous solution of the sodium silicate solid. Was mixed and heat-treated at 140 ° C. to obtain a solid body of sodium silicate having a water content of 18% by weight, and the solid body was crushed to obtain 25 g of a particulate foaming agent and PPS resin PN- manufactured by Toray Co., Ltd. 70 g of 50 NNAA powder is mixed, heated at 300 ° C. for 20 minutes, cooled, and the vertical length X is as shown in FIG. 7, as in Examples 1 and 2. Obtained a foamed molded product of a plate material having a width of 120 mm, a lateral length of 120 mm and a thickness of Z of 15 mm, and observed the bubble portion diameter of the foamed molded product with respect to the foaming agent formed in the form of particles having three kinds of particle sizes. As a result of observing the bubble portion diameter for each particle size of the foaming agent by preparing a confirmation sample of the foamed molded product, the results are as shown in the table below.

図8は、実施例2に示す珪酸ナトリウムとPPS樹脂とからなり、粒径100〜290μmの発泡剤により得られたPPS樹脂発泡成形体の確認サンプルについて図7のAA断面における7.5倍に拡大した断面図を示す。この図8に示す拡大断面図においては、確認サンプルが板材の発泡成形体をAA方向の切断により多数個の気泡部1Aが切断されるので、気泡部1A毎にその切断面と交叉した面(厚さZ方向)の種々の位置で切断されて、種々の切断形状を呈しているが、この確認サンプルにおいては、気泡部1Aの形状は、図1から図3に示す発泡成形体の実施形態1から実施形態3の気泡部1Aが混在し、それぞれの周囲は熱可塑性樹脂材2の被膜2Aで覆われており、その被膜2Aは隣接する気泡部1Aの周囲の被膜2Aで連結されていることが確認できた。FIG. 8 shows a confirmation sample of a PPS resin foam molded product composed of sodium silicate and PPS resin shown in Example 2 and obtained by a foaming agent having a particle size of 100 to 290 μm, which is 7.5 times larger than that in the AA cross section of FIG. An enlarged cross-sectional view is shown. In the enlarged cross-sectional view shown in FIG. 8, since a large number of bubble portions 1A are cut by cutting the foamed molded product of the plate material in the AA direction, the surface (for each bubble portion 1A) intersecting the cut surface ( It is cut at various positions in the thickness Z direction) and exhibits various cut shapes. In this confirmation sample, the shape of the bubble portion 1A is the embodiment of the foam molded product shown in FIGS. 1 to 3. The bubble portions 1A of the first to third embodiments are mixed, and the periphery thereof is covered with a coating film 2A of the thermoplastic resin material 2, and the coating film 2A is connected by a coating film 2A around the adjacent bubble portion 1A. I was able to confirm that.

図9は、実施例3に示す硼砂と水酸化マグネシウムとを混合した珪酸ナトリウムとPPS樹脂とからなり、粒径100〜290μmの発泡剤により得られたPPS樹脂発泡成形体の確認サンプルについて図7のAA断面における7.5倍に拡大した断面図を示す。この図9に示す拡大断面図においては、確認サンプルが板材の発泡成形体をAA方向の切断により多数個の気泡部1Aが切断されるので、気泡部1A毎にその切断面と交叉した面(厚さZ方向)の種々の位置で切断されて、種々の切断形状を呈しているが、この確認サンプルにおいて白色の円形部位はガラス被膜状バルーンである気泡部1Aに相当し、図8に比し略均一に分布しており、図1に示す実施形態1に相当してこれら気泡部1Aは独立気泡で構成されて、それぞれの周囲は熱可塑性樹脂材2の被膜2Aで覆われており、その被膜2Aは隣接する気泡部1Aの周囲の被膜2Aで連結されていることが確認できた。FIG. 9 shows a confirmation sample of a PPS resin foam molded product obtained from a foaming agent having a particle size of 100 to 290 μm, which is composed of sodium silicate and PPS resin, which are a mixture of borax and magnesium hydroxide shown in Example 3. FIG. The cross-sectional view of AA cross-sectional view is shown which is enlarged 7.5 times. In the enlarged cross-sectional view shown in FIG. 9, since a large number of bubble portions 1A are cut by cutting the foamed molded product of the plate material in the AA direction, the surface (for each bubble portion 1A) intersecting the cut surface ( It is cut at various positions in the thickness Z direction) and exhibits various cut shapes. In this confirmation sample, the white circular portion corresponds to the bubble portion 1A which is a glass-coated balloon, which is compared with FIG. It is distributed substantially uniformly, and corresponding to the first embodiment shown in FIG. 1, these bubble portions 1A are composed of closed cells, and the periphery thereof is covered with a coating film 2A of the thermoplastic resin material 2. It was confirmed that the coating film 2A was connected by the coating film 2A around the adjacent bubble portion 1A.

従って、実施例1および2に示す確認サンプルを用意して、モル比が2〜3.2の珪酸ナトリウム水溶液を乾燥させて含水分量が5〜30重量%となった珪酸ナトリウム固体を粉砕して粒径が500μm以下、好ましくは10〜300μmの粒子状の発泡剤をPPS樹脂の粉末とともに300℃で加熱発泡させることにより、実施例1および2の確認サンプルにて気泡部1Aを確保した発泡成形体が得られることが立証できた。さらに、実施例3に示す確認サンプルを用意して、モル比が2〜3.2の水溶性アルカリ珪酸塩に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理して粒径が500μm以下、好ましくは10〜300μmの粒子状の発泡剤をPPS樹脂の粉末とともに300℃で加熱発泡させることにより、実施例3の確認サンプルにてガラス被膜状バルーンの気泡部1Aを確保した発泡成形体が得られることが立証できた。Therefore, the confirmation samples shown in Examples 1 and 2 were prepared, the aqueous sodium silicate solution having a molar ratio of 2 to 3.2 was dried, and the sodium silicate solid having a water content of 5 to 30% by weight was pulverized. Foam molding in which the bubble portion 1A was secured in the confirmation samples of Examples 1 and 2 by heating and foaming a particulate foaming agent having a particle size of 500 μm or less, preferably 10 to 300 μm, together with PPS resin powder at 300 ° C. I was able to prove that I could get a body. Further, the confirmation sample shown in Example 3 is prepared, and a water-soluble alkaline silicate having a molar ratio of 2 to 3.2 is mixed with a boron compound such as borax and boric acid, magnesium hydroxide, calcium hydroxide, aluminum hydroxide and the like. One or two or more water-soluble metal compounds are combined, each of which is mixed in an amount of 5 to 15% by weight and dissolved to obtain a water content of 5 to 30% by weight, and the particle size is 500 μm or less, preferably 10 to 10. It was proved that by heating and foaming a 300 μm particulate foaming agent together with a PPS resin powder at 300 ° C., a foamed molded product in which the bubble portion 1A of the glass-coated balloon was secured was obtained in the confirmation sample of Example 3. did it.

このようにして、本発明の水溶性アルカリ珪酸塩の発泡剤を用いた熱可塑性樹脂材の発泡成形体の製造方法により多数個の気泡部を確保する発泡成形体が得られるが、モル比が2〜3.2の水溶性アルカリ珪酸塩に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理してできた粒子状の発泡剤を用いる場合、発泡剤形成工程101において、その粒子状の発泡剤と熱可塑性樹脂材との混合物を熱可塑性樹脂材の融点以上の温度で所定時間加熱するに際しその温度は一定の温度(実施例3においては300℃で20分間)で行っているが、2段階(実施例3においては285℃で10分間と300℃で10分間)の温度制御で行ってもよい。また、加圧させながら加熱することにより、形成されるガラス被膜状バルーンの発泡を遅延させて発泡成形を行ってもよい。In this way, a foamed molded product that secures a large number of bubble portions can be obtained by the method for producing a foamed molded product of a thermoplastic resin material using the foaming agent of the water-soluble alkaline silicate of the present invention, but the molar ratio is high. One or two or more water-soluble alkaline silicates of 2-3.2 are combined with one or more water-soluble alkali compounds such as borosand and boric acid and water-soluble metal compounds such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide. When a particulate foaming agent prepared by mixing and dissolving 15% by weight and treating the mixture so as to have a water content of 5 to 30% by weight is used, in the foaming agent forming step 101, the particulate foaming agent and thermoplasticity are used. When the mixture with the resin material is heated at a temperature equal to or higher than the melting point of the thermoplastic resin material for a predetermined time, the temperature is a constant temperature (in Example 3, 300 ° C. for 20 minutes), but there are two steps (Example). In No. 3, the temperature may be controlled at 285 ° C. for 10 minutes and at 300 ° C. for 10 minutes). Alternatively, foam molding may be performed by delaying the foaming of the glass-coated balloon formed by heating while pressurizing.

本発明は発泡成形体を単体または複合体で構成して、緩衝材、断熱材、吸音材、ろ過材または電気絶縁材に有用であり、特に、スーパーエンジニアリングプラスチックの存在状態で珪酸ナトリウムの発泡剤を有効に活用してスーパーエンジニアリングプラスチックを採用した発泡成形体を提供することにより、自動車、飛行機、搬送器機などの軽量化に役立て省エネルギー対策の一旦を担うことができる。The present invention comprises a foamed molded product composed of a single body or a composite, and is useful as a cushioning material, a heat insulating material, a sound absorbing material, a filtering material or an electric insulating material, and in particular, a foaming agent of sodium silicate in the presence of a super engineering plastic. By effectively utilizing the above to provide foamed molded products using super engineering plastics, it is possible to contribute to weight reduction of automobiles, airplanes, conveyors, etc. and take part in energy saving measures.

1 発泡剤
1A 気泡部
2 熱可塑性樹脂材
2A 被膜
101 発泡剤形成工程
102 混合工程
103 加熱発泡工程
104 冷却工程
1 Foaming agent 1A Bubble part 2 Thermoplastic resin material 2A Coating 101 Foaming agent forming step 102 Mixing step 103 Heating foaming step 104 Cooling step

Claims (6)

一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤を熱可塑性樹脂材と接触させた状態で前記熱可塑性樹脂材の溶融温度で発泡させてできた発泡成形体において、所定のモル比の水溶性アルカリ珪酸塩を所定の含水分量となるように処理して発泡剤を形成し、前記発泡剤を熱可塑性樹脂材に接触させた状態で熱可塑性樹脂材の溶融温度以上の加熱により前記発泡剤を発泡させて溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできたことを特徴とする発泡成形体。A foaming agent formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio) is brought into contact with a thermoplastic resin material. In a foamed molded product formed by foaming the thermoplastic resin material at the melting temperature of the thermoplastic resin material in the state of being made, a foaming agent is formed by treating a water-soluble alkali silicate having a predetermined molar ratio so as to have a predetermined water content. In a state where the foaming agent is in contact with the thermoplastic resin material, the surface of a large number of bubble portions is covered with a film of the thermoplastic resin material which is melted by foaming the foaming agent by heating above the melting temperature of the thermoplastic resin material. A foamed molded product characterized in that it is formed by coating and connecting a large number of bubble portions. 前記所定のモル比の珪酸ナトリウム水溶液に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせて所定の含水分量となるように処理して発泡剤を形成したことを特徴とする請求項1に記載の発泡成形体。A predetermined water content is obtained by combining one or more of a boron compound such as borax and boric acid and a water-soluble metal compound such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide with the sodium silicate aqueous solution having a predetermined molar ratio. The foamed molded product according to claim 1, wherein the foaming agent is formed by the treatment as described above. 前記所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用い、5〜30重量%の含水分量となるように処理して粒子状の発泡剤を形成し、前記粒子状の発泡剤を前記熱可塑性樹脂材の溶融温度で発泡させて溶融した熱可塑性樹脂材の被膜で多数個の気泡部の表面を被覆するとともに前記多数個の気泡部間を連結させてできたことを特徴とする請求項1または2に記載の発泡成形体。As the water-soluble alkali silicate having a predetermined molar ratio, an aqueous sodium silicate solution having a molar ratio of 2 to 3.2 was used and treated so as to have a water content of 5 to 30% by weight to form a particulate foaming agent. , The particulate foaming agent is foamed at the melting temperature of the thermoplastic resin material, and the surface of a large number of bubble portions is covered with a film of the molten thermoplastic resin material, and the large number of bubble portions are connected to each other. The foamed molded product according to claim 1 or 2, wherein the foamed molded product is made. 前記粒子状の発泡剤は粒径が500μm以下の粒子状の発泡剤であって、前記熱可塑性樹脂材はスーパーエンジニアリングプラスチックであることを特徴とする請求項1〜3の何れかひとつに記載の発泡成形体。The one according to any one of claims 1 to 3, wherein the particulate foaming agent is a particulate foaming agent having a particle size of 500 μm or less, and the thermoplastic resin material is a super engineering plastic. Foam molded product. 一般式M2O・nSiO2(但し、Mはナトリウムやカリウムのアルカリ金属を示し、nはモル比を示す)で表される水溶性アルカリ珪酸塩を処理して形成した発泡剤を熱可塑性樹脂材の存在状態で前記熱可塑性樹脂材の溶融温度で発泡させる発泡成形体の製造方法において、前記所定のモル比の水溶性アルカリ珪酸塩としてモル比が2〜3.2の珪酸ナトリウム水溶液を用い、前記モル比が2〜3.2の珪酸ナトリウム水溶液を乾燥させて5〜30重量%の含水分量とする珪酸ナトリウム固体を粉砕して粒子状の発泡剤を得る発泡剤形成工程と、前記粒子状の発泡剤と熱可塑性樹脂材とを混合して混合物とする混合工程と、前記混合物を熱可塑性樹脂材の融点以上の温度で加熱して前記発泡剤を発泡させて多数個の気泡部を形成するとともに前記気泡部の外周に前記溶融した熱可塑性樹脂材の被膜を形成する加熱発泡工程と、冷却することにより前記溶融した熱可塑性樹脂材の被膜が固化して多数個の気泡部間を前記被膜で連結させてできた発泡成形体を得る冷却工程とからなることを特徴とする発泡成形体の製造方法。Presence of thermoplastic resin material as a foaming agent formed by treating a water-soluble alkali silicate represented by the general formula M2O · nSiO2 (where M represents an alkali metal of sodium or potassium and n represents a molar ratio) In the method for producing a foamed molded product in which the thermoplastic resin material is foamed at the melting temperature in the state, an aqueous sodium silicate having a molar ratio of 2 to 3.2 is used as the water-soluble alkaline silicate having a predetermined molar ratio, and the molar ratio is described. A foaming agent forming step of drying an aqueous solution of sodium silicate having a ratio of 2 to 3.2 to obtain a particulate foaming agent by pulverizing a sodium silicate solid having a water content of 5 to 30% by weight, and the particulate foaming. A mixing step of mixing the agent and the thermoplastic resin material to form a mixture, and heating the mixture at a temperature equal to or higher than the melting point of the thermoplastic resin material to foam the foaming agent to form a large number of bubble portions. A heating foaming step of forming a film of the molten thermoplastic resin material on the outer periphery of the bubble portion, and a coating of the molten thermoplastic resin material solidified by cooling to form a coating between a large number of bubble portions. A method for producing a foamed molded product, which comprises a cooling step of obtaining a foamed molded product formed by connecting them. 前記発泡剤形成工程は、モル比が2〜3.2の水溶性アルカリ珪酸塩に硼砂、硼酸などの硼素化合物や水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水溶性金属化合物を1種または2種以上組み合わせてそれぞれを5〜15重量%混合し溶解させて5〜30重量%の含水分量となるように処理して粒子状の発泡剤を形成することであることを特徴とする請求項5に記載の発泡成形体の製造方法。In the foaming agent forming step, a water-soluble alkali silicate having a molar ratio of 2 to 3.2 is mixed with a borane compound such as borosand and boric acid and a water-soluble metal compound such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide. Alternatively, a claim is characterized in that two or more kinds are combined, and each of them is mixed and dissolved in an amount of 5 to 15% by weight and treated so as to have a water content of 5 to 30% by weight to form a particulate foaming agent. Item 5. The method for producing a foamed molded product according to Item 5.
JP2020104096A 2019-06-27 2020-05-20 Method for producing foam molded article Active JP7270887B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131475 2019-06-27
JP2019131475 2019-06-27

Publications (3)

Publication Number Publication Date
JP2021006622A true JP2021006622A (en) 2021-01-21
JP2021006622A5 JP2021006622A5 (en) 2022-01-04
JP7270887B2 JP7270887B2 (en) 2023-05-11

Family

ID=74165497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104096A Active JP7270887B2 (en) 2019-06-27 2020-05-20 Method for producing foam molded article

Country Status (1)

Country Link
JP (1) JP7270887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305563B1 (en) * 2021-05-24 2021-09-27 주식회사 세기엔지니어링 A Case for Dry Ice Pellet With Enhanced Thermal Insulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510557B2 (en) * 1974-10-07 1980-03-17
JPH04320433A (en) * 1991-04-12 1992-11-11 Dow Chem Co:The Manufacture of poly(aryl ether) foam
JPH06500806A (en) * 1990-10-16 1994-01-27 ザ ダウ ケミカル カンパニー Sulfone polymer foam produced with aqueous blowing agents
US6140380A (en) * 1999-03-26 2000-10-31 Mauk; Jeffrey L. Blowing agent and method for producing foamed polymers and related compositions
JP2003192818A (en) * 2001-12-20 2003-07-09 Basf Ag Method of production for foamed web from highly heat resistant polysulfone or polyether sulfone
JP2014058658A (en) * 2012-08-20 2014-04-03 Unitika Ltd Foaming agent composition pellet and method of producing the same
JP2016064626A (en) * 2014-12-01 2016-04-28 平岡 重道 Molded product of thermoplastic resin and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510557B2 (en) * 1974-10-07 1980-03-17
JPH06500806A (en) * 1990-10-16 1994-01-27 ザ ダウ ケミカル カンパニー Sulfone polymer foam produced with aqueous blowing agents
JPH04320433A (en) * 1991-04-12 1992-11-11 Dow Chem Co:The Manufacture of poly(aryl ether) foam
US6140380A (en) * 1999-03-26 2000-10-31 Mauk; Jeffrey L. Blowing agent and method for producing foamed polymers and related compositions
JP2003192818A (en) * 2001-12-20 2003-07-09 Basf Ag Method of production for foamed web from highly heat resistant polysulfone or polyether sulfone
JP2014058658A (en) * 2012-08-20 2014-04-03 Unitika Ltd Foaming agent composition pellet and method of producing the same
JP2016064626A (en) * 2014-12-01 2016-04-28 平岡 重道 Molded product of thermoplastic resin and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305563B1 (en) * 2021-05-24 2021-09-27 주식회사 세기엔지니어링 A Case for Dry Ice Pellet With Enhanced Thermal Insulation

Also Published As

Publication number Publication date
JP7270887B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP2018510958A (en) Electrically conductive foamed particles based on thermoplastic elastomers
CN106589440B (en) A kind of production method of polyethylene foamed/polystyrene bead
JP7206184B2 (en) Functionalized particulate bicarbonate as blowing agent, expandable polymer compositions containing same, and use thereof in making thermoplastic expandable polymers
RU2542279C2 (en) Foaming agents for plastics
US6166094A (en) Blowing agent and method for producing foamed polymers and related compositions
JP2007284325A (en) Foaming agent and method for producing foamed material
CN111331770B (en) Carbon material modification-based foaming injection molding preparation of thermoplastic elastomer flexible foam product, preparation method and molding system
CN102604223A (en) Polypropylene resin foam concentrate and preparation method thereof
JP2021006622A (en) Foam molding and method for producing the same
JPH04506677A (en) Endothermic blowing agent composition and application
CN111406091A (en) PESU particle foam for use in an aircraft interior
CN102432909A (en) Activating agent of foaming agent and preparation method of activating agent
CN103613818A (en) Insulation foaming material and production method thereof
KR20100120088A (en) Expandable polystyrene bead with fireproofing property, the manufacturing method thereof and nonflammable styropor producing the same bead
BR112020000919B1 (en) CHEMICAL EXPANDING AGENT FOR FOAMING, FOAMABLE POLYMER COMPOSITION, PROCESS FOR MANUFACTURING A POLYMER, AND, FOAMED POLYMER
JP2013530532A (en) Use of foaming agent to improve EMI shielding properties
CN101469076A (en) Method for manufacturing special foam material
JP2021006622A5 (en)
JP2006291070A (en) Method for producing high bulk density detergent composition
JPH0329253B2 (en)
CN104029391A (en) 3D printing molded polyolefin material and preparation method thereof
JP6340730B2 (en) Method for producing thermoplastic resin molded article
JP2022504801A (en) A foamable crosslinkable polymer composition containing functionalized fine particle bicarbonate as a foaming agent and a method for producing a crosslinked foamed polymer from the same.
JP2018144332A (en) Functional resin foam multilayer molding board and method for producing the same
JPS6328456B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7270887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150