JP3800349B2 - Catalyst composition for removing particulate matter from diesel vehicles - Google Patents

Catalyst composition for removing particulate matter from diesel vehicles Download PDF

Info

Publication number
JP3800349B2
JP3800349B2 JP13154595A JP13154595A JP3800349B2 JP 3800349 B2 JP3800349 B2 JP 3800349B2 JP 13154595 A JP13154595 A JP 13154595A JP 13154595 A JP13154595 A JP 13154595A JP 3800349 B2 JP3800349 B2 JP 3800349B2
Authority
JP
Japan
Prior art keywords
particulate matter
filter
producing
filter medium
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13154595A
Other languages
Japanese (ja)
Other versions
JPH07328445A (en
Inventor
ヒュンジョン ジュン
ボンチュル ク
ヨンウー キム
ヨンタェク チョイ
キホ リー
キョンチョル ミン
ジャエウーン ウン
Original Assignee
エス ケー コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エス ケー コーポレイション filed Critical エス ケー コーポレイション
Publication of JPH07328445A publication Critical patent/JPH07328445A/en
Application granted granted Critical
Publication of JP3800349B2 publication Critical patent/JP3800349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明はディーゼル車両が排出する排気ガスの浄化用触媒組成物、これを用いて排気ガス中の粒子状及び気状物質を除去するための濾過材、濾過体及び触媒体、これらの製造方法に関するものである。
【0002】
【従来の技術】
ディーゼル車両から排出される排気ガスの粒子状物質は、平均直径0.3μm程度の未燃焼炭素粒子、溶解性有機物質及び硫化物で、粒子状物質の濃度が環境基準値(1993年ヘビーデューティ車両の場合のスモッグ規制値:40%)を超過する場合、視覚的に醜い不快感を招来するだけでなく、癌を誘発する等、人体に非常に有害である。特に、ディーゼル車両の保有比率が全体車両の42%、世界のどの国より高い韓国では大気汚染の主要な原因として台頭しているため、このような粒子状物質の厳格な排出規制及び浄化が要求されている。
【0003】
粒子状物質の排出規制基準は、ヘビーデューティディーゼル車両の場合、1996年に0.67g/HP.Hour(米国は1994年から0.1g/HP.Hour)で、毎年漸次強化する趨勢であるので、ディーゼル車両が排出する粒子状物質を除去するための多様な研究が活発に遂行されている。
粒子状物質の除去技術の開発方向は、エンジン改善による未燃焼物質の生成抑制、燃料添加剤を用いた燃焼効率の改善、そして粒子状物質の後処理等に大別される。
【0004】
エンジンの改善及び燃料添加剤の利用方法はエンジン内の燃焼効率を向上させて粒子状物質又は煤煙等の有害物質を根本的に減少させることができるが、費用が過多に必要であり、技術的限界から完全な抑制が難しい実情であり、一般に後処理技術による除去方法を用いている。
後処理技術は、排気ガス中の粒子状物質を濾過する濾過技術と濾過された粒子状物質を燃焼して濾過材を再生する再生技術とから構成され、濾過技術は排気ガス中の粒子状物質を効果的に補集し得る、性能の優れた濾過材を選択し、実際の車両に適合に応用する研究に注力している。
【0005】
一方、粒子状物質の濾過によるエンジン排気通路の背圧上昇により濾過材が損傷し、エンジンの性能が低下し、補集された粒子状物質を高温度条件で燃焼させる時に濾過材に熱衝撃を与えて、耐久性の問題が深刻であるため、粒子状物質を低温で効果的に燃焼させるための再生技術の開発が必要になった。現在まで最も広く知られた再生技術としては、バーナー、ヒーター等を用いて外部から2次エネルギーを供給するかスロットリングで排気ガス温度を高めて再生する方法と、燃料に触媒を添加するか触媒を濾過材に担持させて酸化反応の活性化エネルギーを減少させることにより相対的に低温で再生させる方法とがある。
【0006】
本発明では、これら技術のうち、特に触媒作用による粒子状物質の除去方法を研究したが、これはセラミックフォーム、ワイヤメッシュ、メタルフォーム、ウォールフローセラミックハニカム、オープンフローセラミックハニカム又はメタルハニカムのような耐火性三次元構造物を含む濾過材に粒子状物質を燃焼させ得る触媒物質を担持して、ディーゼルエンジンの排気ガスに含まれた微細粒子物質を濾過し、通常のディーゼルエンジン運転状態の排気ガス排出条件(ガス組成及び温度)下で粒子状物質を燃焼させることである。
【0007】
ディーゼルエンジンの排気ガス浄化用触媒の一般の要求性能は次のようである。第一に、炭素微細粒子だけでなく未燃焼炭化水素のような人体有害成分を低温でも燃焼により高効率で除去できること、第二に、燃料として使用される軽油に多量に含有されている硫黄成分からエンジン内で生成したSO2 がSO3 に酸化される活性が低く、排気ガス中のSO3 の排出量が少ないこと、第三に、SO2 等の被毒剤により触媒が非活性化しないこと、第四に、高温での連続使用時にも非活性化されない耐久性を備えることである。
【0008】
燃焼による粒子状物質の除去効率を増進させるために多様な方法が提案されている。これら従来の方法は、広い反応表面積を提供するために濾過材に予め活性アルミナ又はチタニア等の沈着支持体を触媒担体として沈着させた後、粒子状物質の燃焼触媒として知られている白金族金属を白金族塩水溶液で濾過体に均一に担持する方法を使用している。
【0009】
【発明が解決しようとする課題】
しかしながら、このような沈着支持体及び触媒成分の種類、量及び製造方法が必ず満足な触媒効果を与えるものではなかった.
即ち、前記一般的なアルミナの場合には、800℃程度の高温で熱的に安定で、高温での連続使用に十分な耐久性を有するが、軽油に多量に含有されている硫黄成分の燃焼により排出される硫黄三酸化物と反応してアルミニウムスルファートを形成して表面積、気孔構造の変化を引き起こし、これによりアルミナを担体とする触媒の活性が急激に低下するという問題点があった。
【0010】
又、前記通常のチタニアの場合には、硫黄三酸化物に対して化学的に安定であり硫黄三酸化物による活性低下は小さいが、500℃以上では熱的に不安定で実際のディーゼル車両の運転条件である300〜600℃程度の排気ガス温度で劣化し、特に煤煙の燃焼、つまり濾過材の再生時の急激な高温上昇に反復露出される場合、チタニアの表面積減少と相変化(つまり、アナタース形態から結晶性ルチル形態)による気孔構造の破壊により活性及び耐久性が低下する欠点がある。
【0011】
以上説明したように、ディーゼルエンジン排気ガス浄化触媒として要求される前記四つの性能を完全に満足させる触媒はまだ報告されなかった。
従って、本発明の目的は、第一に、高温で熱的に安定で高い触媒効果を長期間維持することができ、エンジンで生成される硫黄酸化物により触媒の活性が低下せず、単独でもディーゼル車両から排出される粒子状物質の燃焼性能が優秀である触媒組成物及びその製造方法を提供することである。
【0012】
第二に、前記触媒組成物を用いてディーゼル車両の粒子状物質を除去するに卓越した性能を有する濾過材及びその製造方法を提供することである。
第三に、既存の濾過材を使用してディーゼル車両の粒子状物質を除去しようとする場合には、第二の目的で前述した濾過材に等しい効果を奏する沈着支持体が沈着された濾過体及びその製造方法を提供することである。
第四に、前記目的で前述した濾過材又は濾過体を用いたディーゼルエンジン粒子状物質除去用触媒体及びその製造方法を提供することである。
【0013】
【課題を解決するための手段】
本発明者等は多数の実験と研究を重ねた結果、ディーゼル車両から排出される粒子状物質の除去に優秀な触媒効果を奏し、前記触媒要件を備えた触媒成分を発見し、精油工場の重質油分解施設中の脱硫工程で排出される廃触媒中にこのような触媒成分が多量含有されているため、このような廃触媒を原料として製造された濾過材又は沈着支持体が単独で煤煙の燃焼に優秀な性能を奏し、このような濾過材又は沈着支持体に、白金族金属中から選択された少なくとも一つの白金族金属を分散、担持させた触媒体がアルミナ又はチタニアを沈着支持体として製造された既存の触媒体より高温での熱的安定性と硫黄三酸化物に対する化学的安定性が著しく改善できるという事実を発見して本発明を完成した。
【0014】
精油工場の重質油分解施設中の脱硫工程で使用される触媒は、一般に、アルミニウム30〜50%、モリブデン0〜10%、ニッケル0〜3%、燐0〜3%等の重量比で構成されているが、脱硫工程に使用されることにより、このような触媒成分以外にも粒子状物質燃焼に卓越した効果を奏するバナジウム、コバルト等の触媒成分が添加されて全く新しい組成の廃触媒として排出される。
前記廃触媒は脱硫工程の運転条件、使用期間、原油及び脱硫触媒の組成等によって廃触媒の組成も変わるが、一般的にはバナジウム80%以下、モリブデン80%以下、ニッケル20%以下、コバルト30%以下、アルミニウム99%以下及び通常の原油精製時の不純物からなる。
【0015】
前記本発明の第一の目的を達成するためのディーゼル車両粒子物質除去用触媒組成物の製造方法は、
a)原料として使用される廃触媒を加熱して前処理する段階と、
b)a)段階の廃触媒を粉砕して廃触媒粉末を製造する段階とからなる。
前記原料として使用される廃触媒は精油工場の重質油分解施設中の脱硫工程で一般的に排出される廃触媒で、水分又は油分等の不純物が含有されているので、これを除去するために廃触媒を酸素雰囲気下の400〜1000℃で0.5〜5時間加熱し、粉砕機で100〜800メッシュの粒子に粉砕して廃触媒粉末を製造する。
【0016】
このように前処理された廃触媒を、本発明の目的を達成するための濾過材、沈着支持体及び触媒体の製造原料(以下、YK−Rと称する)として使用する。
この際、加熱温度400℃以下では加熱が不充分で不純物が完全に除去されず、1000℃以上ではエネルギーの浪費だけでなく寧ろ廃触媒中の触媒成分の劣化を加速させる。又、粒子大きさがあまり大きいと、次の段階のスラリー製造時に均一に混合されたスラリーを得ることが難しく、粒子の大きさがあまり小さいと製造費用が増加するばかりでなく、高温での耐久性が低下する。
【0017】
前記本発明の第二の目的を達成するためのディーゼル車両粒子状物質除去用濾過材の製造方法は、
a)YK−R粉末単独又はYK−R粉末に既存の濾過材粉末を混合して濾過材スラリーを製造する段階と、
b)濾過材スラリーを濾過材構造に成形する段階と、
c)b)段階の結果生成物を焼結して濾過材を製造する段階とからなる。
【0018】
濾過材スラリーは前記製造されたYK−R粉末又はYK−R粉末と既存の濾過材粉末の混合物に接着剤、成形安定剤(Attacking Agent )、活性物質そして水等をよく混合して製造する。
本発明に使用された既存の濾過材粉末はコージアライト、ムライト、ジルコニア、シリカ等、セラミック濾過材の製造原料として既に公知の全ての物質が使用でき、これに特別な制限はない。
又、YK−R粉末と既存の濾過材粉末の混合組成はYK−R粉末の場合10〜100%が適当であり、既存の濾過材粉末の場合0〜90%が適当である。
YK−R粉末の含量が10%未満である場合には、前述した触媒物質の濃度が小さくて活性が低下する。
【0019】
本発明に使用される接着剤としては、セラミック材料の硬化に有用なもので、既に公知の全ての物質が使用でき、これに特別な制限はない。
本発明に使用される成形安定剤はセラミック材料の円筒型フォーム(Tubular Foam)の防止に有用なもので、既に公知の全ての物質が使用でき、これに特別な制限はない。
本発明に使用される活性物質としては、セラミック材料の気孔調節に有用なもので、既に公知の全ての物質が使用でき、これに特別な制限はない。
【0020】
製造された濾過材スラリーは、射出、圧出等、セラミック材料成形に有用な既に公知の方法により濾過体構造に成形され、これを25〜150℃で完全に乾燥させた後、200〜1000℃で焼結して濾過材を製造する。
本発明の濾過材はセラミックフォーム、オープンフローハニカム、セラミックファイバフィルター、セラミックハニカム、ウォールフローハニカムモノリス等、ディーゼル車両の粒子状物質濾過に有用なもので、既に公知の全ての三次元構造が使用でき、これに特別な制限はない。
【0021】
前記本発明の第三の目的を達成するための、ディーゼル車両粒子状物質除去用沈着支持体が沈着された濾過体の製造方法は、
a)YK−R粉末単独又はYK−R粉末に既存の沈着支持体粉末を混合して沈着支持体スラリーを製造する段階と、
b)沈着支持体スラリーを既存濾過材構造に沈着させる段階と、
c)b)段階の結果生成物を加熱して濾過体を製造する段階とからなる。
【0022】
本発明では、既存の濾過材を使用してディーゼル車両の粒子状物質を除去しようとする場合にも前述したYK−Rで製造された濾過材と同様な優秀な性能を奏する沈着支持体を提供する。
本発明に使用された既存の沈着支持体粉末はアルミナ、チタニア、シリカ等のゼオライトとして沈着支持体の製造原料として既に公知の全ての物質が使用でき、これに特別な制限はない。
又、YK−R粉末と既存の沈着支持体粉末の混合組成は、YK−R粉末の場合10〜100%が適当であり、既存の沈着支持体の場合0〜90%が適当である。
YK−R粉末の含量が10%未満では前述した触媒物質の濃度が小さくて活性が低下する。
【0023】
沈着支持体スラリーは前記YK−R粉末又はYK−R粉末と沈着支持体粉末の混合物に水を添加して均一に混合した後、酸又は塩基を添加して粘度を400cps以下となるように調節して製造する。
前記沈着支持体スラリー中の沈着支持体粉末の組成は重量比で3〜50%が適当である。
前記スラリーにおいて、沈着支持体粉末の含量が3%未満である時は前記触媒成分の含量が少なくて触媒効果を奏しにくく、50%以上では沈着支持体粉末が過多のため均一に分散され粘度の低い沈着支持体スラリーを製造することが難しい。
又、粘度が400cps以上である場合には、濾過体に沈着支持体を均一にコーティングすることが難しい。
【0024】
本発明に使用される濾過材の形態は、セラミックフォーム、オープンフローハニカム、セラミックファイバフィルター、セラミックハニカム、メタルフォーム、ウォールフローハニカムモノリス、メタルメッシュ等、ディーゼル車両の粒子状物質濾過材として有用なもので、既に公知の全ての三次元構造が使用でき、これに特別な制限はない。
【0025】
前記沈着支持体スラリーを前述した濾過材1リットル当たり5〜200gを濾過材に沈着されてから乾燥させ、400〜1000℃に焼結して濾過体を製造する。この際、沈着支持体スラリーの量が5g/リットル以下では十分な表面積を提供できず触媒物質の濃度が低くて触媒性能が低下し、200g/リットル以上では排気ガスの圧力を過度に高めるのでエンジンの運転効率を低下させる。
十分な表面積を提供するために、前述したYK−Rで製造された前記濾過材に前記沈着支持体を沈着させることも可能である。
【0026】
前記本発明の第四の目的を達成するための本発明のディーゼル車両粒子状物質除去用触媒体の製造方法は、
a)前記第二及び第三の目的を達成するために製造された濾過材又は濾過体に触媒金属を担持させる段階と、
b)a)段階の生成物を焼成して触媒体を製造する段階とからなる。
前記濾過材又は濾過体に触媒金属が含有された溶液を担持させた後、例えば400〜800℃に加熱、焼成して、最終的に金属又は金属酸化物形態の触媒体を製造する。
【0027】
本発明の触媒金属は白金、ロジウム又はパラジウム等、白金族金属化合物から選択された少なくとも一つの白金族金属溶液で、白金、ロジウム又はパラジウムの含量は濾過材1リットル当たり、望ましくは白金0〜7.07g、ロジウム0〜2g、パラジウム0〜7.07gである(しかし、これら金属の総量は0より大きい)。
【0028】
又、白金、ロジウム及びパラジウムから選択された少なくとも一つの貴金属が沈着支持体に沈着される量の比率(非金属/沈着支持体重量比)は0.001/1〜0.1/1の範囲が望ましい。
前記貴金属が沈着支持体に担持される量の比率が0.001/1以下では担持された貴金属の量があまり少なくて貴金属の触媒効果が期待できず、0.1/1以上では貴金属の触媒効果の増加が殆どなく貴金属の費用だけ増加させるので、経済的にも資源の有効利用面でも不利である。
【0029】
【実施例】
以下、実施例に従って本発明の構成及び効果に対して具体的に説明する。しかし、下記の実施例が本発明の範囲を限定するのではない。
【0030】
【実施例】
実施例1.触媒成分(YK−R)の製造方法
1−1.原触媒と廃触媒(YK−R)の組成分析
(株)油公の重質油分解施設中の水添脱硫工程で下記表1のように触媒を充填して250日間工程を稼働した後、排出された廃触媒中の2gを取ってICP(Induction Coupled Plasma) で成分分析し、初期に充填した触媒の組成に比較した結果を下記表2に示す。
【0031】
【表1】

Figure 0003800349
【0032】
【表2】
Figure 0003800349
【0033】
1−2.加熱温度による比表面積の変化
前記廃触媒10gずつを取って下記表3のように加熱した後、比表面積を測定し、これを下記表3に示す。
加熱温度400℃以下では加熱が不充分で不純物が完全に除去されず、1000℃以上では触媒成分の劣化により気孔が破壊されたことがわかる。
【0034】
【表3】
Figure 0003800349
【0035】
1−3.触媒組成物(YK−R)粉末の製造
前記廃触媒中の100kgを炉で20℃/分の加熱速度で800℃まで加熱してから2時間加熱してから冷却し、これを粉砕機で粉砕して200メッシュ粉末を製造した。
【0036】
実施例2.反応試験(YK−R組成物)
2−1.試料準備
前記実施例1−3で製造したYK−R粉末及びアルミナ、チタニア各15gずつを取ってそれぞれ組成物1(実施用)、組成物2,3(比較用)を準備した。
2−2.CO酸化反応
前記実施例2−1で製造した組成物試料1〜3に対してそれぞれ反応器に1gずつ充填して定着してから反応温度に調節する。CO200ppmを含有した空気を空間速度50,000/hで反応器に流入させながら反応器出口でCOの濃度を時間分解結果で燃焼分析し転換率が50%になる温度を調査する。
【0037】
2−3.C3 8 酸化反応
前記CO酸化反応試験と同方法で1000ppmのC3 8 と空気の混合ガスを流入させながらC3 8 の転換率が50%である温度を測定する。
2−4.SO2 酸化反応
前記CO酸化反応試験と同方法で50ppmのSO2 と空気の混合ガスを流入させながら450℃でSO2 の転換率を測定する。
【0038】
2−5.煤煙燃焼試験
前記実施例2−1で製造した組成物試料1〜3をそれぞれ煤煙中の粒子状物質1gと均一に混合してから反応器に充填する。温度を分当たり10℃上昇させて200℃に到達したら、分当たり1℃ずつ昇温させながら点火される温度(煤煙燃焼温度)を測定した。
前記測定したCOとC3 8 の50%転換率、450℃でのSO2 転換率及び煤煙燃焼温度を下記表4に示す。
【0039】
実施例3.高温での耐久性評価
前記実施例2−1で創造した触媒組成物1−3に対してそれぞれ5gずつを取って炉に入れた後、20℃/分の加熱速度で800℃まで加熱してから5時間放置した。
この触媒組成物を実施例2と同方法でCO、C3 8 、SO2 酸化反応活性と煤煙燃焼温度を測定した結果を下記表4に示す。
【0040】
実施例4.硫黄酸化物に対する化学的安定性評価
前記実施例2−1で製造した触媒1−3に対して5gずつを取って炉に入れた後、20℃/分の加熱速度で500℃に加熱し、SO3 100ppmを含有した窒素ガスを2リットル/分で50時間流した。
この触媒を実施例2と同方法でCO、C3 8 、SO2 酸化反応活性と煤煙燃焼温度を測定した結果を下記表4に示す。
【0041】
【表4】
Figure 0003800349
【0042】
前記表4に示したように、YK−R(廃触媒組成物)粉末(試料1)は単独でも煤煙の燃焼性能が優秀であるばかりでなく高温での熱的安定性と硫黄酸化物による化学的安定性が卓越して、実際ディーゼル車両の粒子状物質を除去する触媒組成物として優秀な耐久性を有することがわかる。
【0043】
実施例5.濾過材製造
5−1.フォーム(Foam) 形濾過材の製造
10ppiポリウレタンフォームを2cm×2cm×2cmの大きさに切った後、水とメチルアルコールの重量比が1:1である溶液に10分間担持させた後、乾燥させた。
【0044】
前記実施例1−3で製造されたYK−R100gにデキストリン15gをバインダーとして添加した後、モノエタノールアミン7gを成形安定剤として添加する。次いで、水60gと活性物質であるエチレングリコール6mlを添加してから攪拌してスラリーに入れて、フォームに十分に担持されるようにした後、フォームに担持されたスラリー中の約80%程度を除去し乾燥させる。このようにポリウレタンフォームにスラリーを担持させる過程を3回繰り返して、全体重量が6gであるポリウレタンフォームにYK−Rが担持された物質を得る。これを50℃で24時間乾燥した後、0.5℃/分の加熱速度で300℃まで加熱してから3時間、1℃/分の加熱速度で900℃まで加熱してから1時間焼結してフォーム1(濾過材1)を製造する。
コージアライト粉末を単独で使用してフォーム2(濾過材2/比較用)を製造した。
【0045】
5−2.フロー−スロー形ハニカム(Flow-Through Honeycomb) 濾過材の製造
フロー−スローハニカム形濾過材は圧出法により製造し、その製造過程は次のようである。
YK−R粉末100gにメチルセルロース4gをバインダーとして添加し、造孔材を15g加え、1時間ボールミルで乾式粉砕及び混合する。混合された原料に水を適量加えて0.8〜1mg/mm2 の強度を有するようにスラリーを製造する。このスラリーをスクリュー圧出成形機に注入させながら直径5mmのハニカムを成形した。成形された製品は70℃の乾燥炉で36時間乾燥させた後、図1に示すように多段階に昇温させながら焼結して完成した(濾過材3)。
又、コージアライト粉末を単独で使用して濾過材4(比較用)を製造した。
【0046】
5−3.ウォールフローハニカム(Wall-Flow Honeycomb)形濾過材の製造
前記実施例5−2でYK−Rを原料として製造されたフロースロー形ハニカムに、米国特許第4,411,856号のような方法のイージーキャスタブルポリマー(Easy Castable Polymer)で製作されたマスクを用いてハニカムと同材質のスラリーを押し入れて選択的に孔を塞ぐ方法によりウォールフローハニカム形濾過材5を製造した。
又、前記YK−Rとコージアライト粉末を1:1に混合し、前述した方法と同方法で濾過材6を製造し、コージアライト粉末を単独で使用してウォールフォローハニカム形濾過材7(比較用)を製造した。
【0047】
実施例6.濾過体の製造
400cpiのセラミックハニカムモノリスを2cm×2cm×2cmの大きさに切る。YK−R粉末1000gと水900gを混合した後、粉砕機でスラリー状態に24時間粉砕した。このスラリーを攪拌槽に移してから攪拌しながら濃酢酸とアンモニア水を添加してpH4.5、粘度95cpsに調節した。ここに準備したセラミックハニカムモノリスを浸してから、40psiの圧縮空気で吹き出し、20℃/分の加熱速度で120℃まで加熱してから10時間、500℃で2時間加熱して、YK−R沈着支持体が1.3g担持された濾過体8を製造した。
又、前記YK−Rとアルミナ粉末を1:1混合して、前述した方法と同方法で濾過体9を製造し、アルミナ粉末とチタニア粉末を単独で使用してそれぞれ濾過体10,11(比較用)を製造した。
【0048】
実施例7.反応試験(濾過材及び濾過体)
7−1.CO酸化反応
前記実施例5と6で製造した濾過材及び濾過体1〜11をそれぞれ反応器に装着した後、反応温度に調節する。CO200ppmを含有した空気を空間速度50,000/hで反応器に流入させながら反応器の出口でのCO濃度を時間分解結果で燃焼分析して転換率が50%となる温度を調査する。
7−2.C3 8 酸化反応
前記CO酸化反応試験と同方法で100ppmのC3 8 と空気の混合ガスを流入させながらC3 8 の転換率が50%である温度を測定した。
【0049】
7−3.SO2 酸化反応
前記CO酸化反応試験と同方法で50ppmのSO2 と空気の混合ガスを流入させながら450℃でSO2 の転換率を測定する。
7−4.煤煙燃焼試験
前記実施例5と6で製造した濾過材1〜7及び濾過体8〜11をそれぞれ煤煙1gと均一に充填してから反応器に装着する。温度を分当たり10℃ずつ上昇して200℃に到達したら、分当たり1℃ずつ昇温させて点火温度(煤煙燃焼温度)を測定した。
前記測定したCOとC3 8 の50%転換率、450℃でのSO2 転換率及び煤煙燃焼温度を下記表5に示す。
【0050】
実施例8.高温での耐久性評価
前記実施例5と6で製造した濾過材1〜7及び濾過体8〜11を炉に入れた後、20℃/分の加熱速度で800℃まで加熱してから5時間放置した。
この触媒を実施例7と同方法でCO、C3 8 、SO2 酸化反応活性と煤煙燃焼温度を測定した結果を下記表5に示す。
【0051】
実施例9.硫黄酸化物に対する化学的安定性評価
前記実施例5と6で製造した触媒1〜7及び濾過体8〜11を炉に入れた後、20℃/分の加熱速度で500℃に加熱し、SO3 1,000ppmを含有した窒素ガスを2リットル/分で50時間流した。
この触媒を実施例7と同方法でCO、C3 8 、SO2 酸化反応活性と煤煙燃焼温度を測定した結果を下記表5に示す。
【0052】
【表5】
Figure 0003800349
【0053】
前記表5に示したように、YK−Rで製造された濾過材又は濾過体は単独でも既存の濾過材又は濾過体より煤煙の燃焼性能が優秀であるばかりでなく、高温で熱的安定性と硫黄酸化物による化学的安定性が卓越して、実際ディーゼル車両の粒子状物質を除去する触媒として優秀な耐久性を有することがわかる。
【0054】
実施例10.YK−Rから触媒体の製造
前記実施例5と6で製造された濾過材1〜7及び濾過体8〜11に対してそれぞれ塩化白金酸水溶液を用いて、触媒金属含量が1wt%となるように担持した後、120℃で12時間乾燥してから、20℃/分の加熱速度で500℃まで2時間焼成して触媒体12〜22を製造した。
【0055】
実施例11.反応試験(触媒体)
前記実施例10で製造した触媒体12〜22についてそれぞれ実施例7と同方法で、CO、C3 8 及びSO2 転換率及び煤煙燃焼温度を測定し、その結果を下記表8に示す。
【0056】
実施例12.高温での耐久性評価(触媒体)
前記実施例10で製造した触媒材12〜22を600℃で7日間空気中で焼成した。これら触媒体を実施例7と同方法でCO、C3 8 及びSO2 の酸化反応と煤煙燃焼試験を実施し、その結果を下記表6に示す。
【0057】
実施例13.硫黄酸化物に対する化学的安定性評価(触媒体)
前記実施例10で製造した触媒体12〜22を400℃で7日間SO2 200ppmが包含された乾燥空気中で焼成した。これら触媒を実施例7と同方法でCO、C3 8 、SO2 酸化反応と煤煙燃焼試験を実施し、その結果を下記表6に示す。
【0058】
【表6】
Figure 0003800349
【0059】
前記表6に示したように、廃触媒から製造された濾過材又は沈着支持体を用いて製造された触媒体は従来の触媒体に比べて大変低い温度でも粒子状物質を燃焼させて濾過材を再生させる優秀な触媒効果を奏し、さらに高温での熱的安定性と硫黄酸化物に対する化学的安定性が卓越することがわかる。
【0060】
実施例14.エンジン試験用触媒体の製造
米国コーニング社の商品名EX−54セラミック単一体濾過機に下記表7に示したような沈着支持体を1リットル当たり100gずつ沈着させた後、メタル含量が沈着支持体を基準として1wt%となるように触媒金属を担持した。これを120℃12時間乾燥した後、500℃空気中で2時間焼成して1〜6の六つの触媒体を製造した。
触媒体の耐久性を評価するために触媒体2,4に対して800℃で7日間老化させ、SO2 被毒抵抗性を調査するために触媒体3,5及び6を200℃出7日間200ppmのSO2 に露出させた。
【0061】
【表7】
Figure 0003800349
【0062】
実施例15.触媒体の再生性能評価
前記実施例14で製造した触媒体をそれぞれ英国、ペタース社(Petters Ltd.) のペターAV−B(Petter AV-B)スーパーチャージド単一シリンダディーゼルエンジンに装着した後、運転速度2250rpm、冷却水温度100℃、オイル温度90℃、オイル圧力2.5bar、空気投入圧力2230mbar、電算運転条件でエンジンのバイパスバルブを閉め、濾過トラップバルブを開ける。スロットルを少し開け、再生現象が起こらない場合、スロットルをさらに開けて排気温度を上昇させながら触媒体の再生を実験した。再生が起こる時は、捕集された粒子状物質が触媒発火により燃焼して、エンジン排気管の背圧は減少し濾過トラップ後端の温度は上昇する。
【0063】
又、排気ガス中の硫黄三酸化物の含量はイソプロピルアルコールと水の容積比が60:40である混合溶液に一定量の排気ガスを真空ポンプで2分間捕集しイオン液相クロマトグラフィー法で標準溶液と比較、分析した。
以上の試験方法で、前記実施例14で製造された六つの触媒体に対して再生温度の硫黄三酸化物排出量を測定して下記表8に示す。
【0064】
【表8】
Figure 0003800349
【0065】
前記表8で、触媒体1、2、3を比較して見ると、YK−R−1から製造された触媒体は高温又は硫黄酸化物に長時間露出されても触媒体の活性が減少しない卓越した耐久性を有することがわかる。
又、触媒体2、4を比較して見ると、高温で長時間露出された時、YK−R−1から製造された触媒体2がチタニアから製造された触媒体4に比べて低い再生温度と硫黄酸化物排出量を有することがわかる。
【0066】
又、触媒体3、5、6を比較して見ると、硫黄酸化物に長時間露出された時、YK−R−1から製造された触媒体3がアルミナから製造された触媒体5、6に比べて低い再生温度と硫黄酸化物排出量を有することがわかる。
このように、YK−R−1から製造された触媒体は、従来の触媒体に比べて大変低い温度でも粒子状物質を燃焼させて濾過材を再生させる優秀な触媒効果を奏し、高温での熱的安定性と硫黄酸化物に対する化学的安定性が卓越して、実際ディーゼル車両の運転条件でも粒子状物質を除去する触媒として長期間にも優秀な性能を発揮することがわかる。
【0067】
【発明の効果】
以上のような方法によりYK−Rで製造された濾過材又は濾過体が含有された触媒体を濾過装置に装着し、ディーゼル車両の粒子状物質を除去する場合、粒子状物質に対する燃焼性能が優秀であるとともに高温での熱的安定性とディーゼル燃焼時に発生する硫黄酸化物に対する化学的安定性が卓越して、ディーゼル車両の粒子状物質を除去する性能を長期間維持させ得るので、ディーゼル車両粒子状物質の除去に適合する。
【図面の簡単な説明】
【図1】 実施例5の濾過材3の製造時の焼結条件を示す。[0001]
[Industrial application fields]
The present invention relates to a catalyst composition for purifying exhaust gas discharged from a diesel vehicle, a filter medium, a filter body and a catalyst body for removing particulate and gaseous substances in the exhaust gas using the composition, and a method for producing them. Is.
[0002]
[Prior art]
Particulate matter of exhaust gas discharged from diesel vehicles is unburned carbon particles having an average diameter of about 0.3 μm, soluble organic materials and sulfides, and the concentration of particulate matter is an environmental standard value (1993 heavy duty vehicle) In the case of exceeding the smog regulation value in the case of (40), not only visually unpleasant discomfort is caused, but also it is very harmful to the human body such as inducing cancer. In particular, Korea has emerged as a major cause of air pollution in Korea, where diesel vehicle ownership is 42% higher than any other country in the world. Strict emission control and purification of such particulate matter is required. Has been.
[0003]
In the case of heavy duty diesel vehicles, the emission control standard for particulate matter was 0.67 g / HP. Hour (0.1 g / HP. Hour in the United States since 1994) is a trend that gradually strengthens every year, and therefore various studies for removing particulate matter emitted by diesel vehicles are being actively conducted.
The direction of development of particulate matter removal technology is broadly divided into the suppression of the generation of unburned substances by improving the engine, the improvement of combustion efficiency using fuel additives, and the post-treatment of particulate substances.
[0004]
Engine improvement and fuel additive utilization can improve combustion efficiency in the engine and reduce harmful substances such as particulate matter or soot, but it is expensive and technical. The situation is difficult to completely suppress due to limitations, and generally a removal method using post-processing techniques is used.
The post-processing technology consists of a filtration technology that filters particulate matter in the exhaust gas and a regeneration technology that burns the filtered particulate matter and regenerates the filter media, and the filtration technology consists of particulate matter in the exhaust gas. We are focusing on research to select a filter material with excellent performance that can effectively collect and apply it to actual vehicles.
[0005]
On the other hand, the filter media is damaged by the increase in the back pressure in the engine exhaust passage due to the filtration of the particulate matter, the performance of the engine is reduced, and when the collected particulate matter is burned under high temperature conditions, the filter media is subjected to thermal shock. Given that the problem of durability is serious, it has become necessary to develop a regeneration technology for effectively burning particulate matter at low temperatures. The most widely known regeneration technologies to date include a method of regenerating by supplying secondary energy from the outside using a burner, a heater, etc. or increasing the exhaust gas temperature by throttling, and adding a catalyst to the fuel or a catalyst. There is a method of regenerating at a relatively low temperature by reducing the activation energy of the oxidation reaction by supporting the catalyst on a filter medium.
[0006]
In the present invention, among these techniques, a method for removing particulate matter by catalytic action has been particularly studied, which is a ceramic foam, a wire mesh, a metal foam, a wall flow ceramic honeycomb, an open flow ceramic honeycomb or a metal honeycomb. A catalyst material capable of burning particulate matter is supported on a filter medium containing a fire-resistant three-dimensional structure, and fine particulate matter contained in the exhaust gas of a diesel engine is filtered, and exhaust gas in a normal diesel engine operation state Combusting particulate matter under exhaust conditions (gas composition and temperature).
[0007]
The general required performance of the exhaust gas purifying catalyst for diesel engines is as follows. First, not only carbon fine particles but also human harmful components such as unburned hydrocarbons can be removed with high efficiency by combustion even at low temperatures, and second, sulfur components contained in large amounts in light oil used as fuel SO generated in the engine from 2 Is SO Three Has low activity to be oxidized to SO in exhaust gas Three The third is SO 2 The catalyst is not deactivated by a poisoning agent such as the above, and fourthly, it has durability that is not deactivated even when continuously used at a high temperature.
[0008]
Various methods have been proposed to improve the removal efficiency of particulate matter by combustion. In these conventional methods, in order to provide a wide reaction surface area, a platinum group metal known as a particulate matter combustion catalyst is prepared by preliminarily depositing a deposition support such as activated alumina or titania on a filter medium as a catalyst carrier. Is used in which the aqueous solution is uniformly supported on the filter with a platinum group salt aqueous solution.
[0009]
[Problems to be solved by the invention]
However, the kind, amount and production method of such a deposition support and catalyst component did not always give a satisfactory catalytic effect.
That is, in the case of the general alumina, it is thermally stable at a high temperature of about 800 ° C. and has sufficient durability for continuous use at a high temperature, but combustion of sulfur components contained in a large amount in light oil. It reacts with the sulfur trioxide discharged from the catalyst to form aluminum sulfate, causing a change in the surface area and pore structure, thereby causing a problem that the activity of the catalyst using alumina as a carrier is drastically lowered.
[0010]
Further, in the case of the above conventional titania, it is chemically stable with respect to sulfur trioxide, and the decrease in activity due to sulfur trioxide is small. When the exhaust gas temperature deteriorates at an operating condition of about 300 to 600 ° C., particularly when it is repeatedly exposed to the burning of soot, that is, the rapid increase in temperature at the time of regeneration of the filter medium, the surface area reduction and phase change of titania (ie There is a drawback that the activity and durability are lowered by the destruction of the pore structure from the anatase form to the crystalline rutile form).
[0011]
As described above, a catalyst that completely satisfies the four performances required as a diesel engine exhaust gas purification catalyst has not been reported yet.
Therefore, the object of the present invention is, first of all, to maintain a high catalytic effect at a high temperature for a long period of time, and the sulfur oxide produced in the engine does not reduce the activity of the catalyst. It is an object of the present invention to provide a catalyst composition having excellent combustion performance of particulate matter discharged from a diesel vehicle and a method for producing the same.
[0012]
Secondly, the present invention provides a filter medium having excellent performance for removing particulate matter from diesel vehicles using the catalyst composition and a method for producing the same.
Thirdly, when the particulate matter of the diesel vehicle is to be removed using the existing filter medium, the filter body on which the deposition support body having the same effect as the filter medium described above for the second purpose is deposited. And a method of manufacturing the same.
Fourthly, it is to provide a diesel engine particulate matter removing catalyst body using the filter medium or filter body described above for the above purpose and a method for producing the same.
[0013]
[Means for Solving the Problems]
As a result of many experiments and researches, the present inventors have achieved an excellent catalytic effect for removing particulate matter discharged from diesel vehicles, discovered catalyst components having the above catalyst requirements, Since a large amount of such a catalyst component is contained in the waste catalyst discharged in the desulfurization process in the oil cracking facility, the filter medium or the deposition support produced using such a waste catalyst as a raw material is smoking alone. The catalyst body in which at least one platinum group metal selected from the platinum group metal is dispersed and supported on such a filter medium or deposition support is deposited on the support medium. The present invention was completed by discovering the fact that the thermal stability at high temperatures and the chemical stability to sulfur trioxide can be significantly improved over the existing catalyst bodies produced as:
[0014]
The catalyst used in the desulfurization process in the heavy oil cracking facility of an essential oil factory is generally composed of 30 to 50% aluminum, 0 to 10% molybdenum, 0 to 3% nickel, 0 to 3% phosphorus, etc. However, by using it in the desulfurization process, other catalyst components such as vanadium and cobalt, which have an excellent effect on particulate matter combustion, are added in addition to such catalyst components. Discharged.
The composition of the waste catalyst varies depending on the operating conditions of the desulfurization process, the period of use, the composition of the crude oil and the desulfurization catalyst, etc., but in general, vanadium 80% or less, molybdenum 80% or less, nickel 20% or less, cobalt 30 % Or less, aluminum 99% or less, and impurities during normal crude oil refining.
[0015]
The method for producing a diesel vehicle particulate matter removing catalyst composition for achieving the first object of the present invention,
a) heating and pre-treating the waste catalyst used as a raw material;
b) A step of pulverizing the waste catalyst in the step a) to produce a waste catalyst powder.
The waste catalyst used as the raw material is a waste catalyst generally discharged in a desulfurization process in a heavy oil decomposition facility of an essential oil factory, and contains impurities such as moisture or oil. The waste catalyst is heated at 400 to 1000 ° C. in an oxygen atmosphere for 0.5 to 5 hours, and pulverized into 100 to 800 mesh particles by a pulverizer to produce a waste catalyst powder.
[0016]
The waste catalyst pretreated in this way is used as a filter medium, a deposition support and a raw material for producing the catalyst body (hereinafter referred to as YK-R) for achieving the object of the present invention.
At this time, if the heating temperature is 400 ° C. or less, the heating is insufficient and impurities are not completely removed. If the heating temperature is 1000 ° C. or more, not only energy is wasted but also deterioration of the catalyst components in the waste catalyst is accelerated. In addition, if the particle size is too large, it is difficult to obtain a uniformly mixed slurry at the next stage of slurry production, and if the particle size is too small, not only the production cost increases but also durability at high temperatures. Sexuality decreases.
[0017]
In order to achieve the second object of the present invention, a method for producing a filter material for removing diesel vehicle particulate matter,
a) A step of producing a filter medium slurry by mixing YK-R powder alone or an existing filter medium powder with YK-R powder;
b) forming a filter medium slurry into a filter medium structure;
c) As a result of step b), the product is sintered to produce a filter medium.
[0018]
The filter medium slurry is prepared by thoroughly mixing an adhesive, a molding stabilizer (Attacking Agent), an active substance, water, and the like with the YK-R powder or a mixture of the YK-R powder and the existing filter medium powder.
As the existing filter medium powder used in the present invention, all the materials already known as the production raw materials for ceramic filter media such as cordierite, mullite, zirconia, silica and the like can be used, and there is no particular limitation.
Further, the mixing composition of YK-R powder and existing filter medium powder is suitably 10 to 100% in the case of YK-R powder, and 0 to 90% is appropriate in the case of existing filter medium powder.
When the content of the YK-R powder is less than 10%, the concentration of the catalyst substance described above is small and the activity is lowered.
[0019]
The adhesive used in the present invention is useful for curing a ceramic material, and all known substances can be used, and there is no particular limitation on this.
The molding stabilizer used in the present invention is useful for the prevention of a cylindrical foam (Tubular Foam) of ceramic material, and all already known substances can be used, and there is no particular limitation.
The active substance used in the present invention is useful for controlling the pores of the ceramic material, and all already known substances can be used, and there is no particular limitation on this.
[0020]
The produced filter medium slurry is formed into a filter body structure by a known method useful for forming a ceramic material such as injection, extrusion, etc., and after completely drying at 25 to 150 ° C., 200 to 1000 ° C. To produce a filter medium.
The filter medium of the present invention is useful for filtering particulate matter of diesel vehicles such as ceramic foam, open flow honeycomb, ceramic fiber filter, ceramic honeycomb, wall flow honeycomb monolith, etc., and can use all already known three-dimensional structures. There are no special restrictions on this.
[0021]
In order to achieve the third object of the present invention, a method for producing a filter body on which a diesel vehicle particulate matter removal deposition support is deposited,
a) mixing YK-R powder alone or YK-R powder with existing deposition support powder to produce a deposition support slurry;
b) depositing a deposition support slurry on an existing filter media structure;
c) As a result of step b), the product is heated to produce a filter body.
[0022]
The present invention provides a deposition support that exhibits the same excellent performance as that of the above-described filter produced by YK-R even when it is intended to remove particulate matter from a diesel vehicle using an existing filter medium. To do.
As the existing deposition support powder used in the present invention, all materials already known as a production raw material for the deposition support can be used as zeolite such as alumina, titania, silica and the like, and there is no particular limitation.
Further, the mixing composition of YK-R powder and existing deposition support powder is suitably 10 to 100% in the case of YK-R powder, and 0 to 90% in the case of existing deposition support.
If the content of the YK-R powder is less than 10%, the concentration of the catalyst material described above is small and the activity is lowered.
[0023]
The deposition support slurry is adjusted so that the viscosity is 400 cps or less by adding water to the YK-R powder or the mixture of YK-R powder and deposition support powder and mixing uniformly, and then adding an acid or base. To manufacture.
The composition of the deposition support powder in the deposition support slurry is suitably 3 to 50% by weight.
In the slurry, when the content of the deposition support powder is less than 3%, the content of the catalyst component is small and it is difficult to achieve a catalytic effect. When the content is 50% or more, the deposition support powder is excessively dispersed and the viscosity is uniform. It is difficult to produce a low deposition support slurry.
Moreover, when the viscosity is 400 cps or more, it is difficult to uniformly coat the deposition support on the filter body.
[0024]
The form of the filter material used in the present invention is useful as a particulate matter filter material for diesel vehicles such as ceramic foam, open flow honeycomb, ceramic fiber filter, ceramic honeycomb, metal foam, wall flow honeycomb monolith, metal mesh, etc. Thus, all already known three-dimensional structures can be used, and there are no special restrictions.
[0025]
5 to 200 g per 1 liter of the filter medium is deposited on the filter medium and dried, and sintered at 400 to 1000 ° C. to produce a filter body. At this time, if the amount of the deposited support slurry is 5 g / liter or less, a sufficient surface area cannot be provided, and the catalyst performance is lowered due to a low concentration of the catalyst substance. If the amount is 200 g / liter or more, the exhaust gas pressure is excessively increased. To reduce the driving efficiency.
In order to provide a sufficient surface area, it is also possible to deposit the deposition support on the filter medium made of YK-R as described above.
[0026]
In order to achieve the fourth object of the present invention, a method for producing a diesel vehicle particulate matter removing catalyst body of the present invention comprises:
a) supporting a catalyst metal on a filter medium or filter body manufactured to achieve the second and third objects;
b) The product of step a) is calcined to produce a catalyst body.
After the solution containing the catalyst metal is supported on the filter medium or the filter body, the catalyst body in the form of metal or metal oxide is finally produced by heating and baking at 400 to 800 ° C., for example.
[0027]
The catalyst metal of the present invention is at least one platinum group metal solution selected from platinum group metal compounds such as platinum, rhodium or palladium, and the content of platinum, rhodium or palladium is preferably 0 to 7 platinum per liter of the filter medium. 0.07 g, rhodium 0-2 g, palladium 0-7.07 g (but the total amount of these metals is greater than 0).
[0028]
The ratio of the amount of the at least one noble metal selected from platinum, rhodium and palladium deposited on the deposition support (non-metal / deposition support weight ratio) is in the range of 0.001 / 1 to 0.1 / 1. Is desirable.
When the ratio of the amount of the noble metal supported on the deposition support is 0.001 / 1 or less, the amount of the noble metal supported is too small to expect the catalytic effect of the noble metal. Since there is almost no increase in the effect and only the cost of the precious metal is increased, it is disadvantageous both in terms of economy and effective use of resources.
[0029]
【Example】
Hereinafter, the configuration and effects of the present invention will be described in detail according to examples. However, the following examples do not limit the scope of the present invention.
[0030]
【Example】
Example 1. Method for producing catalyst component (YK-R)
1-1. Composition analysis of raw catalyst and waste catalyst (YK-R)
In the hydrodesulfurization process in the heavy oil cracking facility of Yuko Co., Ltd., after filling the catalyst as shown in Table 1 and operating the process for 250 days, take 2 g of the discharged waste catalyst and take ICP ( Table 2 below shows the results of component analysis by Induction Coupled Plasma) and comparison with the composition of the catalyst initially charged.
[0031]
[Table 1]
Figure 0003800349
[0032]
[Table 2]
Figure 0003800349
[0033]
1-2. Change in specific surface area due to heating temperature
After taking 10 g of the waste catalyst and heating it as shown in Table 3 below, the specific surface area was measured.
It can be seen that when the heating temperature is 400 ° C. or lower, the heating is insufficient and impurities are not completely removed, and when the heating temperature is 1000 ° C. or higher, the pores are destroyed due to deterioration of the catalyst component.
[0034]
[Table 3]
Figure 0003800349
[0035]
1-3. Production of catalyst composition (YK-R) powder
100 kg of the waste catalyst was heated in a furnace at a heating rate of 20 ° C./min to 800 ° C., then heated for 2 hours, cooled, and pulverized with a pulverizer to produce a 200 mesh powder.
[0036]
Example 2 Reaction test (YK-R composition)
2-1. Sample preparation
15 g each of YK-R powder produced in Example 1-3, alumina, and titania were taken to prepare Composition 1 (for implementation) and Compositions 2 and 3 (for comparison), respectively.
2-2. CO oxidation reaction
The composition samples 1 to 3 produced in Example 2-1 are each charged with 1 g in a reactor and fixed, and then adjusted to the reaction temperature. While the air containing 200 ppm of CO is introduced into the reactor at a space velocity of 50,000 / h, the concentration of CO is analyzed at the outlet of the reactor by the time-resolved result, and the temperature at which the conversion rate becomes 50% is investigated.
[0037]
2-3. C Three H 8 Oxidation reaction
1000 ppm C by the same method as the CO oxidation reaction test. Three H 8 C and a mixed gas of air Three H 8 The temperature at which the conversion of is 50% is measured.
2-4. SO 2 Oxidation reaction
50 ppm SO by the same method as the CO oxidation reaction test. 2 And a mixed gas of air and SO at 450 ° C. 2 Measure the conversion rate.
[0038]
2-5. Smoke combustion test
The composition samples 1 to 3 prepared in Example 2-1 are uniformly mixed with 1 g of particulate matter in the smoke, and then charged into the reactor. When the temperature was increased by 10 ° C. per minute to reach 200 ° C., the temperature at which ignition was performed (soot combustion temperature) was measured while increasing the temperature by 1 ° C. per minute.
The measured CO and C Three H 8 50% conversion of SO at 450 ° C 2 The conversion rate and smoke combustion temperature are shown in Table 4 below.
[0039]
Example 3 Durability evaluation at high temperature
5 g of each catalyst composition 1-3 created in Example 2-1 was placed in a furnace, heated to 800 ° C. at a heating rate of 20 ° C./min, and allowed to stand for 5 hours.
This catalyst composition was treated in the same manner as in Example 2 with CO, C Three H 8 , SO 2 The results of measuring the oxidation reaction activity and the smoke combustion temperature are shown in Table 4 below.
[0040]
Example 4 Chemical stability evaluation for sulfur oxides
After taking 5 g each of the catalyst 1-3 produced in Example 2-1 and putting it in the furnace, it was heated to 500 ° C. at a heating rate of 20 ° C./min. Three Nitrogen gas containing 100 ppm was flowed at 2 liters / minute for 50 hours.
This catalyst was treated in the same manner as in Example 2 with CO, C Three H 8 , SO 2 The results of measuring the oxidation reaction activity and the smoke combustion temperature are shown in Table 4 below.
[0041]
[Table 4]
Figure 0003800349
[0042]
As shown in Table 4 above, YK-R (waste catalyst composition) powder (sample 1) alone has not only excellent smoke combustion performance, but also thermal stability at high temperatures and chemistry by sulfur oxides. It can be seen that the mechanical stability is excellent, and in fact, it has excellent durability as a catalyst composition for removing particulate matter of diesel vehicles.
[0043]
Embodiment 5 FIG. Filter media production
5-1. Manufacture of foam filter media
A 10 ppi polyurethane foam was cut into a size of 2 cm × 2 cm × 2 cm, then supported on a solution having a weight ratio of water to methyl alcohol of 1: 1 for 10 minutes, and then dried.
[0044]
After adding 15 g of dextrin as a binder to 100 g of YK-R produced in Example 1-3, 7 g of monoethanolamine is added as a molding stabilizer. Next, after adding 60 g of water and 6 ml of the active substance ethylene glycol, the mixture was stirred and put into the slurry so that it was sufficiently supported on the foam, and about 80% of the slurry supported on the foam was removed. Remove and dry. The process of supporting the slurry on the polyurethane foam in this manner is repeated three times to obtain a substance in which YK-R is supported on the polyurethane foam having an overall weight of 6 g. This was dried at 50 ° C. for 24 hours, heated to 300 ° C. at a heating rate of 0.5 ° C./min, then heated to 900 ° C. at a heating rate of 1 ° C./min for 1 hour and then sintered for 1 hour. Thus, foam 1 (filter material 1) is produced.
Foam 2 (filter medium 2 / comparative) was produced using cordierite powder alone.
[0045]
5-2. Manufacture of Flow-Through Honeycomb filter media
The flow-slow honeycomb filter medium is manufactured by an extrusion method, and the manufacturing process is as follows.
4 g of methylcellulose is added as a binder to 100 g of YK-R powder, 15 g of a pore former is added, and dry pulverization and mixing are performed with a ball mill for 1 hour. Add an appropriate amount of water to the mixed raw material and add 0.8 to 1 mg / mm 2 A slurry is produced so as to have the following strength. A honeycomb having a diameter of 5 mm was formed while this slurry was poured into a screw extrusion molding machine. The molded product was dried for 36 hours in a drying oven at 70 ° C., and then sintered and completed while raising the temperature in multiple stages as shown in FIG. 1 (filter material 3).
Moreover, the filter medium 4 (for comparison) was manufactured by using cordierite powder alone.
[0046]
5-3. Manufacture of Wall-Flow Honeycomb filter media
A mask made of Easy Castable Polymer according to the method of US Pat. No. 4,411,856 is applied to the flow throw type honeycomb manufactured using YK-R as a raw material in Example 5-2. The wall flow honeycomb filter medium 5 was manufactured by a method in which a slurry of the same material as that of the honeycomb was pressed and the pores were selectively closed.
Further, the YK-R and cordierite powder are mixed at a ratio of 1: 1, and the filter medium 6 is manufactured by the same method as described above. The wall follow honeycomb filter medium 7 is obtained by using the cordierite powder alone. (For comparison) was manufactured.
[0047]
Example 6 Manufacture of filter body
A 400 cpi ceramic honeycomb monolith is cut to a size of 2 cm × 2 cm × 2 cm. After mixing 1000 g of YK-R powder and 900 g of water, it was pulverized in a slurry state for 24 hours with a pulverizer. The slurry was transferred to a stirring tank, and concentrated acetic acid and aqueous ammonia were added while stirring to adjust the pH to 4.5 and the viscosity to 95 cps. After immersing the prepared ceramic honeycomb monolith, it was blown out with compressed air of 40 psi, heated to 120 ° C. at a heating rate of 20 ° C./min, then heated at 500 ° C. for 2 hours to deposit YK-R A filter body 8 carrying 1.3 g of a support was produced.
Further, the YK-R and alumina powder are mixed 1: 1, and the filter body 9 is manufactured by the same method as described above, and the filter bodies 10 and 11 are respectively compared using the alumina powder and titania powder alone (comparison). Manufactured).
[0048]
Example 7 Reaction test (filter material and filter)
7-1. CO oxidation reaction
The filter medium and the filter bodies 1 to 11 produced in Examples 5 and 6 are respectively attached to the reactor, and then adjusted to the reaction temperature. The temperature at which the conversion rate is 50% is investigated by performing combustion analysis on the CO concentration at the outlet of the reactor by the time-resolved result while flowing air containing 200 ppm of CO into the reactor at a space velocity of 50,000 / h.
7-2. C Three H 8 Oxidation reaction
100 ppm of C by the same method as the CO oxidation reaction test. Three H 8 C and a mixed gas of air Three H 8 The temperature at which the conversion of was 50% was measured.
[0049]
7-3. SO 2 Oxidation reaction
50 ppm SO by the same method as the CO oxidation reaction test. 2 And a mixed gas of air and SO at 450 ° C. 2 Measure the conversion rate.
7-4. Smoke combustion test
The filter media 1 to 7 and the filter media 8 to 11 produced in Examples 5 and 6 are uniformly filled with 1 g of smoke, and then attached to the reactor. When the temperature was increased by 10 ° C. per minute to reach 200 ° C., the temperature was increased by 1 ° C. per minute and the ignition temperature (smoke combustion temperature) was measured.
The measured CO and C Three H 8 50% conversion of SO at 450 ° C 2 The conversion rate and smoke combustion temperature are shown in Table 5 below.
[0050]
Example 8 FIG. Durability evaluation at high temperature
The filter media 1 to 7 and the filter bodies 8 to 11 manufactured in Examples 5 and 6 were placed in a furnace, heated to 800 ° C. at a heating rate of 20 ° C./min, and left for 5 hours.
This catalyst was treated in the same manner as in Example 7 with CO, C Three H 8 , SO 2 The results of measuring the oxidation reaction activity and the smoke combustion temperature are shown in Table 5 below.
[0051]
Example 9 Chemical stability evaluation for sulfur oxides
After putting the catalysts 1 to 7 and the filter bodies 8 to 11 produced in Examples 5 and 6 into a furnace, they were heated to 500 ° C. at a heating rate of 20 ° C./min, and SO Three Nitrogen gas containing 1,000 ppm was flowed at 2 liters / minute for 50 hours.
This catalyst was treated in the same manner as in Example 7 with CO, C Three H 8 , SO 2 The results of measuring the oxidation reaction activity and the smoke combustion temperature are shown in Table 5 below.
[0052]
[Table 5]
Figure 0003800349
[0053]
As shown in Table 5 above, the filter medium or filter body produced with YK-R alone has not only excellent smoke combustion performance than the existing filter medium or filter body, but also has thermal stability at high temperatures. It can be seen that the chemical stability due to sulfur oxides is excellent, and in fact, it has excellent durability as a catalyst for removing particulate matter from diesel vehicles.
[0054]
Example 10 Production of catalyst body from YK-R
After carrying | supporting so that a catalyst metal content might be 1 wt% using the chloroplatinic acid aqueous solution with respect to the filter media 1-7 and the filter bodies 8-11 which were manufactured in said Example 5 and 6, respectively, at 120 degreeC. After drying for 12 hours, catalyst bodies 12 to 22 were produced by calcination to 500 ° C. for 2 hours at a heating rate of 20 ° C./min.
[0055]
Example 11 Reaction test (catalyst)
For the catalyst bodies 12 to 22 produced in Example 10, the same methods as in Example 7 were used. Three H 8 And SO 2 The conversion rate and smoke combustion temperature were measured, and the results are shown in Table 8 below.
[0056]
Example 12 Durability evaluation at high temperature (catalyst)
Catalyst materials 12 to 22 produced in Example 10 were calcined in air at 600 ° C. for 7 days. These catalyst bodies were treated in the same manner as in Example 7 with CO, C Three H 8 And SO 2 The oxidation reaction and the soot combustion test were conducted, and the results are shown in Table 6 below.
[0057]
Example 13 Chemical stability evaluation for sulfur oxide (catalyst)
The catalyst bodies 12 to 22 prepared in Example 10 were SO treated at 400 ° C. for 7 days. 2 Firing in dry air containing 200 ppm. These catalysts were prepared in the same manner as in Example 7 with CO, C Three H 8 , SO 2 An oxidation reaction and a soot combustion test were conducted, and the results are shown in Table 6 below.
[0058]
[Table 6]
Figure 0003800349
[0059]
As shown in Table 6, the filter medium manufactured from the waste catalyst or the catalyst body manufactured using the deposition support body burns the particulate matter even at a very low temperature as compared with the conventional catalyst body, and the filter medium. It can be seen that it has an excellent catalytic effect to regenerate, and has excellent thermal stability at high temperatures and chemical stability against sulfur oxides.
[0060]
Example 14 Manufacture of catalyst bodies for engine testing
After depositing 100 g per liter of deposition support as shown in Table 7 below on a product name EX-54 ceramic single body filter manufactured by Corning, USA, the metal content becomes 1 wt% based on the deposition support. Thus, a catalytic metal was supported. This was dried at 120 ° C. for 12 hours and then calcined in air at 500 ° C. for 2 hours to produce six catalyst bodies 1 to 6.
In order to evaluate the durability of the catalyst bodies, the catalyst bodies 2 and 4 were aged at 800 ° C. for 7 days, and SO 2 In order to investigate the poisoning resistance, catalyst bodies 3, 5 and 6 were subjected to 200 ppm SO for 7 days at 200 ° C. 2 Exposed to.
[0061]
[Table 7]
Figure 0003800349
[0062]
Example 15. Evaluation of regeneration performance of catalyst body
After the catalyst body produced in Example 14 was mounted on a Petter AV-B supercharged single cylinder diesel engine of Petters Ltd., UK, an operating speed of 2250 rpm and a cooling water temperature The engine bypass valve is closed and the filtration trap valve is opened at 100 ° C., oil temperature 90 ° C., oil pressure 2.5 bar, air input pressure 2230 mbar, and computer operation conditions. When the throttle was opened slightly and the regeneration phenomenon did not occur, the regeneration of the catalyst body was experimented while further increasing the exhaust temperature by opening the throttle further. When regeneration occurs, the collected particulate matter burns due to catalytic ignition, the back pressure of the engine exhaust pipe decreases, and the temperature at the rear end of the filter trap rises.
[0063]
Also, the content of sulfur trioxide in the exhaust gas is determined by ionic liquid phase chromatography by collecting a certain amount of exhaust gas with a vacuum pump for 2 minutes in a mixed solution with a volume ratio of isopropyl alcohol and water of 60:40. Comparison and analysis with standard solution.
With the above test method, the sulfur trioxide discharge amount at the regeneration temperature was measured for the six catalyst bodies manufactured in Example 14, and the results are shown in Table 8 below.
[0064]
[Table 8]
Figure 0003800349
[0065]
In Table 8, the catalyst bodies 1, 2, and 3 are compared, and the activity of the catalyst body produced from YK-R-1 does not decrease even when exposed to high temperature or sulfur oxide for a long time. It can be seen that it has excellent durability.
Further, when the catalyst bodies 2 and 4 are compared, the catalyst body 2 produced from YK-R-1 has a lower regeneration temperature than the catalyst body 4 produced from titania when exposed at a high temperature for a long time. And sulfur oxide emissions.
[0066]
Further, when the catalyst bodies 3, 5 and 6 are compared, the catalyst body 3 produced from YK-R-1 is produced from alumina when exposed to sulfur oxide for a long time. It can be seen that it has a lower regeneration temperature and sulfur oxide emission than
As described above, the catalyst body manufactured from YK-R-1 has an excellent catalytic effect of regenerating the filter medium by burning particulate matter even at a very low temperature as compared with the conventional catalyst body. It can be seen that the thermal stability and chemical stability against sulfur oxides are excellent, and in fact, they exhibit excellent performance as a catalyst for removing particulate matter even under the operating conditions of diesel vehicles.
[0067]
【The invention's effect】
When the filter medium manufactured by YK-R by the above method or the catalyst body containing the filter body is attached to the filter device and the particulate matter of the diesel vehicle is removed, the combustion performance against the particulate matter is excellent. In addition, the thermal stability at high temperatures and the chemical stability against sulfur oxides generated during diesel combustion are excellent, and the performance of removing particulate matter from diesel vehicles can be maintained for a long time. Suitable for removal of particulate matter.
[Brief description of the drawings]
FIG. 1 shows sintering conditions during production of a filter medium 3 of Example 5.

Claims (16)

バナジウム80%以下、モリブデン80%以下、ニッケル20%以下、コバルト30%以下、アルミナ99%以下、及び通常の原油精製時に包含される微量不純物を含むディーゼルエンジンの粒子状物質除去のための廃触媒組成物の製造方法であって、下記段階(i)及び(ii)を含む方法。Waste catalyst for removing particulate matter from diesel engines containing vanadium 80% or less, molybdenum 80% or less, nickel 20% or less, cobalt 30% or less, alumina 99% or less, and trace impurities included in normal crude oil refining A method for producing a composition comprising the following steps (i) and (ii):
(i)重質油分解施設の脱硫工程から排出された廃触媒を400〜1000℃で0.5〜5時間加熱処理する段階、(I) heat treating the waste catalyst discharged from the desulfurization process of the heavy oil cracking facility at 400 to 1000 ° C. for 0.5 to 5 hours;
(ii)加熱処理した廃触媒を100〜800メッシュに粉砕する段階(Ii) pulverizing the heat-treated waste catalyst to 100-800 mesh
請求項1に記載の方法により製造された廃触媒組成物を単独で、又はこの廃触媒組成物と濾過材製造用粉末との混合物質を含むスラリーを製造する段階、A step of producing a slurry containing the waste catalyst composition produced by the method according to claim 1 alone or a mixed material of the waste catalyst composition and a powder for producing a filter medium,
前記スラリーを濾過材構造に成形する段階、及びForming the slurry into a filter media structure; and
前記濾過材構造物を400〜1000℃で焼結する段階を含むことを特徴とするディーゼルエンジン粒子状物質除去用濾過材の製造方法。A method for producing a filter material for removing particulate matter from a diesel engine, comprising the step of sintering the filter material structure at 400 to 1000 ° C.
前記濾過材製造用粉末がコージアライト、ムライト、ジルコニア及びシリカから成る群から選ばれる少なくともThe filter material producing powder is at least selected from the group consisting of cordierite, mullite, zirconia and silica. 11 種であることを特徴とする請求項2または3に記載のディーゼルエンジンの粒子状物質除去用濾過材の製造方法。The method for producing a filter material for removing particulate matter from a diesel engine according to claim 2 or 3, wherein the seed material is a seed. 前記スラリー内で、前記廃触媒組成物と前記濾過材製造用粉末が、それぞれ10〜100%及び0〜90%の重量比で存在することを特徴とする請求項2〜4のいずれか1項に記載のディーゼルエンジンの粒子状物質除去用濾過材の製造方法。The waste catalyst composition and the filter material producing powder are present in the slurry at a weight ratio of 10 to 100% and 0 to 90%, respectively. The manufacturing method of the filter material for particulate matter removal of the diesel engine as described in 2. 前記濾過材構造物がセラミックフォーム、オープンフローハニカム、セラミックファイバフィルター、セラミックハニカム及びウォールフローハニカムモノリスから成る群から選ばれるThe filter media structure is selected from the group consisting of ceramic foam, open flow honeycomb, ceramic fiber filter, ceramic honeycomb and wall flow honeycomb monolith. 11 種であることを特徴とする請求項2記載のディーゼルエンジンの粒子状物質除去用濾過材の製造方法。The method for producing a filter material for removing particulate matter from a diesel engine according to claim 2, wherein the seed material is a seed. 請求項2〜5のいずれか一項の方法により製造されることを特徴とするディーゼルエンジン粒子状物質除去用濾過材。A filter material for removing particulate matter from a diesel engine, which is produced by the method according to any one of claims 2 to 5. 請求項1に記載の方法により製造された廃触媒組成物を単独で、又はこの廃触媒組成物と沈着支持体粉末との混合物質を水と混合した後、酸又は塩基と混合して沈着支持体スラリーを製造する段階、The waste catalyst composition produced by the method according to claim 1 alone, or a mixed material of the waste catalyst composition and the deposition support powder is mixed with water and then mixed with an acid or a base to support deposition. Producing a body slurry;
前記沈着支持体スラリーを濾過材構造物上に沈着させる段階、及びDepositing the deposition support slurry on a filter media structure; and
沈着させた濾過材構造物を400〜1000℃で焼結する段階を含むことを特徴とするディーゼルエンジン粒子状物質除去用沈着支持体が沈着された濾過材の製造方法。A method for producing a filter medium on which a deposit support for removing diesel engine particulate matter is deposited, comprising the step of sintering the deposited filter medium structure at 400 to 1000 ° C.
前記沈着支持体粉末がアルミナ、チタニア及びシリカから成る群から選ばれる少なくともAt least the deposition support powder is selected from the group consisting of alumina, titania and silica. 11 種であることを特徴とする請求項7記載のディーゼルエンジンの粒子状物質除去用沈着支持体が沈着された濾過材の製造方法。The method for producing a filter medium on which a particulate matter removal deposition support for a diesel engine according to claim 7 is deposited. 前記沈着支持体スラリー内で、前記廃触媒組成物と前記沈着支持体粉末が、それぞれ10〜100%及び0〜90%の重量比で存在することを特徴とする請求項7または8に記載のディーゼルエンジンの粒子状物質除去用沈着支持体が沈着された濾過材の製造方法。9. The waste catalyst composition and the deposition support powder are present in a weight ratio of 10 to 100% and 0 to 90%, respectively, in the deposition support slurry. The manufacturing method of the filter medium in which the deposition support body for particulate matter removal of a diesel engine was deposited. 前記濾過材構造物がセラミックフォーム、オープンフローハニカム、セラミックファイバフィルター、セラミックハニカム、メタルメッシュ、メタルフォーム、及びウォームフローハニカムモノリスから成る群から選ばれる少なくともThe filter medium structure is at least selected from the group consisting of ceramic foam, open flow honeycomb, ceramic fiber filter, ceramic honeycomb, metal mesh, metal foam, and warm flow honeycomb monolith. 11 種であることを特徴とする請求Claim characterized by the species 項7〜9のいずれか1項に記載のディーゼルエンジンの粒子状物質除去用沈着支持体が沈着された濾過材の製造方法。Item 10. A method for producing a filter medium on which the particulate matter removing deposition support body according to any one of Items 7 to 9 is deposited. 前記沈着支持体が濾過材構造物1リットル当たり5〜200g沈着されることを特徴とする請求項7〜10のいずれか1項に記載のディーゼルエンジンの粒子状物質除去用沈着支持体が沈着された濾過材の製造方法。11. The particulate matter removal deposition support for a diesel engine according to claim 7, wherein the deposition support is deposited in an amount of 5 to 200 g per liter of a filter medium structure. A method for producing a filter medium. 請求項7〜11項のいずれか一項の方法により製造されることを特徴とするディーゼルエンジン粒子状物質除去用沈着支持体が沈着された濾過材。A filter medium on which a deposition support for removing diesel engine particulate matter, which is produced by the method according to any one of claims 7 to 11, is deposited. 請求項2に記載の方法で製造された濾過材又は請求項7に記載の方法で製造された沈着支持体が沈着された濾過材上に、白金、パラジウム、ロジウムから成る群から選ばれる白金族金属成分を担持する段階、A platinum group selected from the group consisting of platinum, palladium, and rhodium on the filter medium produced by the method according to claim 2 or the filter medium on which the deposition support produced by the method according to claim 7 is deposited. Carrying a metal component;
前記金属成分が担持された濾過材を400〜1000℃で加熱、焼成する段階を含むディーゼルエンジン粒子状物質除去用触媒体の製造方法。A method for producing a catalyst body for removing particulate matter from a diesel engine, comprising the steps of heating and firing the filter medium carrying the metal component at 400 to 1000 ° C.
前記担持される金属成分の含量が、前記濾過材又は沈着支持体が沈着された濾過材1リットル当たり白金は0〜7.07g、パラジウムは0〜7.07g又はロジウムは0〜2gであり、これら金属の総量が0より大きいことを特徴とする請求項13記載のディーゼルエンジンの粒子状物質除去用触媒体の製造方法。The content of the supported metal component is 0 to 7.07 g of platinum, 0 to 7.07 g of palladium or 0 to 2 g of rhodium per liter of the filtering material on which the filtering material or the deposition support is deposited, The method for producing a catalyst body for removing particulate matter from a diesel engine according to claim 13, wherein the total amount of these metals is greater than zero. 前記金属と沈着支持体の重量比(白金族金属/沈着支持体)が0.001/1〜0.1/1であることを特徴とする請求項13記載のディーゼルエンジンの粒子状物質除去用触媒体の製造方法。14. For removing particulate matter from a diesel engine according to claim 13, wherein the weight ratio of the metal to the deposition support (platinum group metal / deposition support) is 0.001 / 1 to 0.1 / 1. A method for producing a catalyst body. 請求項13〜15のいずれか一項の方法により製造されることを特徴とするディーゼルエンジン粒子状物質除去用触媒体。A diesel engine particulate matter removing catalyst body manufactured by the method according to any one of claims 13 to 15.
JP13154595A 1994-05-30 1995-05-30 Catalyst composition for removing particulate matter from diesel vehicles Expired - Fee Related JP3800349B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019940011904A KR100389126B1 (en) 1994-05-30 1994-05-30 Preparation Method of Catalyst Composition for the Removal of Particulate Materials in the Exhaust of Diesel Vehicles
KR94-11904 1994-05-30

Publications (2)

Publication Number Publication Date
JPH07328445A JPH07328445A (en) 1995-12-19
JP3800349B2 true JP3800349B2 (en) 2006-07-26

Family

ID=19384141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13154595A Expired - Fee Related JP3800349B2 (en) 1994-05-30 1995-05-30 Catalyst composition for removing particulate matter from diesel vehicles

Country Status (3)

Country Link
JP (1) JP3800349B2 (en)
KR (1) KR100389126B1 (en)
DE (1) DE19519137A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602818B2 (en) * 2000-09-27 2003-08-05 Sk Corporation Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
KR100632591B1 (en) * 2000-12-16 2006-10-09 에스케이 주식회사 Catalyst composition for dioxin removal and preparation method thereof
CN1223404C (en) * 2001-02-13 2005-10-19 Sk株式会社 Catalyst for selective catalytic reduction of nitrogen oxides and preparing method
JP2004299966A (en) * 2003-03-31 2004-10-28 Ngk Insulators Ltd Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
DE102004054845A1 (en) 2004-11-12 2006-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Coated particle trap with nitrogen dioxide regeneration
CN113209983B (en) * 2021-05-19 2023-08-29 一重集团大连工程建设有限公司 Low-cost and high-efficiency flue gas desulfurization and denitrification catalyst and preparation method thereof

Also Published As

Publication number Publication date
KR950031233A (en) 1995-12-18
JPH07328445A (en) 1995-12-19
KR100389126B1 (en) 2003-11-01
DE19519137A1 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
US7431749B2 (en) Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same
KR960000023B1 (en) Catalyst for purification of exhaust gas from diesel engine
KR100942080B1 (en) Platinum-bismuth catalysts for treating engine exhaust
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
CN105909349A (en) Filter for filtering particulate matter (PM) from exhaust gas emitted from a compression ignition engine
EA014127B1 (en) Apparatus for treating diesel exhaust gases
JP2019529067A (en) Catalytic binder for filter substrate
CN109589960A (en) A kind of wall-flow type low precious metal content catalyst, preparation method and applications
US5763352A (en) Catalyst composition for the purification of the exhaust of diesel vehicles, catalyst using the same and preparing methods thereof
JP3800349B2 (en) Catalyst composition for removing particulate matter from diesel vehicles
KR960003793B1 (en) Catalyst filter for particle removal from diesel vehicle and the manufacturing process thereof
JPH07100380A (en) Production of catalyst body for removing particulate substance from diesel vehicle and removal of said particulate substance using said catalyst body
CN103861664B (en) A kind of diesel engine vent gas oxidation catalyst
JP5502885B2 (en) Oxidation catalyst suitable for burning light oil components
JP2016500331A (en) Zoned diesel oxidation catalyst
CN105126620B (en) Exhaust gas from diesel vehicle arrangement for catalytic purification
JP2788494B2 (en) Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure
JP2016131918A (en) Method for producing exhaust gas purification filter, exhaust gas purification filter, and exhaust gas purification device
JP3096466B2 (en) Purification method of diesel engine exhaust gas
JPS61129030A (en) Filter for collecting and purifying fine particles
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JPH10202103A (en) Oxidation catalyst for diesel engine and production thereof
JPH07313882A (en) Diesel engine exhaust gas purifying catalyst and its production
JPS61249542A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370