JPS6078640A - Catalyst for purifying exhaust gas and preparation thereof - Google Patents

Catalyst for purifying exhaust gas and preparation thereof

Info

Publication number
JPS6078640A
JPS6078640A JP58184559A JP18455983A JPS6078640A JP S6078640 A JPS6078640 A JP S6078640A JP 58184559 A JP58184559 A JP 58184559A JP 18455983 A JP18455983 A JP 18455983A JP S6078640 A JPS6078640 A JP S6078640A
Authority
JP
Japan
Prior art keywords
group
compound
catalyst
exhaust gas
metal selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58184559A
Other languages
Japanese (ja)
Other versions
JPH0442063B2 (en
Inventor
Koichi Saito
斉藤 皓一
Yasuo Ikeda
池田 康生
Katsunori Miyoshi
勝則 三好
Kiyoshi Yonehara
米原 潔
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58184559A priority Critical patent/JPS6078640A/en
Publication of JPS6078640A publication Critical patent/JPS6078640A/en
Publication of JPH0442063B2 publication Critical patent/JPH0442063B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for burning and removing fine carbonaceous particles in exhaust gas of an diesel engine, by dispersing and supporting copper, Na and platinum or the like by a porous inorg. substrate supported by a refractory three-dimensional structure before heat treatment. CONSTITUTION:A compound (a) containing at least one metal selected from a group consisting of copper, Mn, Mo, lead, iron, Co, V and Ag, a compound (b) containing at least one metal selected from a group consisting of Na, K and Cs and, further, a compound (c) containing at least one metal selected from a group consisting of platinum, Rh and Pd are dispersed in and supported by a porous inorg. substrate such as alumina supported by a refractory three-dimentional structure having gas filter function such as ceramic foam and heat treated at 700-1,000 deg.C. As a result, the title catalyst, wherein combustion behavior of fine particles is good in an engine exhaust gas temp. range and the rising in pressure loss is slow as well as combustion regeneration is rapidly generated from the catalyst reaches a predetermined exhaust gas temp., is obtained.

Description

【発明の詳細な説明】 本発明はディーゼルエンジンからの排ガス浄化用触媒お
よびその製法に関する。詳しく述べると本発明はディー
ゼルエンジン排ガス中に存在する炭素系微粒子を燃焼せ
しめて除去する性能にすぐれたディーゼルエンジン排ガ
ス浄化用触媒およびその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for purifying exhaust gas from a diesel engine and a method for producing the same. Specifically, the present invention relates to a catalyst for purifying diesel engine exhaust gas that has excellent performance in burning and removing carbon-based particulates present in diesel engine exhaust gas, and a method for producing the same.

近年ディーゼルエンジン排気ガス中の微粒子状物質(主
として固体状炭素微粒子、硫酸塩など硫黄系微粒子、そ
して、液状ないし固体上の高分子量炭化水素微粒子など
よりなる)が環境衛生上問題化する傾向にある。これら
微粒子はその粒子径がほとんど1ミクロン以下であり、
大気中に浮遊しやすく呼吸により人体内に取り込まれや
すいためである。したがってこれら微粒子のディーゼル
エンジンからの排出規制を厳シくシていく方向で検討が
進められている。
In recent years, particulate matter in diesel engine exhaust gas (mainly consisting of solid carbon particles, sulfur-based particles such as sulfates, and high molecular weight hydrocarbon particles in liquid or solid form) has tended to become an environmental health problem. . Most of these fine particles have a particle size of 1 micron or less,
This is because they easily float in the atmosphere and are easily taken into the human body through breathing. Therefore, studies are underway to tighten the regulations on emissions of these particulates from diesel engines.

ところで、これら微粒子の除去方法としては、性ガスフ
ィルター(セラミックフオーム、ワイヤーメツシュ、金
属発泡体、目封じタイプのセラミックハニカ□ムなど)
を用いて排ガスを濾過して微粒子を捕捉し、圧損が上昇
すればバーナーなどで蓄積した微粒子を燃焼せしめて、
フィルターを再生する方法と、他はこの耐熱性ガスフィ
ルター椙造を持つ担体に触媒物質を担持させp過操作と
とも忙、燃焼操作も行なわせて、上記燃焼再生の頻度を
少なくするとか、再生の必要のないほどに触媒の燃焼活
性を高める方法である。
By the way, as a method for removing these particulates, there are gas filters (ceramic foam, wire mesh, metal foam, sealed type ceramic honeycomb, etc.)
is used to filter the exhaust gas and capture particulates, and if the pressure drop increases, the accumulated particulates are combusted with a burner, etc.
In addition to the method of regenerating the filter, there is also a method of supporting a catalyst material on a carrier having this heat-resistant gas filter structure, and performing a combustion operation as well as a heating operation to reduce the frequency of the combustion regeneration. This method increases the combustion activity of the catalyst to such an extent that it is not necessary.

前者の場合、微粒子の除去効果を高めれば高めるtデど
圧損上昇が早く再生頻度も多くなシ、焼型であり経済的
にも著しく不利となるであろう。それにくらべ後者の方
法は、ディーゼルエンジン排気ガスの排出条件(ガス組
成および温度)において触媒活性を維持しうる触媒物質
が採用されるならばはるかに優れた方法と考えられる。
In the former case, if the removal effect of fine particles is enhanced, the pressure drop will increase rapidly, and the baking mold will have to be regenerated frequently, which will be economically disadvantageous. In comparison, the latter method is considered to be a much better method if a catalytic material that can maintain catalytic activity under the exhaust conditions (gas composition and temperature) of diesel engine exhaust gas is employed.

しかしながらディーゼルエンジンの排気ガス温度はガソ
リンエンジンの場合と比較して格段に低く、シかも燃料
として軽油を用いるために該排ガス中にはS02量も多
い。したがってサルフェート(SO7かさらに酸化され
てSO3や硫酸ミストとなったもの)生成能がほとんど
なく、かつ通常のエンジンの走行条件下で得られる温度
内で蓄積した微粒子を良好に着火燃焼させる性能の触媒
が要求されるにもかかわらず、今迄この条件に十分に適
合する触媒は提案されていないのが現状である。
However, the exhaust gas temperature of a diesel engine is much lower than that of a gasoline engine, and since light oil is used as fuel, the amount of S02 in the exhaust gas is also large. Therefore, the catalyst has almost no ability to generate sulfate (SO7, which is further oxidized to SO3 or sulfuric acid mist), and has the ability to successfully ignite and burn accumulated particulates within the temperature range obtained under normal engine running conditions. However, to date, no catalyst has been proposed that satisfies this requirement.

本発明はこの要求を満足せしめる触媒を提供することを
目的とする。具体的には通常の布中走行時に得られるデ
ィーゼルエンジン排気ガス温度範囲で微粒子の燃焼挙動
が良く圧損上昇がゆるやかでかつ所定の排ガス温度に達
したら、すみやかに燃焼再生が起るディーゼルエンジン
排ガス浄化用触媒を提供することを目的とする。
The object of the present invention is to provide a catalyst that satisfies this requirement. Specifically, the diesel engine exhaust gas purification method has good combustion behavior of particulates within the diesel engine exhaust gas temperature range obtained during normal running in cloth, and has a gradual increase in pressure drop, and when a predetermined exhaust gas temperature is reached, combustion regeneration occurs quickly. The purpose is to provide a catalyst for

すなわち、本発明は以下の如く特定される。That is, the present invention is specified as follows.

(1)耐火性のモノリス担体上に被覆せしめられてなる
多孔性無機質基盤上に、(、)銅、マンガン、モリブデ
ン、鉛、鉄、コバルト、バナジウムおよび銀よりなる群
から選ばれた少なくとも1種の金属の化合物と(b)ナ
トリウム、カリウムおよびセシウムよりなる群から選ば
れた少なくとも1種の金属の化合物とさらK (c)白
金、ロジウムおよびパラジウムよりなる群から選ばれた
少なくとも1種の金属の化合物とを分散担持せしめてな
る排ガス浄化用触媒。
(1) At least one member selected from the group consisting of copper, manganese, molybdenum, lead, iron, cobalt, vanadium, and silver on a porous inorganic base coated on a refractory monolithic carrier. (b) a compound of at least one metal selected from the group consisting of sodium, potassium, and cesium; and (c) at least one metal selected from the group consisting of platinum, rhodium, and palladium. An exhaust gas purification catalyst comprising a dispersed support of a compound.

(2) (a)および(b)群で示される化合物が、モ
ル比で(a)/(b) = 0.25〜9.0 、好ま
しくは0.4〜5の範囲であl> 、 (b)および(
c)群で示される化合物がモル比で(b)/(c) =
 4〜s o、好ましくは8〜50の範囲である(1)
記載の触媒。
(2) The compounds represented by groups (a) and (b) have a molar ratio of (a)/(b) = 0.25 to 9.0, preferably 0.4 to 5, (b) and (
The molar ratio of the compounds in group c) is (b)/(c) =
4 to so, preferably 8 to 50 (1)
Catalysts as described.

(3)完成触媒iIl当り多孔性無機質基盤が酸化物と
して5〜250f、好ましくは10〜200? 、(a
)群で示される化合物が酸化物として2〜100F、好
ましくは4〜501、(b)群で示される化合物が酸化
物として2〜1001、好ましくは4〜50t1さらに
(c)群で示される化合物が金属元素として0.1〜4
.Of、好ましくは0.3〜3.Ofの範囲含有せしめ
られてなる(1)または(2)記載の触媒。
(3) The porous inorganic substrate has an oxide content of 5 to 250 f, preferably 10 to 200 f, per finished catalyst iI. , (a
) The compound represented by group (b) has an oxide of 2 to 100 F, preferably 4 to 501, the compound represented by group (b) has an oxide of 2 to 100 F, preferably 4 to 50 F, and the compound represented by group (c) is 0.1 to 4 as a metal element
.. Of, preferably 0.3 to 3. The catalyst according to (1) or (2), which contains a range of Of.

(4)無機質担体上に(、)銅、マンガン、モリブデン
、鉛、鉄、コバルト、バナジウムおよび銀よシなる群か
ら選ばれた少なくとも1種の金属を含む化合物と(b)
ナトリウム、カリウムおよびセシウムよりなる群から選
ばれた少々くとも1種の金属を含む化合物とさらに(c
)白金、ロジウムおよびパラジウムよりなる群から選ば
れた少なくとも1種の金属を含む化合物とを分散担持せ
しめ、これを700〜1000℃の範囲の温度で熱処理
することを特徴とする排ガス浄化用触媒の製法。
(4) a compound containing at least one metal selected from the group consisting of copper, manganese, molybdenum, lead, iron, cobalt, vanadium, and silver on an inorganic carrier; and (b)
A compound containing at least one metal selected from the group consisting of sodium, potassium and cesium;
) A catalyst for exhaust gas purification, characterized in that a compound containing at least one metal selected from the group consisting of platinum, rhodium and palladium is dispersed and supported, and the catalyst is heat-treated at a temperature in the range of 700 to 1000°C. Manufacturing method.

本発明者らはディーゼルエンジンからの排ガス温度が格
段に低く、市中走行時排ガス温度はマンホールド出口で
も450℃に遠しないことから350℃以下でも炭素系
微粒子の燃焼挙動が良く、圧平衡温度(微粒子の蓄積に
よる圧力上昇と微粒子の燃焼による圧力降下とが等しく
なる温度)が330〜350℃と低く、蓄積微粒子が4
00℃以下で燃焼開始して圧損が急激に下がる触媒でか
つサルフェートの生成が450℃でもほぼ認められない
特性を有する触媒系を見い出した。
The present inventors found that the exhaust gas temperature from a diesel engine is extremely low, and the exhaust gas temperature during city driving is not far from 450°C even at the manhold exit, so the combustion behavior of carbon-based particulates is good even below 350°C, and the pressure equilibrium temperature (The temperature at which the pressure increase due to the accumulation of fine particles is equal to the pressure drop due to the combustion of fine particles) is as low as 330 to 350°C, and the accumulated fine particles are 4
We have discovered a catalyst system that starts combustion at temperatures below 00°C and exhibits a rapid drop in pressure drop, and has the characteristic that almost no sulfate formation is observed even at 450°C.

通常、卑金属だけを用いた触媒では微粒子の燃焼挙動は
、所定の、温度に達するまでは、圧損上昇が早く、通常
の走行条件下で該再生温度に達しない場合は、外部から
の強制再生を頻度高く行なう必要がちり実用性に欠けて
いる。一方貴金属を添加した触媒の場合、−酸化炭素(
CO)。
Normally, in catalysts using only base metals, the combustion behavior of fine particles is such that the pressure drop increases quickly until a predetermined temperature is reached, and if the regeneration temperature is not reached under normal running conditions, forced regeneration from the outside is required. It is not practical because it needs to be done frequently. On the other hand, in the case of a catalyst containing noble metals, -carbon oxide (
CO).

炭化水素類(HC)の酸化性能は具備しているが同時に
802の酸化も起シ、サルフェートが生成し好ましくな
い。しかし、低温領域でも微粒子中の燃え易い成分が一
部燃えるため圧損上昇はゆるやかであシ、圧平衡温度も
卑金属だけを用いた場合よりも低い。
Although it has the ability to oxidize hydrocarbons (HC), it also oxidizes 802, producing sulfate, which is undesirable. However, even in the low-temperature region, some of the combustible components in the fine particles burn, so the increase in pressure drop is gradual, and the pressure equilibrium temperature is also lower than when only base metals are used.

本発明は上記の欠点を補い、かつ各触媒成分の持つ利点
を損なうことのない触媒組成物を提供するものである。
The present invention provides a catalyst composition that compensates for the above-mentioned drawbacks and does not impair the advantages of each catalyst component.

本発明者らの知見によると、無機質基盤上に分散担持せ
しめられた上記触媒成分において、(b)群のアルカリ
金属は(c)群の貴金属に対し極めて密接に作用し、元
来具有するサルフェート生成能を有効に抑える効果を発
揮する。もちろん(b)群のアルカリ金属にも(、)群
金属と同様の微粒子の燃焼性能を認めている。とくにア
ルカリ金属と貴金属との担持焼成が700〜1000℃
という高温で行なわれるとき、効果が十分に発揮される
。しかもその共存する割合がアルカリ金属/貴金属(モ
ル比)で4〜80の範囲、好ましくは8〜50の範囲の
ときサルフェート生成能が最も抑制されることが知見さ
れたのでちる。
According to the findings of the present inventors, in the above catalyst component dispersed and supported on an inorganic substrate, the alkali metal of group (b) acts extremely closely on the noble metal of group (c), and the sulfate that originally contains Demonstrates the effect of effectively suppressing generation capacity. Of course, the alkali metals of group (b) are also recognized to have the same fine particle combustion performance as the metals of group (,). In particular, supporting firing of alkali metals and noble metals is carried out at 700 to 1000℃.
The effect is fully demonstrated when the process is carried out at high temperatures. Moreover, it has been found that the ability to generate sulfate is most suppressed when the coexisting ratio of alkali metal/noble metal (molar ratio) is in the range of 4 to 80, preferably in the range of 8 to 50.

本発明が使用する無機質基盤とは通常担体基盤として用
いられるアルミナ、シリカ、チタニア、ジルコニア、シ
リカ−アルミナ、アルミナ−ジルコニア、アルミナ−チ
タニア、シリカ−チタニア、シリカ−ジルコニア、チタ
ニア−ジルコニア等が好適に用いられるが、これらに限
定されるものではない。
The inorganic base used in the present invention is preferably alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, etc., which are usually used as carrier bases. but are not limited to these.

本発明Kかかる触媒の調製法を具体的に示すと以下の如
くである。まず上記無機質基盤をガスフィルター型構造
を有する3次元構造体(たとえば、セラミックフオーム
、ワイヤーメツシュ、金属発泡体、目封じタイプのセラ
ミックハニカム)にスラリー化してウォッシュコードン
て担持層を形成せしめ、銅、マンガン、モリブデン、鉛
、鉄、コバルト、バナジウム、銀よりなる群から選ばれ
た少なくとも1種の金属を含む化合物、カリウム、セシ
ウム、ナトリウムよりなる群から選ばれた少なくとも1
種の金属を含む化合物さらに白金、ロジウム、パラジウ
ムよりなる群から選ばれた少なくとも1種の金属を含む
化合物を、水性ないし有機溶媒(アルコールなど)性の
溶液または分散液の形で含浸または浸漬法により担持さ
せる。上記化合物は酸化物、水酸化物、硝酸塩、炭酸塩
、リン酸塩、硫酸塩、ハロゲン化物、金属酸塩などの無
機化合物ないし酢酸塩、ギ酸塩などのカルボン酸塩や錯
化合物などの有機化合物のなかから適宜選択されるが、
水やアルコール性有機溶媒に溶解しやすいものの使用が
好ましい。
A specific method for preparing such a catalyst according to the present invention is as follows. First, the above-mentioned inorganic base is slurried into a three-dimensional structure having a gas filter type structure (for example, ceramic foam, wire mesh, metal foam, sealed type ceramic honeycomb) and washed with a wash cordon to form a support layer. A compound containing at least one metal selected from the group consisting of copper, manganese, molybdenum, lead, iron, cobalt, vanadium, and silver, at least one selected from the group consisting of potassium, cesium, and sodium.
Impregnation or immersion method with a compound containing a certain metal and a compound containing at least one metal selected from the group consisting of platinum, rhodium, and palladium in the form of an aqueous or organic solvent (alcohol etc.) solution or dispersion. It is carried by The above compounds include inorganic compounds such as oxides, hydroxides, nitrates, carbonates, phosphates, sulfates, halides, and metal salts, and organic compounds such as carboxylates and complex compounds such as acetates and formates. Appropriate selection is made from among
It is preferable to use a material that is easily soluble in water or an alcoholic organic solvent.

また、あらかじめ無機質基盤形成物と各触媒成分群とを
混合処理し、これをウォッシュコートし乾燥し焼成して
完成触媒とする方法も採用でき、これらの折衷方法も適
宜採用される。
It is also possible to adopt a method in which the inorganic base material and each catalyst component group are mixed in advance, washed coated, dried, and fired to obtain a finished catalyst, and a compromise between these methods can also be adopted as appropriate.

以下、実施例および比較例を示し本発明をさらに詳しく
説明する。
Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples.

実施例1 アルミナ粉末1kl?に白金(Pi)として12.86
Fを含有するジニトロジアンミン白金の硝酸溶液とロジ
ウム(ah)として1.2869を含有する硝酸ロジウ
ム水溶液を添加して充分混合し150℃で3時間乾燥後
500℃で2時間焼成し、粉砕してPt、Rhを含有す
るアルミナ粉末を得た。
Example 1 Alumina powder 1kl? 12.86 as platinum (Pi)
A nitric acid solution of dinitrodiammine platinum containing F and a rhodium nitrate aqueous solution containing 1.2869 as rhodium (ah) were added and mixed thoroughly, dried at 150°C for 3 hours, calcined at 500°C for 2 hours, and crushed. Alumina powder containing Pt and Rh was obtained.

該粉体を湿式ミルを用いてスラリー化して担持し、市販
のコージェライト発泡体(嵩密度o、35を含有するア
ルミナコート層を有するコージェ次に硝酸鉛265gと
硝酸セシウム124.4Fをイオン交換水に溶解させ2
1とした。これに該発泡体を浸漬し余分な溶液を振り切
って。
The powder was made into a slurry using a wet mill and supported, and then ion-exchanged with 265 g of lead nitrate and 124.4 F of cesium nitrate. Dissolve in water 2
It was set to 1. Dip the foam into this and shake off the excess solution.

150℃で3時間乾燥後750℃で2時間焼成した。After drying at 150°C for 3 hours, it was fired at 750°C for 2 hours.

この時のPt、Rhの担持量はo、sor/l−担体。The amount of Pt and Rh supported at this time is o, sor/l-carrier.

0.09r/A’−担体、鉛、セシウムの担持量は酸化
物換算テソれぞれ20f/’l−担体、 10 t/l
−担体であった。出来上りのコート層の組成はアルミナ
69.3重量%、PbO19,8重量%、C8!09.
9重量%、Pt十几h(Pt/肺= ”/1) 0.9
9重量%であった。
The supported amount of 0.09r/A'-carrier, lead, and cesium is 20f/'l-carrier, 10 t/l in oxide equivalent Teso, respectively.
- It was a carrier. The composition of the finished coat layer was 69.3% by weight of alumina, 19.8% by weight of PbO, and C8!09.
9% by weight, Pt 10 h (Pt/lung = ”/1) 0.9
It was 9% by weight.

実施例2 チタンをTiO2として959f含む四塩化チタン10
重量−の水溶液に、ケイ素を8i01として1B0.2
f含有するスノーテックス−〇(20重量%含有品)と
28チアンモニア水、約3.91の混合溶液を攪拌下添
加し、生成したケーキをp過水洗し150℃で5時間乾
燥後500℃で2時間條成した。該焼成品を粉砕して、
T s OH/5i025i02/2のチタニア−シリ
カ粉体をえた。表面積は160 n? / fであった
Example 2 Titanium tetrachloride 10 containing 959f titanium as TiO2
Weight of silicon in an aqueous solution of 8i01 and 1B0.2
A mixed solution of about 3.91 of Snowtex-○ (containing 20% by weight) containing f and 28 thiammonia water was added under stirring, and the resulting cake was washed with p water, dried at 150°C for 5 hours, and then heated to 500°C. It took two hours. Crush the fired product,
A titania-silica powder of T s OH/5i025i02/2 was obtained. The surface area is 160 n? /f.

次に、硝酸銅cu(No、)、−3H,0868tと硝
酸カリウムKN0.30 ? 9%Ptとして12.8
6fを含有する塩化白金酸水溶液とRhとして1,28
6Fを含有する塩化ロジウム水溶液を混合して約11の
溶液として、これに上記チタニア−シリカ粉体1ゆを混
合して、均一に分散させた。150℃3時間乾燥後、5
00℃で2時間焼成して粉砕しCuO、K2O、Pt 
、几りを含有するチタニア−シリカ粉体をえた。
Next, copper nitrate cu(No, ), -3H,0868t and potassium nitrate KN0.30? 12.8 as 9% Pt
Chloroplatinic acid aqueous solution containing 6f and 1,28 as Rh
An aqueous rhodium chloride solution containing 6F was mixed to obtain a solution of about 11, and 1 volume of the titania-silica powder was mixed therewith and uniformly dispersed. After drying at 150℃ for 3 hours, 5
Calcined at 00℃ for 2 hours and crushed to produce CuO, K2O, Pt
, a titania-silica powder containing slenderness was obtained.

該粉体1kl?を湿式ミルでスラリー化して1.71容
量のコージェライト発泡体に浸漬担持し、余分なスラリ
ーを取シ除いた後、150℃で3時間乾燥し、SOO℃
で2時間焼成した。
1kl of the powder? was made into a slurry using a wet mill, immersed and supported on a 1.71 volume cordierite foam, and after removing the excess slurry, it was dried at 150°C for 3 hours to form a SOO°C
It was baked for 2 hours.

この時のチタニア−シリカの担持量は、709/l−担
体で、Pt、Rhの担持量はそれぞれ0.90f/l−
担体、 0.09 f/13−担体であシ、銅およびカ
リウムは酸化物換算でそれぞれ2oy/l−担体、10
 f / l−担体であった。
The amount of titania-silica supported at this time was 709/l-carrier, and the amount of supported Pt and Rh was 0.90 f/l- each.
The carrier is 0.09 f/13-carrier, copper and potassium are each 2 oy/l-carrier and 10
f/l-carrier.

出来上りのコート層の組成はチタニア−シリカ69.3
 ”fr(量’Is、CuO19,8重N%、K、09
.9重量%、Pt + Rh (Pjt/Rh−10/
1 ) 0.99重量%でらった。
The composition of the finished coat layer is titania-silica 69.3
"fr (Amount 'Is, CuO19, 8 weight N%, K, 09
.. 9% by weight, Pt + Rh (Pjt/Rh-10/
1) 0.99% by weight.

実施例3 実施例1、実施例2に順じた方法で下記の触媒組成のコ
ート層を有するコージェライト発泡体からなる触媒をえ
た。
Example 3 A catalyst made of a cordierite foam having a coating layer having the following catalyst composition was obtained by a method according to Examples 1 and 2.

()内数字は各成分の担持量(t/It−担体)を示す
The numbers in parentheses indicate the supported amount of each component (t/It-carrier).

比較例1 一担体、Pb020 f / l−担体、Cs2010
t/1−担体、担持したコージェライト発泡体触媒をえ
た。
Comparative Example 1 One carrier, Pb020 f/l- carrier, Cs2010
A t/1-support, supported cordierite foam catalyst was obtained.

比較例2 実施例Iにおいてセシウムを用いない以外社会て同じ方
法で触媒を調製し、kl、0370 t /1−担体、
Pb020 t/l−担体、pt o、sor/J −
−担体、Rh 0.09 f / l−担体、担持した
コージェライト発泡体をえた。
Comparative Example 2 A catalyst was prepared in the same manner as in Example I except that cesium was not used, and kl, 0370 t/1-support,
Pb020 t/l-carrier, pto, sor/J-
-Support, Rh 0.09 f/l -Support, supported cordierite foam was obtained.

比較例3 実施例2において、硝酸銅を用いない以外は全て同じ方
法で触媒を調製し、チタニア−シリカ70t/13−担
体、KtO10f/11−担体、Pto、9ot/l−
担体、Rh 0.09 f / lj−担体、担持した
コージェライト発泡体をえた。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 2 except that copper nitrate was not used, and titania-silica 70t/13-support, KtO 10f/11-support, Pto, 9ot/l-
A carrier, Rh 0.09 f/lj-supported cordierite foam was obtained.

比較例4 実施例1において最終の焼成温度を600℃に替える以
外は全て同じ方法で触媒を調製した。
Comparative Example 4 A catalyst was prepared in the same manner as in Example 1 except that the final calcination temperature was changed to 600°C.

実施例4 実施例1において、コージェライト発泡体をハニカム構
造体で両端面の隣接する各孔を互い違いに閉塞させ、隔
壁からのみガスを通過させるようにした目封じタイプの
ハニカムに替える以外は、全く同様の不法で触媒を調製
した。
Example 4 In Example 1, except that the cordierite foam was replaced with a sealed type honeycomb in which adjacent holes on both end faces were alternately closed with a honeycomb structure to allow gas to pass only from the partition wall. A catalyst was prepared illegally in exactly the same way.

実施例5 実施例1〜4、比較例1〜2で見られた触媒について、
排気i2300cc、 4気筒デイーゼルエンジンを用
いて触媒の評価試験を行なった。
Example 5 Regarding the catalysts found in Examples 1 to 4 and Comparative Examples 1 to 2,
A catalyst evaluation test was conducted using a 4-cylinder diesel engine with an exhaust of 2300 cc.

エンジン回転数2500y’pm、トルク4.0 kg
 ・mの条件で微粒子の捕捉約2時間を行ない、次いで
、トルクをo、sky・m間隔で5分毎に上昇させて、
触媒層の圧損変化を連続的に記録し、微粒子が触媒上で
排ガス温度上昇に伴ない、微粒子の蓄積による圧力上昇
と微粒子の燃焼による圧力降下とが等しくなる温度(T
e )と着火燃焼し、圧損が急激に下降する温度(Ti
)をめた。また2 500 rpm、トルク4.okg
amで微粒子を捕捉する場合の圧損の経時変化を1時間
あたりの圧損変化量をチャートから計算してΔP (t
tmllg /H)の値をめた。
Engine speed 2500y'pm, torque 4.0kg
・Particle capture was carried out for about 2 hours under the conditions of m, and then the torque was increased every 5 minutes at o, sky・m intervals,
The change in pressure drop in the catalyst layer is continuously recorded, and as the temperature of the exhaust gas increases as the particulates move on the catalyst, the temperature (T
The temperature at which Ti
). Also 2 500 rpm, torque 4. OKG
The change in pressure drop over time when capturing particulates with am
The value of tmllg/H) was calculated.

丈SO6のSO8への転化率を排ガス温度450℃でめ
た。S02の転化率は入口ガス、出口ガスのSO,濃度
を非分散型赤外分析計(NDIR法)で分析し、次の算
出式よりSO,の転化率(銹をめた。
The conversion rate of SO6 to SO8 was determined at an exhaust gas temperature of 450°C. The conversion rate of SO2 was calculated by analyzing the SO concentration of the inlet gas and outlet gas using a non-dispersive infrared analyzer (NDIR method), and calculating the conversion rate of SO2 using the following calculation formula.

結果を次の表−1に示す。The results are shown in Table 1 below.

第1頁の続き ■Int、CI、4 識別記号 庁内整理番号// B
 01 D 46102 7636−4D@発 明 者
 小 野 哲 嗣 尼崎市東園田町53−1
Continuing from page 1 ■Int, CI, 4 Identification code Internal office reference number // B
01 D 46102 7636-4D@Inventor Satoshi Ono 53-1 Higashisonoda-cho, Amagasaki City

Claims (5)

【特許請求の範囲】[Claims] (1) ガスフィルター機能を有する耐火性3次元構造
体上に担持せしめられた多孔性無機質基盤上に、(a)
銅、マンガン、モリブデン、鉛、鉄、コバルト、バナジ
ウムおよび銀よりなる群から選ばれた少なくとも1種の
金属の化合物と(b)ナトリウム、カリウムおよびセシ
ウムよシなる群から選ばれた少なくとも1種の金属の化
合物とさらに(c)白金、ロジウムおよびパラジウムよ
シなる群から選ばれた少なくとも1種の金属の化合物と
を分散担持せしめてなる排ガス浄化用触媒。
(1) On a porous inorganic base supported on a refractory three-dimensional structure having a gas filter function, (a)
(b) at least one metal compound selected from the group consisting of copper, manganese, molybdenum, lead, iron, cobalt, vanadium and silver; and (b) at least one metal compound selected from the group consisting of sodium, potassium and cesium. An exhaust gas purifying catalyst comprising a metal compound and (c) a compound of at least one metal selected from the group consisting of platinum, rhodium and palladium.
(2) (−)および(b)群で示される化合物が、モ
ル比で(a) / (b) = 0.25〜9.0の範
囲であり 、 (b)および(c)群で示される化合物
がモル比で(b) / (c) =4〜80の範囲であ
る特許請求の範囲(1)記載の触媒。
(2) The compounds represented by groups (-) and (b) have a molar ratio of (a)/(b) = 0.25 to 9.0, and the compounds represented by groups (b) and (c) The catalyst according to claim (1), wherein the molar ratio of the compound (b)/(c) is in the range of 4 to 80.
(3)完成触媒11当り多孔性無機質基盤が酸化物とし
て5〜250 f 、 (a)群で示される化合物が酸
化物として2〜1o o t 、 (b)群で示される
化合物が酸化物として2〜100f、さらK (c)群
で示される化合物が金属元素として0.1〜4.Ofの
範囲含有せしめられてなる特許請求の範囲(1)または
(2)記載の触媒。
(3) Per finished catalyst 11, the porous inorganic base is 5 to 250 f as an oxide, the compound shown in group (a) is 2 to 1 o ot as an oxide, and the compound shown in group (b) is as an oxide. 2 to 100f, and further K, the compound represented by group (c) is 0.1 to 4. The catalyst according to claim (1) or (2), which contains a range of Of.
(4)耐火性3次元構造体が、セラミックフオーム、ワ
イヤーメツシュ、金属発泡体または目封じ型のセラミッ
クハニカムである特許請求の範囲(1)、(2)または
(3)記載の触媒。
(4) The catalyst according to claim (1), (2) or (3), wherein the refractory three-dimensional structure is a ceramic foam, wire mesh, metal foam, or sealed ceramic honeycomb.
(5)無機質基盤上に、(a)銅、マンガン、モリブデ
ン、鉛、鉄、コバルト、バナジウムおよび銀よシなる群
から選ばれた少なくとも1種の金属を含む化合物と(b
)ナトリウム、カリウムおよびセシウムよりなる群から
選ばれた少なくとも1種の金属を含む化合物とさらに(
C)白金、ロジウムおよびパラジウムよりなる群から選
ばれた少なくとも1 ffflの金属を含む化合物とを
分散担持せしめ、これを700〜1000℃の範囲の温
度で熱処理することを特徴とする―醗−轡−〇争・排ガ
ス浄化用触媒の製法。
(5) On an inorganic substrate, (a) a compound containing at least one metal selected from the group consisting of copper, manganese, molybdenum, lead, iron, cobalt, vanadium, and silver;
) A compound containing at least one metal selected from the group consisting of sodium, potassium and cesium, and further (
C) A compound containing at least 1 fffl of a metal selected from the group consisting of platinum, rhodium and palladium is dispersed and supported, and this is heat-treated at a temperature in the range of 700 to 1000°C. −〇Contest: Manufacturing method for exhaust gas purification catalysts.
JP58184559A 1983-10-04 1983-10-04 Catalyst for purifying exhaust gas and preparation thereof Granted JPS6078640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184559A JPS6078640A (en) 1983-10-04 1983-10-04 Catalyst for purifying exhaust gas and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184559A JPS6078640A (en) 1983-10-04 1983-10-04 Catalyst for purifying exhaust gas and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6078640A true JPS6078640A (en) 1985-05-04
JPH0442063B2 JPH0442063B2 (en) 1992-07-10

Family

ID=16155320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184559A Granted JPS6078640A (en) 1983-10-04 1983-10-04 Catalyst for purifying exhaust gas and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6078640A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140647A (en) * 1985-12-13 1987-06-24 Bridgestone Corp Catalyst for purifying exhaust gas
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
WO1998005412A1 (en) * 1996-08-07 1998-02-12 Goal Line Environmental Technologies Pollutant removal from air in closed spaces
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
WO2006061330A3 (en) * 2004-12-07 2006-09-14 Bosch Gmbh Robert Catalytic converter for oxidizing carbon-containing particles, and device for purifying gas mixtures, which comprises the same
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363206B1 (en) 2008-11-21 2018-08-15 Nissan Motor Co., Ltd. Particulate substance removing material, particulate substance removing filter catalyst using particulate substance removing material, and method for regenerating particulate substance removing filter catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174236A (en) * 1982-04-05 1983-10-13 Bridgestone Corp Catalyst for removing particulate matter in waste gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174236A (en) * 1982-04-05 1983-10-13 Bridgestone Corp Catalyst for removing particulate matter in waste gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140647A (en) * 1985-12-13 1987-06-24 Bridgestone Corp Catalyst for purifying exhaust gas
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
WO1998005412A1 (en) * 1996-08-07 1998-02-12 Goal Line Environmental Technologies Pollutant removal from air in closed spaces
US5888924A (en) * 1996-08-07 1999-03-30 Goal Line Enviromental Technologies Llc Pollutant removal from air in closed spaces
US6007781A (en) * 1996-08-07 1999-12-28 Goal Line Environmental Technologies Llc Pollutant removal from air in closed spaces
US6096277A (en) * 1996-08-07 2000-08-01 Goal Line Environmental Technologies Llc Pollutant removal from air in closed spaces
US6121189A (en) * 1996-08-07 2000-09-19 Goal Line Environmental Technologies Llc Pollutant removal from air in closed spaces
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
WO2006061330A3 (en) * 2004-12-07 2006-09-14 Bosch Gmbh Robert Catalytic converter for oxidizing carbon-containing particles, and device for purifying gas mixtures, which comprises the same
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same

Also Published As

Publication number Publication date
JPH0442063B2 (en) 1992-07-10

Similar Documents

Publication Publication Date Title
EP0174495B1 (en) Catalyst for purifying diesel engine exhaust gases
KR101257124B1 (en) Oxydation catalyst on a substrate utilized for the purification of exhaust gases
US5340548A (en) Exhaust gas cleaner and method of cleaning exhaust gas
JP4165400B2 (en) Diesel particulate matter exhaust filter carrying catalyst
JP2007503977A (en) Diesel particulate filter carrying a catalyst with improved thermal stability
JPH03118811A (en) Purifying material of exhaust gas and purifying method for exhaust gas
JPS6078640A (en) Catalyst for purifying exhaust gas and preparation thereof
JPH0462778B2 (en)
JPH0768178A (en) Catalyst body for removing particulate substance in diesel vehicle and preparation thereof
JPS6164331A (en) Catalyst for purifying exhaust gas
JPH0342936B2 (en)
JP3596107B2 (en) Heat-resistant exhaust gas purifying catalyst, method for producing the same, and exhaust gas purifying apparatus using the same
JPH01254251A (en) Catalyst for purifying exhaust gas
JPH0260374B2 (en)
JPH01171626A (en) Method for cleaning exhaust gas from diesel engine
JPH0464735B2 (en)
JPH03114539A (en) Catalyst for exhaust gas cleaning and its preparation
JP4822374B2 (en) Method for producing exhaust gas purification catalyst
JPH0214744A (en) Exhaust gas purification catalyst
JPH0578385B2 (en)
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JPS61129030A (en) Filter for collecting and purifying fine particles
JP2002331241A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning material
JPS61222541A (en) Catalyst for purifying exhaust gas
JPH04354518A (en) Material and method for purifying exhaust gas