JPS61129030A - Filter for collecting and purifying fine particles - Google Patents

Filter for collecting and purifying fine particles

Info

Publication number
JPS61129030A
JPS61129030A JP59250050A JP25005084A JPS61129030A JP S61129030 A JPS61129030 A JP S61129030A JP 59250050 A JP59250050 A JP 59250050A JP 25005084 A JP25005084 A JP 25005084A JP S61129030 A JPS61129030 A JP S61129030A
Authority
JP
Japan
Prior art keywords
filter
supported
catalyst
palladium
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250050A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Ogura
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59250050A priority Critical patent/JPS61129030A/en
Publication of JPS61129030A publication Critical patent/JPS61129030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To suppress the formation of sulfate, by forming the catalyst supported by the surface of a filter substrate from oxides of Pd, Rh and one of a metal selected from Cu, Zn, Mn and La and setting the catalyst to an amount constant to the apparent volume of the filter substrate. CONSTITUTION:A fine particle collection and purification filer is formed by supporting a catalyst for burning a particulate by a filter substrate. Pd for aiming the enhancement of ignitability and Ph for aiming to suppress the formation of sulfate and to enhance durability are supported by said catalyst in a respective amount of 0.1-5g to 1l of the apparent volume of the filter substrate. In addition thereto, 0.5-50g of oxide of one or more of metal selected from Cu, Zn, Mn and La is supported.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はディーゼルエンジン等の排気ガス中に含まれる
パティキュレートを捕集し、浄化する微粒子捕集浄化フ
ィルタに関し、詳しくは該微粒子捕集浄化フィルタに担
持され、該微粒子捕集浄化フィルタを再生する際に有効
なパティキュレート燃焼用触媒に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a particulate collection and purification filter that collects and purifies particulates contained in exhaust gas from a diesel engine, etc. The present invention relates to a particulate combustion catalyst supported on a filter and effective in regenerating the particulate collection and purification filter.

[従来の技術] ディーゼルエンジン等の内燃機関の排気ガス中にはカー
ボンを主体とする微粒子(パティキュレート)が含まれ
ている。この微粒子を捕集して浄化する微粒子捕集浄化
フィルタとしては、セラミック類のハニカム構造体(ハ
ニカムフィルタ)、あるいは三次元網目構造を有したフ
オームフィルタ等が知られている。これらのフィルタは
車両の走行距離の増大とともにパティキュレートの排気
通路への堆積が進み、それに併って圧力(Ω失が増加し
てエンジンの出力低下を招くようになる、しかしながら
このパティキュレートは、そのほとんどがカーボン粒子
であるために、約580℃以上に加熱すれば燃焼させて
除去することができ、これにより微粒子捕1!浄化フィ
ルタの再生が可能である。そしてこの微粒子捕集浄化フ
ィルタの再生方法としては、バーナ、電気ヒータ等を用
いて捕集されたパティキュレートを燃焼する方法、ある
いは絞り弁により機関の吸入空気量を減少させることに
より、空気邑に対する燃料の゛割合を高め、もって排気
ガス温度を上昇せしめて捕集されたパティキュレートを
燃焼させる方法等が知られている。またこれらの場合に
は、パティキュレートの燃焼をより確実にするために微
粒子捕集浄化フィルタに触媒を担持させることが有効で
あることも周知であり、白金属系触媒、特開昭55−2
4597号公報に開示されいるパラジウム触媒、白金−
ロジウム触媒、あるいは特開昭57−24640号公報
に開示されている貴金属−クロム触媒等が知られている
[Prior Art] Exhaust gas from an internal combustion engine such as a diesel engine contains particulates mainly composed of carbon. As particulate collecting and purifying filters that collect and purify these particulates, ceramic honeycomb structures (honeycomb filters), foam filters having a three-dimensional network structure, and the like are known. These filters are designed to prevent particulates from accumulating in the exhaust passage as the mileage of the vehicle increases, resulting in an increase in pressure (Ω loss) and a decrease in engine output. Since most of them are carbon particles, they can be burned and removed by heating to about 580°C or above, which makes it possible to regenerate the particulate filter. Regeneration methods include burning the collected particulates using a burner, electric heater, etc., or reducing the intake air amount of the engine using a throttle valve to increase the ratio of fuel to air. There are known methods to burn the collected particulates by raising the temperature of the exhaust gas.In these cases, a catalyst is added to the particulate filter to ensure the combustion of the particulates. It is also well known that supported catalysts are effective, and platinum metal catalysts, JP-A-55-2
The palladium catalyst disclosed in Publication No. 4597, platinum-
A rhodium catalyst or a noble metal-chromium catalyst disclosed in Japanese Patent Application Laid-Open No. 57-24640 is known.

[発明が解決しようとする問題点] 上記した触媒はパティキュレートの着火性を向上させ、
優れた触媒性能を有しているが反面酸化力が強く、ディ
ーゼルエンジンの排気ガス中に含まれる二酸化イオウを
酸化する作用がある。そのため、微粒子捕集浄化フィル
タで捕集されず排出されたパティキュレートには硫酸塩
が含まれる場合があり、みかけの捕集率を低下させるば
かりか、環境衛生的にも好ましいとは言えなかった。
[Problems to be solved by the invention] The above catalyst improves the ignitability of particulates,
Although it has excellent catalytic performance, it has strong oxidizing power and has the effect of oxidizing sulfur dioxide contained in diesel engine exhaust gas. Therefore, the particulates that are discharged without being collected by the particulate collection purification filter may contain sulfates, which not only reduces the apparent collection rate but also is not favorable from an environmental sanitary perspective. .

本発明者は鋭意研究の結果、ra酸塩の生成を抑制し、
かつ再生性能にも優れた触媒の組成を見出して本発明を
完成したものである。
As a result of intensive research, the present inventor has suppressed the production of ra salt,
The present invention was completed by discovering a catalyst composition that also has excellent regeneration performance.

[問題点を解決するための手段1 本発明の微粒子捕集浄化フィルタはセラミック製フィル
タ基体と、 該フィルタ基体の表面に担持された触媒とからなり、エ
ンジンのU「気ガス中に含まれるパティキュレートを捕
集する微粒子捕集浄化フィルタにおいて、 該触媒は、該フィルタ基体のみかけの体積1リットルに
対し0.1〜59のパラン「クムと、0゜1〜5りのロ
ジウムと、銅、亜鉛、マンガンおよびランタンのなかか
ら選ばれる少なくとも一種類の金属の酸化物がO85へ
一50!11とから構成されることを特徴とする。
[Means for Solving the Problems 1] The particulate collecting and purifying filter of the present invention is composed of a ceramic filter base and a catalyst supported on the surface of the filter base, and is capable of reducing the particulate matter contained in the engine gas. In a particulate collection purification filter that collects curates, the catalyst contains 0.1 to 59 paranine cum, 0.1 to 5 rhodium, copper, It is characterized in that the oxide of at least one metal selected from zinc, manganese and lanthanum is composed of O85 and -50!11.

本発明の微粒子捕集浄化フィルタのフィルタ基体は従来
と同様にコージェライト、ムライト、スピネル等のセラ
ミック体からなるものが用いられる。本発明の微粒子捕
集浄化フィルタの形状は一端面で市松状に聞[=1し他
端面で閉塞された導入通路と、該他端面で市松状に間口
し、該一端面で閉塞された排出通路とを互いらがいに隣
合うように有するハニカム形状のもの、あるいは三次元
網目構造を右しlζフオーム状のε)の等かあり、とち
らも使用できるがこれに限定されるものではない。
The filter base of the particulate collection and purification filter of the present invention is made of a ceramic material such as cordierite, mullite, spinel, etc., as in the conventional filter. The shape of the particulate collection and purification filter of the present invention is such that one end face has a checkered pattern [=1] and the other end face is a closed introduction passage, and the other end face has a checkered frontage, and the other end face has a checkered opening and an exhaust passage is closed. There are honeycomb-shaped structures with channels arranged adjacent to each other, or three-dimensional network structure (1ζ form ε), and both can be used, but they are not limited to these. .

上記フィルタ基体のうちfiにフオーム状のものには多
孔質セラミック体からなる担持層が形成されることか望
ましい。この10持層は捕集性能の向上、あるいは捕集
されたパティキュレートの再飛散防止を目的とするもの
であり、アルミナ、チタニア、マグネシア等から種々選
択できるが、γ−アルミナが特に望ましい。
It is desirable that a support layer made of a porous ceramic body be formed on the foam-like filter base fi. The purpose of these ten holding layers is to improve the collection performance or to prevent the collected particulates from scattering again, and various materials can be selected from alumina, titania, magnesia, etc., but γ-alumina is particularly preferred.

本発明の微粒子捕集浄化フィルタでは上記フィルタ基体
直接に、あるいは上記多孔質セラミック担持層にパティ
キュレート燃焼用触媒が担持される。そして本発明の最
大の特色はこの触媒の組成にある。
In the particulate collection and purification filter of the present invention, a particulate combustion catalyst is supported directly on the filter base or on the porous ceramic support layer. The most distinctive feature of the present invention lies in the composition of this catalyst.

本発明の微粒子捕集浄化フィルタに使用される触媒のう
らパラジウム(P(1)とロジウム(R1))は従来か
ら知られている触媒であるが、本発明ではフィルタ基体
のみかけの体積1リットルに対しそれぞれ0.1〜5g
の吊担持される。なお、みかけの体積とはハニカムフィ
ルタであれば導入通路および排出通路の容積を含む全体
積、フオームフィルタであれば三次元網目構造の内部空
間を含む全体積を意味する。このうちパラジウムは主と
して着火性の向上を、ロジウムは主として硫酸塩の生成
の抑制および耐久性の向上を目的とし、上記範囲内で担
持された場合に最良の性能を発揮する。また上記範囲内
でパラジウムはロジウムの1〜10倍のM担持されてい
ることが望ましい。パラジウムがロジウムの1(1!I
nを越えると疏酸塩の生成量が増加づる傾向にあり、パ
ラジウムの帝がロジウムの間より少なくなると着火性に
劣るようになって好ましくない。
Palladium (P(1) and rhodium (R1)) as catalysts used in the particulate filter of the present invention are conventionally known catalysts, but in the present invention, the apparent volume of the filter base is 1 liter. 0.1-5g each for
It is carried by hanging. Note that the apparent volume means the total volume including the volumes of the introduction passage and the discharge passage in the case of a honeycomb filter, and the total volume including the internal space of the three-dimensional network structure in the case of a foam filter. Among these, palladium is mainly used to improve ignitability, and rhodium is used mainly to suppress sulfate formation and improve durability, and exhibits the best performance when supported within the above range. Further, within the above range, it is desirable that palladium supports 1 to 10 times as much M as rhodium. Palladium is 1 of rhodium (1!I
If the value exceeds n, the amount of silicate produced tends to increase, and if the amount of palladium is less than that of rhodium, the ignitability becomes undesirable.

フィルタ基体には上記パラジウムおよびロジウムに加え
てさらに銅(Cu)、亜1d(Zn)、’ンガン(Mn
)およびランタン(La)のなかから選ばれる金属が担
持される。この担持される金属はこれらの金属のうち一
種類でもよく、二種類以上の金属を用いることもできる
In addition to the above-mentioned palladium and rhodium, the filter base also contains copper (Cu), zinc (Zn), and ngan (Mn).
) and lanthanum (La). The supported metal may be one of these metals, or two or more metals may be used.

上記金属は通常酸化物として担持され、フィルタ基体の
みかけの体積1リットルに対し酸化物として0.5〜5
0g、望ましくは5〜20(+担持される。この担持量
が0.5(lよりも少ない場合には担持させた効果が得
られず、50gより多い場合には担持工程が繁雑となる
反面実質的な性能向上効果はなく好ましくない。
The above metals are usually supported as oxides, and 0.5 to 5
0 g, preferably 5 to 20 (+). If the supported amount is less than 0.5 (l), no effect will be obtained, and if it is more than 50 g, the supporting process will become complicated. There is no substantial performance improvement effect and this is not preferable.

本発明の微粒子捕集浄化フィルタは従来と同様にハニカ
ムフィルタ、フオームフィルタ等のフィルタ基体を形成
し、望ましくはざらに多孔質セラミック担持層を形成し
た後、パラジウムとロジウムの塩化物等を含む溶液、お
よび上記金属の硝酸塩等を含む溶液に浸漬して溶液を含
浸させた後焼成することによって触媒を担持することが
できる。
In the particulate collection and purification filter of the present invention, a filter base such as a honeycomb filter or a foam filter is formed in the same manner as before, and a porous ceramic support layer is preferably formed in a rough manner, and then a solution containing palladium and rhodium chlorides, etc. The catalyst can be supported by immersing the substrate in a solution containing , nitrates of the above-mentioned metals, etc. to impregnate the substrate with the solution, and then calcining the solution.

また溶液の濃度を変えることにより担持量を変化させる
こともできる。なおパラジウム、ロジウムおよび上記金
属は溶液状であればよく、塩化物、硝酸塩に限るもので
はない。また溶媒も水、アルコール等種々選択できる。
Moreover, the supported amount can also be changed by changing the concentration of the solution. Note that palladium, rhodium, and the above metals may be in solution form, and are not limited to chlorides and nitrates. Moreover, various solvents such as water and alcohol can be selected.

そして各触媒化合物を混合した溶液により一度に担持さ
せてもよく、各触媒を別個の溶液とし、それぞれにつき
浸漬、焼成を行なって段階的に担持させることもできる
The catalyst compounds may be supported all at once using a mixed solution, or each catalyst may be supported in separate solutions and supported in stages by dipping and baking each catalyst.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

なお以下触媒担持邑はパラジウムとロジウムを除き、酸
化物としての吊をいう。
In addition, hereinafter, the term "catalyst supported" refers to an oxide, excluding palladium and rhodium.

フィルタ基体として内部に軸方向に平行な多数の通路を
有し、両端で該通路が間口している直径3Qmm、長さ
50 mm、一端面で開ロシTイル1ffl路の故15
個/c m 2のコージェライト質のハニカム構造体を
用いた。そしてコージェライト粉末8!5中吊部、メチ
ルヒルロース5重用部および蒸留水’I O重量部を捏
練した閉塞材により、一端面で間口している上記通路を
略市松模様状に互いらがいに約5mrI+の深さでr+
A塞した。また他端面で該一端面で閉塞されなかった通
路を同様に同一の閉塞材で閉塞し、120℃で2時間乾
燥後1400℃で4時間焼成してハニカムフィルタを得
た。次にγ−アルミナ扮末37.51fi部、アルミナ
ゾル37.5小量部、哨酸アルミニウム5重酊部6よひ
蒸留水207p吊部とからなる懸濁液中に上記ハニカム
フィルタを浸漬し、引き上げて余分の液層を吹き払った
後、120℃で21′I、1間乾燥し、700℃で3時
間焼成して通路壁にγ−アルミナからなる多孔M L−
ラミックlfT 1.iFiを形成した。
As a filter base, it has a large number of passages parallel to the axial direction inside, and the passages are open at both ends.The diameter is 3Q mm, the length is 50 mm, and one end surface is open.
A cordierite honeycomb structure of 1.0 mm/cm 2 was used. Then, using a plugging material made by kneading 8!5 parts of cordierite powder, 5 parts of methyl hirulose, and 10 parts of distilled water, the passages opening at one end were connected to each other in a substantially checkerboard pattern. r+ at a depth of about 5 mrI+
A was blocked. In addition, the passages that were not closed at the other end surface were similarly closed with the same closing material, dried at 120° C. for 2 hours, and then fired at 1400° C. for 4 hours to obtain a honeycomb filter. Next, the honeycomb filter is immersed in a suspension consisting of 37.51 parts of γ-alumina powder, 37.5 small parts of alumina sol, 5 parts of aluminum chloride, 6 parts of distilled water, and 207 parts of distilled water. After pulling it up and blowing away the excess liquid layer, it was dried at 120°C for 21'I for 1 hour and fired at 700°C for 3 hours to form porous holes made of γ-alumina on the passage walls.
Ramic lfT 1. iFi was formed.

次に塙化パラジウムを0.0351a%含む水溶液10
0ミリリットル中にγ−アルミナ担持層を形成した上記
フィルタを上下に揺動させながら1時間浸漬し、水素化
ホウ素ナトリウム水溶液によって還元した後水洗いした
。ざらに120℃で2時間乾燥し、500℃で30分焼
成してパラジウムを担持させた。
Next, 10 aqueous solution containing 0.0351a% of palladium
The above-mentioned filter in which a γ-alumina support layer was formed in 0 ml was immersed for 1 hour while being rocked up and down, and after being reduced with an aqueous sodium borohydride solution, it was washed with water. It was roughly dried at 120°C for 2 hours and fired at 500°C for 30 minutes to support palladium.

さらに塩化ロジウムをO,O’35重最%重量水溶液に
パラジウムを担持した上記フィルタを上下に揺動させな
がら1時間9潰し、水素化ホウ素ナトリウム水溶液によ
って還元した後水洗いした。
Furthermore, the above-mentioned filter in which palladium was supported in an aqueous solution of rhodium chloride of O, O'35% by weight was crushed for 1 hour while rocking up and down, and after being reduced with an aqueous sodium borohydride solution, the filter was washed with water.

さらに120℃で2時間乾燥し、500℃で30分焼成
してロジウムを担持させた。
It was further dried at 120°C for 2 hours and fired at 500°C for 30 minutes to support rhodium.

次に611酸銅3,05千m%を含む水溶液に上記パラ
ジウムおよびロジウムを担持したフィルタを3分間9潰
し、余分な液滴を吹き払った後120℃で2時間乾燥し
、600℃で1時間焼成して銅を担持させて実施例1の
微粒子捕集浄化フ、rルタを得た。
Next, the filter carrying palladium and rhodium was crushed in an aqueous solution containing 3,050,000 m% of copper 611ate for 3 minutes, and after blowing off excess droplets, it was dried at 120°C for 2 hours, and then heated to 600°C for 1 hour. The fine particle collection and purification filter of Example 1 was obtained by firing for a time to support copper.

1qられた実施例1の微粒子捕集浄化フィルタはハニカ
ムフィルタの容積1リットルあたりパラジウムが1g、
ロジウムが19、および銅が29担持されていた。
The particulate collection and purification filter of Example 1, which had a quantity of 1 q, contained 1 g of palladium per 1 liter of honeycomb filter volume.
19 rhodium and 29 copper were supported.

上記実施例1の微粒子捕集浄化フィルタを排気ff12
200ccの渦流室式ディーゼルエンジンの排気系に取
り付け、エンジン回転数2500.rom、トルク11
kg・m、フィルタ入口部分の排気ガス温度450℃の
条件でフィルタ通過直後の排気ガスを100〜150リ
ットル採取した。そしてこイオンを抽出後トリン光度滴
定により硫酸塩の唖を求めた。結果を表に示す。
Exhaust the particulate collection and purification filter of Example 1 ff12
Installed in the exhaust system of a 200cc swirl chamber type diesel engine, engine speed 2500. rom, torque 11
100 to 150 liters of exhaust gas immediately after passing through the filter was collected under the conditions of 100 to 150 liters of exhaust gas having a temperature of 450° C. at the inlet of the filter. After extracting this ion, the amount of sulfate was determined by photometric titration. The results are shown in the table.

上記排気ガスの採取完了後エンジン回転数2000rp
m、f−ルク3kg・nlの条件でさらに3時間運転し
、フィルタ中に0.45〜0.55gのパティキュレー
トを捕集した。その後このパティキュレートが捕集され
たフィルタを第1図に示す実験装置に配置し、再生可能
温度を測定した。なお、再生可能温度とは、捕集された
パティキュレートの70%以上が燃焼し、焼失するため
に必要なヒータによるフィルタ上流側端面加熱温度であ
り、より低い値であることが好ましい。結果を表に示す
After the above exhaust gas collection is completed, the engine speed is 2000 rpm.
The filter was operated for an additional 3 hours under the conditions of m, f-lux of 3 kg/nl, and 0.45 to 0.55 g of particulates were collected in the filter. Thereafter, the filter in which the particulates were collected was placed in the experimental apparatus shown in FIG. 1, and the regeneration temperature was measured. Note that the regenerator temperature is the temperature at which the upstream end face of the filter is heated by the heater, which is necessary for burning and burning out 70% or more of the collected particulates, and it is preferably a lower value. The results are shown in the table.

次に硝酸銅水溶液の濃度をそれぞれ7.5重量%、15
重置火および30重重量とすること以外は実施例1と全
く同一の材料を使用し、同様の方法によりパラジウムお
よびロジウムを同量担持させ、ざらに同様の方法でこの
硫酸銅水溶液により銅をフィルタのみかけの体積1リッ
トル中に、それぞれ5g、10g、および200担持し
た実施例2、実施例3、および実施例4の微粒子捕集浄
化フィルタを得た。また硝酸銅水溶液に代えて硝酸亜鉛
を18.5重量%含んだ水溶液、硝酸マンガンを20.
2重世%含んだ水溶液および硝酸ランタンを13.3L
1%含んだ水溶液をそれぞれ用いること以外は実施例1
と全く同一の材料を使用し、同様の方法によりパラジウ
ムおよびロジウムを同量担持させ、さらにフィルタのみ
かけの体積1リットル中に亜鉛を10g担持した実施例
5、マンガンを10o担持した実施例6、ランタンを1
0(l担持した実施例7の微粒子捕集浄化フィルタを1
9た。
Next, the concentrations of the copper nitrate aqueous solution were adjusted to 7.5% by weight and 15% by weight, respectively.
The same materials as in Example 1 were used except for overlaying and making the weight 30%, and the same amount of palladium and rhodium was supported by the same method. Particulate collection and purification filters of Example 2, Example 3, and Example 4 were obtained in which 5 g, 10 g, and 200 particles were supported in the apparent volume of 1 liter of the filter, respectively. Also, in place of the aqueous copper nitrate solution, an aqueous solution containing 18.5% by weight of zinc nitrate and 20% by weight of manganese nitrate were used.
13.3L of aqueous solution containing 2% and lanthanum nitrate
Example 1 except that each aqueous solution containing 1% was used.
Example 5, in which the same materials were used, the same amounts of palladium and rhodium were supported by the same method, and 10 g of zinc was supported in 1 liter of the apparent volume of the filter; Example 6, in which 100 of manganese was supported; 1 lantern
The particle collection and purification filter of Example 7 carrying 0(l) was
It was 9.

さらに従来の微粒子捕集浄化フィルタと比較するために
実施例1と同様にして、ロジウム担持後に6r1Mクロ
ムを26.31ft1%含有した水溶液によりクロム触
媒をフィルタのみかけの体積1リットル中に10g担持
した比較例1の微粒子捕集浄化フィルタ、硝酸コバルト
を19.4重量%含有した水溶液によりコバルトを10
g担持した比較例2の微粒子捕集浄化フィルタ、またパ
ラジウムのみを1g担持した比較例3の微粒子1111
集浄化フイルタ、パラジウムを19および塩化ロジウム
を0.0035重量%含む水溶液によりロジウムを0.
1g担持した比較例4の微粒子bli集浄化フィルタ、
パラジウムを1gおよび塩化ロジウムを0゜0175弔
吊%含む水溶液によりロジウムを0゜5(〕担持した比
較例5の微粒子捕集)p七フィルタ、パラジウムを1g
およびロジウムを19担持し、十記銅、1lli鉛等の
金属はill持されない比較例6の微粒子捕集浄化フィ
ルタを実施例1に準じて製造した。
Furthermore, in the same manner as in Example 1, in order to compare with a conventional particulate collection and purification filter, after loading rhodium, 10g of chromium catalyst was supported in 1 liter of the apparent volume of the filter using an aqueous solution containing 26.31ft1% of 6r1M chromium. The particulate collection and purification filter of Comparative Example 1 contains 10% of cobalt using an aqueous solution containing 19.4% by weight of cobalt nitrate.
The particulate collection and purification filter of Comparative Example 2 which supported 1 g of palladium, and the particulate 1111 of Comparative Example 3 which supported only 1 g of palladium.
A collection and purification filter was used to remove 0.0% rhodium using an aqueous solution containing 19% palladium and 0.0035% by weight rhodium chloride.
Particulate bli collection and purification filter of Comparative Example 4 carrying 1g,
Using an aqueous solution containing 1 g of palladium and 0.0175% of rhodium chloride, 0.5% rhodium (supported particle collection of Comparative Example 5) P7 filter, 1 g of palladium.
A particulate collection and purification filter of Comparative Example 6 was manufactured according to Example 1, in which 19% of rhodium was supported and no metals such as 19% copper and 11% lead were supported.

上記実施例および比較例の微粒子捕集浄化フィルタは実
施例1と同様に硫酸塩生成量と再生可能温度が測定され
、結果を表に示す。
The amount of sulfate produced and the regenerator temperature of the particulate collection and purification filters of the above Examples and Comparative Examples were measured in the same manner as in Example 1, and the results are shown in the table.

表よりパラジウム−ロジウム系の触媒を担持し、最も硫
酸塩生成量の少ない比較例6でも6M酸塩は26m(1
/m3の生成量を示し、捕集されたパティキュレート吊
と比較すると捕集率を30%以上低下させていることに
なる。またパラジウム−ロジウム系にクロムを加えた比
較例1ではIii!i酸塩生成量は15mq/m 3と
減少するが、再生可能温度は525℃と高く、再生性能
が低下している。またコバルトを加えIC比較例2では
硫酸塩生成量が68m(1/m3と高い値を示している
。これに対し実施例の微粒子捕集浄化フィルタはlii
!l酸塩生成吊が8〜24 mq/ m 3と好ましい
1直を示し、かつ再生可能温度も375〜475℃と低
くなっている。
From the table, even in Comparative Example 6, which supported a palladium-rhodium catalyst and produced the least amount of sulfate, the 6M salt was 26 m (1
/m3, which means that the collection rate is reduced by more than 30% when compared with the collected particulate matter. Moreover, in Comparative Example 1 in which chromium was added to the palladium-rhodium system, Iiii! Although the amount of i-acid acid produced is reduced to 15 mq/m 3 , the regenerator temperature is as high as 525° C., and the regeneration performance is reduced. In addition, in IC Comparative Example 2 in which cobalt was added, the amount of sulfate produced was as high as 68 m (1/m3).On the other hand, the particle collection and purification filter of the example
! The acid salt production rate is 8 to 24 mq/m3, which is a preferable 1 shift, and the renewable temperature is also as low as 375 to 475°C.

また比較例6および実施例1〜4を比較すると明らかな
ように、第2図のごとく銅の担持量が多くなるにつれて
FM酸塩生成吊が減少し、再生可能温度も低下している
。これは銅の効果であることば明らかである。
Furthermore, as is clear from comparing Comparative Example 6 and Examples 1 to 4, as shown in FIG. 2, as the amount of copper supported increases, the FM salt production rate decreases, and the regenerator temperature also decreases. This is clearly an effect of copper.

[発明の作用効果] 本発明の微粒子捕集浄化フィルタでは、二酸化イオウと
反応性の高いパラジウムに二酸化イオウと反応性が低い
銅、亜鉛等の金属を添加することにより硫酸塩の生成を
抑制することが可能となった。従ってみかけの捕集率が
向上し、環境衛生上も好ましいものである。また上記金
属はパティキュレートの燃焼を伝播する作用もあり、再
生可能温度を低下させる効果がある等本発明の効果は大
きい。
[Operations and Effects of the Invention] In the particulate collection and purification filter of the present invention, sulfate generation is suppressed by adding metals such as copper and zinc that have low reactivity with sulfur dioxide to palladium, which has high reactivity with sulfur dioxide. It became possible. Therefore, the apparent collection rate is improved, which is also favorable from the viewpoint of environmental hygiene. Further, the above-mentioned metals also have the effect of propagating the combustion of particulates, and have the effect of lowering the regeneration temperature, which is a great effect of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は触媒の再生性能を評価するのに用いた実験装置
の概略断面図である。第2図は実施例における銅担持量
と硫酸塩生成量および再生可能温度の関係を示すグラフ
である。 特許出願人  トヨタ自動車株式会社 代理人   弁理士  大川 宏 同    弁理士  藤谷 修 同    弁理士  丸山明夫
FIG. 1 is a schematic cross-sectional view of an experimental apparatus used to evaluate the regeneration performance of the catalyst. FIG. 2 is a graph showing the relationship between the amount of copper supported, the amount of sulfate produced, and the renewable temperature in Examples. Patent applicant: Toyota Motor Corporation Representative Patent attorney: Hirodo Okawa Patent attorney: Shudo Fujitani Patent attorney: Akio Maruyama

Claims (4)

【特許請求の範囲】[Claims] (1)セラミック製フィルタ基体と、 該フィルタ基体の表面に担持された触媒とからなり、エ
ンジンの排気ガス中に含まれるパティキュレートを捕集
する微粒子捕集浄化フィルタにおいて、 該触媒は、該フィルタ基体のみかけの体積1リットルに
対し0.1〜5gのパラジウムと、0.1〜5gのロジ
ウムと、銅、亜鉛、マンガンおよびランタンのなかから
選ばれる少なくとも一種類の金属の酸化物が0.5〜5
0gとから構成されることを特徴とする微粒子捕集浄化
フィルタ。
(1) In a particulate collection and purification filter that is composed of a ceramic filter base and a catalyst supported on the surface of the filter base and that collects particulates contained in engine exhaust gas, the catalyst is 0.1 to 5 g of palladium, 0.1 to 5 g of rhodium, and 0.1 to 5 g of an oxide of at least one metal selected from copper, zinc, manganese, and lanthanum per 1 liter of apparent volume of the substrate. 5-5
A particulate collection and purification filter comprising: 0g.
(2)フィルタ基体表面には多孔質セラミック担持層を
具備している特許請求の範囲第1項記載の微粒子捕集浄
化フィルタ。
(2) The particulate collection and purification filter according to claim 1, which comprises a porous ceramic support layer on the surface of the filter base.
(3)パラジウムはロジウムの1〜10倍含有されてい
る特許請求の範囲第1項記載の微粒子捕集浄化フィルタ
(3) The particulate collection and purification filter according to claim 1, wherein palladium is contained 1 to 10 times as much as rhodium.
(4)多孔質セラミック被覆層はγ−アルミナから形成
されている特許請求の範囲第2項記載の微粒子捕集浄化
フィルタ。
(4) The particulate collection and purification filter according to claim 2, wherein the porous ceramic coating layer is made of γ-alumina.
JP59250050A 1984-11-27 1984-11-27 Filter for collecting and purifying fine particles Pending JPS61129030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250050A JPS61129030A (en) 1984-11-27 1984-11-27 Filter for collecting and purifying fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250050A JPS61129030A (en) 1984-11-27 1984-11-27 Filter for collecting and purifying fine particles

Publications (1)

Publication Number Publication Date
JPS61129030A true JPS61129030A (en) 1986-06-17

Family

ID=17202059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250050A Pending JPS61129030A (en) 1984-11-27 1984-11-27 Filter for collecting and purifying fine particles

Country Status (1)

Country Link
JP (1) JPS61129030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
EP0397411A2 (en) * 1989-05-08 1990-11-14 Nippon Shokubai Kagaku Kogyo Co. Ltd. Use of a catalyst for purification of exhaust gas from Diesel engine
US5208203A (en) * 1991-01-07 1993-05-04 Nippon Shokubai Co., Ltd. Diesel engine exhaust gas-purifying catalyst
US5610117A (en) * 1995-02-17 1997-03-11 Ict Co., Ltd. Catalyst for purification of diesel engine exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
EP0397411A2 (en) * 1989-05-08 1990-11-14 Nippon Shokubai Kagaku Kogyo Co. Ltd. Use of a catalyst for purification of exhaust gas from Diesel engine
US5071816A (en) * 1989-05-08 1991-12-10 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purification of exhaust gas from diesel engine
EP0397411B1 (en) * 1989-05-08 1995-04-12 Nippon Shokubai Kagaku Kogyo Co. Ltd. Use of a catalyst for purification of exhaust gas from Diesel engine
US5208203A (en) * 1991-01-07 1993-05-04 Nippon Shokubai Co., Ltd. Diesel engine exhaust gas-purifying catalyst
US5610117A (en) * 1995-02-17 1997-03-11 Ict Co., Ltd. Catalyst for purification of diesel engine exhaust gas

Similar Documents

Publication Publication Date Title
CA2044984C (en) Catalyst for purifying exhaust gas from diesel engines
JP2736099B2 (en) Diesel engine exhaust gas purification catalyst
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
EP0174495B1 (en) Catalyst for purifying diesel engine exhaust gases
JPH04250851A (en) Catalyst for purifying exhaust gas from diesel engine
JP4210552B2 (en) Diesel engine exhaust gas purification catalyst and method for producing the same
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
US9358504B2 (en) Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
JPH09276708A (en) Catalyst for cleaning of exhaust gas from diesel engine
JPS6220613A (en) Catalyst filter for removal of particulate
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
US5763352A (en) Catalyst composition for the purification of the exhaust of diesel vehicles, catalyst using the same and preparing methods thereof
JP4057811B2 (en) Engine exhaust gas purification catalyst
EP0884457A2 (en) Particulate filter
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JPH0768178A (en) Catalyst body for removing particulate substance in diesel vehicle and preparation thereof
JP4639455B2 (en) Exhaust gas purification material
EP0925823B1 (en) Exhaust emission control device and method of manufacturing the same
JPS61129030A (en) Filter for collecting and purifying fine particles
JP3800349B2 (en) Catalyst composition for removing particulate matter from diesel vehicles
JPS6078640A (en) Catalyst for purifying exhaust gas and preparation thereof
JPS61149222A (en) Purification filter for collecting fine particle
JPS6164331A (en) Catalyst for purifying exhaust gas
JPS61146314A (en) Purifying filter for collecting fine particle
JPS6146246A (en) Catalyst for purifying exhaust gas