JPH0464735B2 - - Google Patents

Info

Publication number
JPH0464735B2
JPH0464735B2 JP59036255A JP3625584A JPH0464735B2 JP H0464735 B2 JPH0464735 B2 JP H0464735B2 JP 59036255 A JP59036255 A JP 59036255A JP 3625584 A JP3625584 A JP 3625584A JP H0464735 B2 JPH0464735 B2 JP H0464735B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
foam
group
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59036255A
Other languages
Japanese (ja)
Other versions
JPS60183037A (en
Inventor
Kenji Ueda
Yasuo Ikeda
Koichi Saito
Kyoshi Yonehara
Tetsutsugu Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59036255A priority Critical patent/JPS60183037A/en
Publication of JPS60183037A publication Critical patent/JPS60183037A/en
Publication of JPH0464735B2 publication Critical patent/JPH0464735B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はデヌむれル゚ンゞンからの排ガス浄化
甚觊媒およびその補法に関する。詳しく述べるず
本発明はデむヌれル゚ンゞン排ガス䞭に存圚する
炭玠系埮粒子を燃焌せしめお陀去する性胜にすぐ
れたデむヌれル゚ンゞン排ガス浄化甚觊媒および
その補法に関するものである。 近幎デむヌれル゚ンゞン排気ガス䞭の埮粒子状
物質䞻ずしお固䜓状炭玠埮粒子、硫酞塩など硫
黄埮粒子、そしお、液状ないし固䜓䞊の高分子量
炭化氎玠埮粒子などよりなるが環境衛生䞊問題
化する傟向にある。これら埮粒子はその粒子埄が
ほずんどミクロン以䞋であり、倧気䞭に浮遊し
やすく呌吞により人䜓内に取り蟌たれやすいため
である。したが぀おこれら埮粒子のデむヌれル゚
ンゞンからの排出芏制を厳しくしおいく方向で怜
蚎が進められおいる。 ずころで、これらの埮粒子の陀去方法ずしお
は、倧別しお以䞋の぀の方法がある。぀は耐
熱性ガスフむルタヌセラミツクフオヌム、ワむ
ダヌメツシナ、金属発泡䜓、目封じタむプのセラ
ミツクハニカムなどを甚いお排ガスを過しお
埮粒子を補捉し、圧損が䞊昇すればバヌナヌなど
で蓄積した埮粒子を燃焌せしめお、フむルタヌを
再生する方法ず、他はこの耐熱性ガスフむルタヌ
構造を持぀担䜓に觊媒物質を担持させ過操䜜ず
ずもに、燃焌操䜜も行なわせお、䞊蚘燃焌再生の
頻床を少なくするずか、再生の必芁のないほどに
觊媒の燃焌掻性を高める方法である。 前者の堎合、埮粒子の陀去効果を高めれば高め
るほど圧損䞊昇が早く再生頻床も倚くなり、煩瑣
であり経枈的にも著しく䞍利ずなるであろう。そ
れにくらべお埌者の方法は、デむヌれル゚ンゞン
排気ガスの排出条件ガス組成および枩床にお
いお觊媒掻性を維持しうる觊媒物質が採甚される
ならばはるかに優れた方法ず考えられる。 しかしながらデむヌれル゚ンゞンの排気ガス枩
床はガ゜リン゚ンゞンの堎合ず比范しお栌段に䜎
く、しかも燃料ずしお軜油を甚いるために該排ガ
ス䞭にはSO2量も倚い。したが぀おサルプヌト
SO2がさらに酞化されおSO3や硫酞ミストずな
぀たもの生成胜がほずんどなく、か぀通垞の゚
ンゞンの走行条件䞋でえられる枩床内で蓄積した
埮粒子も良奜に着火燃焌させる性胜の觊媒が芁求
されるにもかかわらず、今迄この条件に十分に適
合する觊媒は提案されおいないのが珟状である。 本発明はこの芁求を満足せしめる觊媒を提䟛す
るこずを目的ずする。具䜓的には通垞の垂䞭走行
時にえられるデむヌれル゚ンゞン排気ガス枩床範
囲で埮粒子の燃料挙動が良く圧損䞊昇がゆるやか
でか぀所定の排ガス枩床に達したり、すみやかに
燃焌再生が起るデむヌれル゚ンゞン排ガス浄化甚
觊媒を提䟛するこずを目的ずする。 すなわち、本発明は以䞋の劂く特定される。 (1) ガスフむルタヌ機胜を有する耐火性次元構
造䜓䞊に担持せしめられた倚孔性無機質基般䞊
に、あるいはペレツト状に成型せしめられおな
る倚孔性無機質基盀䞊に、(a)モリブデン酞バリ
りムおよびモリブデン酞ランタンよりなる矀か
ら遞ばれた少なくずも皮ず(b)癜金、ロゞりム
およびパラゞりムよりなる矀から遞ばれた少な
くずも皮の金属の化合物ずを分散担持せしめ
おなるこずを特城ずするデむヌれル゚ンゞン排
ガス浄化甚觊媒。 (2) (a)および(b)矀から遞ばれた化合物が、モル比
で(a)(b)〜90の範囲である䞊蚘蚘茉の觊
媒。 (3) 耐火性次元構造䜓がセラミツクフオヌム、
ワむダメツシナ、金属発泡䜓たたは目封じ型の
セラミツクハニカムである䞊蚘たたは蚘茉
の觊媒。 (4) ガスフむルタヌ機胜を有する耐火性次元構
造䜓䞊に担持せしめられた倚孔性無機質基般䞊
に、あるいはペレツト状に成型せしめられおな
る倚孔性無機質基盀䞊に、(a)モリブデン酞バリ
りムおよびモリブデン酞ランタンよりなる矀か
ら遞ばれた少なくずも皮ず(b)癜金、ロゞりム
およびパラゞりムよりなる矀から遞ばれた少な
くずも皮の金属の化合物ずを分散担持せし
め、これを空気䞭700〜1000℃の範囲の枩床で
熱凊理するこずを特城ずするデむヌれル゚ンゞ
ン排ガス浄化甚觊媒の補法。 本発明者らはデヌむれル゚ンゞンからの排ガス
枩床が栌段に䜎く、垂䞭走行時排ガス枩床はマン
ホヌルド出口でも450℃に達しないこずから350℃
以䞋でも炭玠系埮粒子の燃焌挙動が良く、圧平衝
枩床埮粒子の蓄積による圧力䞊昇ず埮粒子の燃
焌による圧力降䞋ずが等しくなる枩床が330〜
350℃ず䜎く、蓄積埮粒子が400℃以䞋で燃焌開始
しお圧損が急激に䞋がる觊媒でか぀サルプヌト
の生成が450℃でもほが認められない特性を有す
る觊媒系を芋出した。 通垞、卑金属だけを甚いた觊媒では埮粒子の燃
焌挙動は、所定の枩床に達するたでは、圧損䞊昇
が早く、通垞の走行条件䞋で該再生枩床に達しな
い堎合は、倖郚からの匷制再生を頻床高く行なう
必芁があり実甚性に欠けおいる。䞀方貎金属の添
加した觊媒の堎合、䞀酞化炭玠CO、炭化氎玠
類HCの酞化性胜を具備しおいるが同時に
SO2の酞化も起り、サルプヌトが生成し奜たし
くない。しかし、䜎枩領域でも埮粒子の燃え易い
成分が䞀郚燃えるため圧損䞊昇はゆるやかであ
り、圧平衝枩床も卑金属だけを甚いた堎合よりも
䜎い。 本発明は䞊蚘の欠点を補い、か぀各觊媒成分の
持぀利点を損なうこずのない觊媒組成物を提䟛す
るものである。 たた、通垞モリブデンは飛散性が高く、掻性劣
化が起りやすいずされおいるが、本発明者らは䞊
蚘(a)成分がモリブデンの飛散を抑制しか぀埮粒子
状物質の燃焌挙動が良奜でしか貎金属を有するサ
ルプヌト生成胜を著しく抑制する効果のあるこ
ずを芋い出し、本発明を完成したものである。 本発明者らの知芋によるず無機質基盀䞊に分散
担持せしめられた䞊蚘觊媒成分においお(a)矀のモ
リブデン酞バリりムあるいはモリブデン酞ランタ
ンは(b)矀の貎金属に察し極めお密接に䜜甚し、元
来貎金属が具備するサルプヌト生成胜を有効に
抑える効果を発揮する。ずくに最終焌成が700〜
1000℃ずいう高枩で行なわれおなる觊媒においお
効果が十分に発揮される。 しかもその共存する割合が(a)(b)のモル比で
〜90の範囲、奜たしくは〜60の範囲のずき、し
かも(a)矀のモリブデン酞バリりムたたはモリブデ
ン酞ランタンず担持量が〜120−担䜓、
奜たしくは10〜100−担䜓であり、(b)矀の
貎金属の担持量が0.1〜4.0−担䜓、奜たし
くは0.3〜3.0−担䜓の範囲のずきサルプ
ヌト生成胜が最も抑制され、しかも埮粒子状物質
の燃焌挙動が良奜であるこずが知芋されたのであ
る。 本発明においおは䞊蚘のモリブデン酞塩が特定
されるものであるが、他のモリブデン酞金属塩、
たずえばモリブデン酞カリりム、モリブデン酞リ
チりム、モリブデン酞バナゞりム等はモリブデン
の飛散性が高く奜たしくないこずが認められ、た
たモリブデン酞ストロンチりム、モリブデン酞コ
バルト等に぀いおも埮粒子物質の燃焌挙動が良く
ないこずが認められた。 本発明が䜿甚する無機質基盀ずは通垞担䜓基盀
ずしお甚いられるアルミナ、シリカ、チタニア、
ゞルコニア、シリカ−アルミナ、アルミナ−ゞル
コニア、アルミナ−チタニア、シリカ−チタニ
ア、シリカ−ゞルコニア、チタニア−ゞルコニア
等が奜適に甚いられるが、これらに限定されるも
のではない。 本発明にかかる觊媒の調補法を具䜓的に瀺すず
以䞋の劂くである。䟋ずしお、䞊蚘無機質基盀
をガスフむルタヌ構造を有する次元構造䜓た
ずえば、セラミツクフオヌム、ワむダヌメツシ
ナ、金属発泡䜓、目封じタむプのセラミツクハニ
カムにスラリヌ化しおりオツシナコヌトしお担
持局を圢成せしめ、癜金、ロゞりム、パラゞりム
よりなり矀から遞ばれた少なくずも皮の金属を
含む化合物を、氎溶性ないし有機溶媒アルコヌ
ルなど性の溶液たたは分散液の圢で含浞たたは
浞挬法により担持させ也燥あるいは也燥埌300〜
500℃で焌成する。次いでモリブデンの氎溶性な
いし有機溶媒可溶性塩を含浞担持させ也燥埌、
300〜500℃で焌成する。この焌成物にバリりムの
氎溶性ないし有機溶媒可溶性塩たたはランタンの
氎溶性ないし有機溶媒可溶性を含浞担持させ也燥
埌、700〜1000℃で〜時間焌成する。 䞊蚘化合物は酞化物、氎酞化物、硝酞塩、炭酞
塩、リン酞塩、硫酞塩、ハロゲン化物、金属酞塩
などの無機化合物ないし酢酞塩、ギ酞塩などのカ
ルボン酞塩や錯化合物などの有機化合物のなかか
ら適宜遞択されるが氎やアルコヌル性有機溶媒に
溶解しやすいものの䜿甚が奜たしい。 たた、該觊媒成分の担持順序を倉えおも差し぀
かえない。 さらに、あらかじめ無機質基盀圢成物ず各觊媒
成分矀ずを混合凊理し、これをりオツシナコヌト
し也燥し、焌成しお完成觊媒ずする方法も採甚で
き、これらの折衷方法も適宜採甚される。 觊媒圢態ずしおは、䞊蚘䞉次元構造䜓に限定さ
れるこずなく、無機質基盀ずしお瀺したもののペ
レツト状のものに該觊媒成分の担持しおも良い。 以䞋実斜䟋および比范列を瀺した本発明をさら
に詳しく説明する。 実斜䟋  垂販のコヌゞ゚ラむト発泡䜓嵩密床0.35
cm3、空孔率87.5、容積1.7にアルミナ粉末
Kgを湿匏ミルを甚いおスラリヌ化しお担持し、
䜙分なスラリヌを振り切぀お150℃で時間也燥
埌、500℃で時間焌成しおアムミナコヌト局を
有するコヌゞ゚ラむト発泡䜓をえた。 次に癜金Ptずしお12.86を含有するゞニ
トロゞアンミン癜金の硝酞溶液ずロゞりムRh
ずしお1.286を含有する硝酞ロゞりム氎溶液の
混合溶液に、該発泡䜓を浞挬し、䜙分な溶液
を振り切぀お150℃で時間也燥埌500℃で時間
焌成し、癜金−ロゞりムを含有するアルミナコヌ
ト局を有するコヌゞ゚ラむト発泡䜓をえた。 次にパラモリブデン酞アンモニりム350.6を
含有する氎溶液に該発泡䜓を浞挬し、䜙分な
氎溶液を振り切぀お150℃で時間也燥埌500℃で
時間焌成しお、モリブデンMo−Pt−Rhを
含有するアルミナコヌト局を有するコヌゞ゚ラむ
ト発泡䜓をえた。 次いで、酢酞バリりム507.2を含む氎溶液
は該発泡䜓を浞挬し、䜙分な氎溶液を振り切぀
お150℃時間也燥埌、750℃時間焌成しおモリ
ブデン酞バリりムBaMoO4を圢成せしめ、
BaMoO4、Pt、Rhを含有するアルミナコヌト局
を有するコヌゞ゚ラむト発泡䜓をえた。 この時のPt、Rhの担持量をそれぞれ0.90
−担䜓、0.09−担䜓であり、BaMoO4の
担持量は41.3−担䜓であ぀た。 出来䞊りのコヌト局の組成はアルミナ62.3重量
、BaMoO436.8重量、PtRhPtRt10
0.89重量であ぀た。 実斜䟋  パラモリブデン酞アンモニりム353をの
むオン亀換氎に溶解させ、あらかじめ塩化バリり
ム41.65をのむオン亀換氎に溶解させた氎
溶液䞭にかくはんしながら投入しお、生成した沈
殿を過掗浄し150℃で時間也燥し、500℃で
時間焌成しお玄530のBaMoO4の粉末をえた。 この粉末472ずアルミナ粉末800をボヌルミ
ルで十分混合し、次いで湿匏ミルでスラリヌ化し
おコヌゞ゚ラむト発泡䜓1.7に担持し、䜙分な
スラリヌの振り切぀お150℃時間也燥埌500℃
時間焌成しお、BaMoO4を含有するアルミナコ
ヌト局を有するコヌゞ゚ラむト発泡䜓をえた。次
いで実斜䟋に順じた方法で、Pt、Rhを担持し
150℃時間也燥埌750℃で時間焌成した。 この時の出来䞊りのコヌト局の組成は実斜䟋
ずほが同組成であ぀た。 実斜䟋  実斜䟋においお、酢酞バリりムの替りに硝酞
ランタムLaNO33・6H2Oの氎溶液を甚いる以
倖は党お同じ方法で觊媒を調補しAl2O370
−担䜓、モリブデン酞ランタン〔La2MoO43〕
35.1−担䜓、PtおよびRhの担持量はそれ
ぞれ0.90−担䜓、0.09−担䜓であ぀
た。 出来䞊りのコヌト局の組成はAl2O366.0重量、
La2MoO4333.1重量、PtRhPtRh10
0.94重量であ぀た。 実斜䟋  実斜䟋においお、Ptを甚いる替りにPdを甚
いる以倖は党お同じ方法で觊媒を調補した。出来
䞊りコヌト局の組成は、Al2O362.3重量、
BaMoO436.8重量、PdRhPdRh10
0.89重量であ぀た。 実斜䟋  実斜䟋においおコヌゞ゚ラむト発泡䜓をハニ
カム構造䜓で䞡端面の隣接する各孔を互いに違い
に閉塞させ隔璧からのみガスを通過させるように
した目封じタむプのハニカムに替える以倖は党く
同様の方法で、觊媒を調補した。 実斜䟋  垂販のアルミナペレツト〜mmφ1.7
に実斜䟋の出来䞊りのコヌト局の組成になるよ
うにPt、Rt、BaMoO4を担持しお觊媒を調補し
た。 比范䟋  実斜䟋においおPt、Rhを甚いない以倖は党
お同じ方法で觊媒を調補し、Al2O370−担
䜓、BaMoO441.3−担䜓それぞれ担持した
コヌゞ゚ラむト発泡䜓觊媒をえた。 比范䟋  実斜䟋においお、酢酞バリりムを甚いない以
倖は党お同じ方法で觊媒を調補し、Al2O370
−担䜓、MoO320−担䜓、Pt0.90
−担䜓、Rh0.09−担䜓それぞれ担持した
コヌゞ゚ラむト発泡䜓をえた。 比范䟋  実斜䟋においお、酢酞バリりムの替りに硝酞
カリりムを甚いる以倖は党お同じ方法で觊媒を調
補し、Al2O370−担䜓、K2MoO433.1
−担䜓、Pt0.90−担䜓、Rh0.09−
担䜓それぞれ担持したコヌゞ゚ラむト発泡䜓をえ
た。 比范䟋  実斜䟋においお、パラモリブデン酞アンモニ
りムの替りにモリブデン酞カリりムを甚いた酢酞
バリりムを甚いない以倖は党お同じ方法で觊媒を
調補し比范䟋ず同じ組成の觊媒をえた。 比范䟋  実斜䟋においお最終の焌成枩床を600℃に替
える以倖は党お同じ方法で觊媒を調補した。 実斜䟋  実斜䟋〜、比范䟋〜でえられた觊媒に
぀いお、排気量2300c.c.、気筒デむヌれル゚ンゞ
ンを甚いお觊媒の評䟡詊隓を行な぀た。゚ンゞン
回転数2500rpm、トルク4.0Kg・の条件で埮粒
子の捕捉玄時間を行ない、次いで、トルクを
0.5Kg・間隔で分毎に䞊昇させお、觊媒局の
圧損倉化連続的に蚘録し、埮粒子が觊媒䞊で排ガ
ス枩床䞊昇に䌎ない、埮粒子の蓄積による圧力䞊
昇ず埮粒子の燃焌による圧力降䞋ずが等しくなる
枩床Teず着火燃焌し、圧損が急激に䞋降す
る枩床Tiを求めた。たた2500rpm、トルク
4.0Kg・で埮粒子を捕捉する堎合の圧損の経時
倉化を時間あたりの圧損倉化量をチダヌトから
蚈算しお△mmHgの倀を求めた。 又、SO2のSO3ぞの転化率を排ガス枩床450℃
で求めた。SO2の転化率は入口ガス、出口ガスの
SO2濃床を非分散型赀倖分析蚈NDIR法で分
析し、次の算出匏よりSO2の転化率を求め
た。 SO2転化率入口SO2濃床ppm−出口SO2濃床
ppm入口SO2濃床ppm×100 結果を次の衚−に瀺す。 次に各觊媒に぀いお2500rpm、トルク14Kg・
の条件で排ガス枩床620℃で20時間曝露゚ヌゞ
ングしたものに぀いお䞊蚘テストず同様にSO2
転化率およびTe、Tiを求めか぀テスト枈みの觊
媒のMo残存率を蛍光線分析で求めた。結果を
衚−に瀺す。
The present invention relates to a catalyst for purifying exhaust gas from a diesel engine and a method for producing the same. Specifically, the present invention relates to a catalyst for purifying diesel engine exhaust gas that has excellent performance in burning and removing carbon-based particulates present in diesel engine exhaust gas, and a method for producing the catalyst. In recent years, particulate matter (mainly composed of solid carbon particles, sulfur particles such as sulfates, and liquid or solid high molecular weight hydrocarbon particles) in diesel engine exhaust gas has become a problem in terms of environmental health. This is because most of these fine particles have particle diameters of 1 micron or less and are easily suspended in the atmosphere and easily taken into the human body through breathing. Therefore, studies are underway to tighten regulations on the emission of these particulates from diesel engines. By the way, methods for removing these fine particles can be broadly classified into the following two methods. One is to use a heat-resistant gas filter (ceramic foam, wire mesh, metal foam, sealed ceramic honeycomb, etc.) to pass through the exhaust gas and capture fine particles, and if the pressure drop increases, they will accumulate in a burner, etc. There is a method of regenerating the filter by burning the fine particles, and another method is to carry a catalyst substance on a carrier having this heat-resistant gas filter structure and perform a combustion operation as well as an over-operation to reduce the frequency of the above-mentioned combustion regeneration. This is a method of increasing the combustion activity of the catalyst to such an extent that regeneration is not necessary. In the former case, the higher the particle removal effect, the faster the pressure drop will rise and the more frequently the regeneration will occur, which will be cumbersome and economically disadvantageous. In comparison, the latter method is considered to be a much better method if a catalytic material that can maintain catalytic activity under the exhaust conditions (gas composition and temperature) of diesel engine exhaust gas is employed. However, the exhaust gas temperature of a diesel engine is much lower than that of a gasoline engine, and since light oil is used as fuel, the amount of SO 2 in the exhaust gas is also large. Therefore, it has almost no ability to generate sulfate (SO 2 is further oxidized to SO 3 or sulfuric acid mist), and even the accumulated particulates can be ignited and combusted well within the temperature obtained under normal engine running conditions. Although there is a demand for a catalyst with performance that satisfies this requirement, the current situation is that no catalyst has been proposed that satisfactorily meets this requirement. The object of the present invention is to provide a catalyst that satisfies this requirement. Specifically, we aim to purify diesel engine exhaust gas in a diesel engine exhaust gas temperature range that occurs during normal city driving, in which the fuel behavior of fine particles is good, the pressure drop rises slowly, the specified exhaust gas temperature is reached, and combustion regeneration occurs quickly. The purpose is to provide a catalyst for That is, the present invention is specified as follows. (1) On a porous inorganic substrate supported on a refractory three-dimensional structure having a gas filter function, or on a porous inorganic substrate formed into a pellet, (a) barium molybdate and (b) a compound of at least one metal selected from the group consisting of platinum, rhodium and palladium. Catalyst for engine exhaust gas purification. (2) The catalyst according to the above item 1, wherein the compound selected from groups (a) and (b) has a molar ratio of (a)/(b) = 5 to 90. (3) The fire-resistant three-dimensional structure is ceramic foam,
3. The catalyst according to 1 or 2 above, which is a wire mesh, a metal foam, or a plugged ceramic honeycomb. (4) (a) barium molybdate on a porous inorganic base supported on a refractory three-dimensional structure having a gas filter function, or on a porous inorganic base formed into a pellet shape; and (b) at least one metal compound selected from the group consisting of platinum, rhodium, and palladium, and (b) a compound of at least one metal selected from the group consisting of platinum, rhodium, and palladium. A method for producing a catalyst for purifying diesel engine exhaust gas, which is characterized by heat treatment at a temperature in the range of °C. The present inventors found that the exhaust gas temperature from a diesel engine is extremely low, and the exhaust gas temperature during city driving does not reach 450℃ even at the manhold exit, so it is 350℃.
The combustion behavior of carbon-based fine particles is good even below, and the applanation temperature (the temperature at which the pressure increase due to accumulation of fine particles is equal to the pressure drop due to combustion of fine particles) is 330~
We have found a catalyst system that has characteristics such that the temperature is as low as 350℃, the combustion of accumulated particulates starts below 400℃, and the pressure drop decreases rapidly, and the formation of sulfate is hardly observed even at 450℃. Normally, with catalysts that use only base metals, the combustion behavior of fine particles is such that the pressure drop increases quickly until a predetermined temperature is reached, and if the regeneration temperature is not reached under normal running conditions, external forced regeneration is required frequently. It needs to be done expensively and lacks practicality. On the other hand, catalysts containing precious metals have the ability to oxidize carbon monoxide (CO) and hydrocarbons (HC), but at the same time
Oxidation of SO 2 also occurs, producing sulfate, which is undesirable. However, even in the low temperature range, the combustible components of the fine particles are partially combusted, so the increase in pressure drop is gradual, and the applanation temperature is also lower than when only base metals are used. The present invention provides a catalyst composition that compensates for the above-mentioned drawbacks and does not impair the advantages of each catalyst component. Furthermore, although it is generally believed that molybdenum has high scattering properties and is prone to activity deterioration, the present inventors believe that component (a) can suppress the scattering of molybdenum and have good combustion behavior for fine particulate matter. The present invention has been completed based on the discovery that the sulfate-producing ability of the sulfate-generating ability of the sulfate-producing compound is significantly suppressed. According to the findings of the present inventors, in the above catalyst component dispersedly supported on an inorganic substrate, barium molybdate or lanthanum molybdate of group (a) acts extremely closely on the noble metal of group (b), and It exhibits the effect of effectively suppressing the sulfate generation ability of precious metals. Especially the final firing is 700~
The effect is fully demonstrated in catalysts that are processed at a high temperature of 1000°C. Moreover, the ratio of their coexistence is 5 in the molar ratio of (a)/(b).
90, preferably 8 to 60, and the supported amount of barium molybdate or lanthanum molybdate of group (a) is 8 to 120 g/- carrier,
Preferably it is 10 to 100 g/-carrier, and when the amount of noble metal of group (b) supported is in the range of 0.1-4.0 g/-carrier, preferably 0.3-3.0 g/-carrier, the sulfate-forming ability is most suppressed, Moreover, it was discovered that the combustion behavior of particulate matter is good. In the present invention, the above-mentioned molybdate is specified, but other molybdate metal salts,
For example, it has been recognized that potassium molybdate, lithium molybdate, vanadium molybdate, etc. are undesirable due to the high scattering of molybdenum, and it has also been recognized that strontium molybdate, cobalt molybdate, etc. have poor combustion behavior of particulate matter. Ta. The inorganic bases used in the present invention include alumina, silica, titania, which are usually used as carrier bases,
Zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia and the like are preferably used, but are not limited thereto. The specific method for preparing the catalyst according to the present invention is as follows. As an example, the above-mentioned inorganic substrate is slurried into a three-dimensional structure having a gas filter structure (for example, ceramic foam, wire mesh, metal foam, sealed type ceramic honeycomb) and coated with wash to form a support layer. A compound containing at least one metal selected from the group consisting of platinum, rhodium, and palladium is supported in the form of a water-soluble or organic solvent (alcohol etc.) solution or dispersion by an impregnation or dipping method. Dry or after drying 300~
Fire at 500℃. Next, a water-soluble or organic solvent-soluble salt of molybdenum is impregnated and supported, and after drying,
Bake at 300-500℃. The fired product is impregnated with a water-soluble or organic solvent-soluble salt of barium or a water-soluble or organic solvent-soluble salt of lanthanum, dried, and then fired at 700 to 1000°C for 1 to 5 hours. The above compounds include inorganic compounds such as oxides, hydroxides, nitrates, carbonates, phosphates, sulfates, halides, and metal salts, and organic compounds such as carboxylates and complex compounds such as acetates and formates. It is preferable to use one that is easily soluble in water or an alcoholic organic solvent. Furthermore, the order in which the catalyst components are supported may be changed. Furthermore, it is also possible to adopt a method in which the inorganic base material and each catalyst component group are mixed in advance, and then washed, dried, and calcined to obtain a finished catalyst, and a compromise between these methods can also be adopted as appropriate. The form of the catalyst is not limited to the three-dimensional structure described above, but the catalyst component may be supported on a pellet-like structure shown as an inorganic base. The present invention will be described in more detail below with examples and comparative columns. Example 1 Commercially available cordierite foam (bulk density 0.35 g/
cm 3 , porosity 87.5%, volume 1.7), 1 kg of alumina powder is slurried and supported using a wet mill,
After shaking off the excess slurry and drying at 150°C for 3 hours, the product was fired at 500°C for 2 hours to obtain a cordierite foam having an ammina coat layer. Next, a nitric acid solution of dinitrodiammine platinum containing 12.86 g as platinum (Pt) and rhodium (Rh)
The foam was immersed in mixed solution 2 of an aqueous rhodium nitrate solution containing 1.286 g of rhodium, the excess solution was shaken off, and the foam was dried at 150°C for 3 hours and then fired at 500°C for 2 hours to form a foam containing platinum-rhodium. A cordierite foam with an alumina coat layer was obtained. Next, the foam was immersed in aqueous solution 2 containing 350.6 g of ammonium paramolybdate, the excess aqueous solution was shaken off, and the foam was dried at 150°C for 3 hours and then fired at 500°C for 2 hours to produce molybdenum (Mo)-Pt. A cordierite foam with an alumina coat layer containing -Rh was obtained. Next, aqueous solution 2 containing 507.2 g of barium acetate
The foam was immersed, the excess aqueous solution was shaken off, the foam was dried at 150°C for 3 hours, and then fired at 750°C for 2 hours to form barium molybdate (BaMoO 4 ).
A cordierite foam with an alumina coat layer containing BaMoO 4 , Pt, and Rh was obtained. The amount of Pt and Rh supported at this time was 0.90g/0.90g/
- carrier, 0.09 g/- carrier, and the amount of BaMoO 4 supported was 41.3 g/- carrier. The composition of the finished coating layer was 62.3% by weight of alumina, 36.8% by weight of BaMoO 4 , and Pt+Rh (Pt/Rt=10/
1) It was 0.89% by weight. Example 2 353 g of ammonium paramolybdate was dissolved in the ion-exchanged water from step 2, and added while stirring into an aqueous solution in which 41.65 g of barium chloride had been previously dissolved in the ion-exchanged water from step 2, and the precipitate formed was overwashed. Dry at 150℃ for 5 hours, then dry at 500℃ for 2 hours.
About 530g of BaMoO 4 powder was obtained by firing for a time. 472g of this powder and 800g of alumina powder were thoroughly mixed in a ball mill, then slurried in a wet mill, supported on cordierite foam 1.7, excess slurry was shaken off, dried at 150℃ for 3 hours, and then dried at 500℃ for 3 hours.
After firing for a period of time, a cordierite foam with an alumina coat layer containing BaMoO 4 was obtained. Next, Pt and Rh were supported by a method according to Example 1.
After drying at 150°C for 2 hours, it was fired at 750°C for 2 hours. The composition of the finished coat layer at this time is Example 1
The composition was almost the same. Example 3 A catalyst was prepared in the same manner as in Example 1 except that an aqueous solution of lantum nitrate La(NO 3 ) 3.6H 2 O was used instead of barium acetate .
-Support, lanthanum molybdate [La 2 (MoO 4 ) 3 ]
The supported amounts of Pt and Rh were 35.1 g/-carrier and 0.90 g/-carrier and 0.09 g/-carrier, respectively. The composition of the finished coating layer is Al 2 O 3 66.0% by weight,
La 2 (MoO 4 ) 3 33.1% by weight, Pt + Rh (Pt/Rh=10/
1) It was 0.94% by weight. Example 4 A catalyst was prepared in the same manner as in Example 2 except that Pd was used instead of Pt. The composition of the finished coat layer is 62.3% by weight of Al 2 O 3 ;
BaMoO 4 36.8% by weight, Pd+Rh (Pd/Rh=10/1)
It was 0.89% by weight. Example 5 Exactly the same as in Example 1 except that the cordierite foam was replaced with a sealed type honeycomb structure in which the adjacent holes on both end faces were closed differently to allow gas to pass through only through the partitions. A catalyst was prepared by the method described in . Example 6 Commercially available alumina pellets (3 to 6 mmφ) 1.7
A catalyst was prepared by supporting Pt, Rt, and BaMoO 4 so as to have the composition of the finished coat layer of Example 1. Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that Pt and Rh were not used, and a cordierite foam catalyst was obtained in which 70 g/- of Al 2 O 3 and 41.3 g/- of BaMoO 4 were supported. Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that barium acetate was not used, and 70 g of Al 2 O 3 /
-Support, MoO 3 20g/-Support, Pt0.90g/
A cordierite foam was obtained in which each of the -carrier and Rh0.09g/-carrier was supported. Comparative Example 3 A catalyst was prepared in the same manner as in Example 1 except that potassium nitrate was used instead of barium acetate, and Al 2 O 3 70 g/- support and K 2 MoO 4 33.1 g/
-Support, Pt0.90g/-Support, Rh0.09g/-
Cordierite foams each supported on a carrier were obtained. Comparative Example 4 A catalyst was prepared in the same manner as in Example 1 except that potassium molybdate was used instead of ammonium paramolybdate and barium acetate was not used, and a catalyst having the same composition as Comparative Example 3 was obtained. Comparative Example 5 A catalyst was prepared in the same manner as in Example 1 except that the final calcination temperature was changed to 600°C. Example 7 The catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were evaluated using a 4-cylinder diesel engine with a displacement of 2300 c.c. Particulate capture was carried out for approximately 2 hours under the conditions of engine rotation speed 2500 rpm and torque 4.0 kg・m, and then the torque was
The pressure drop in the catalyst layer was continuously recorded by increasing the pressure at 0.5 kg/m intervals every 5 minutes, and as the exhaust gas temperature rose on the catalyst, the pressure increase due to the accumulation of fine particles and the pressure drop due to combustion of the fine particles were measured. The temperature (Te) at which these are equal to the temperature (Ti) at which ignition and combustion occur and the pressure drop rapidly decreases was determined. Also 2500rpm, torque
The value of ΔP (mmHg/H) was determined by calculating the change in pressure drop per hour from a chart when capturing fine particles at 4.0 kg·m. In addition, the conversion rate of SO 2 to SO 3 was determined at an exhaust gas temperature of 450℃.
I asked for it. The conversion rate of SO 2 is determined by the inlet gas and outlet gas.
The SO 2 concentration was analyzed using a non-dispersive infrared analyzer (NDIR method), and the conversion rate (%) of SO 2 was determined using the following formula. SO 2 conversion rate (%) = Inlet SO 2 concentration (ppm) − Outlet SO 2 concentration (
ppm)/Inlet SO 2 concentration (ppm) x 100 The results are shown in Table 1 below. Next, for each catalyst, 2500 rpm, torque 14 Kg・m
Similar to the above test, SO 2
The conversion rate, Te, and Ti were determined, and the Mo residual rate of the tested catalyst was determined by fluorescent X-ray analysis. The results are shown in Table-2.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  ガスフむルタヌ機胜を有する耐火性次元構
造䜓䞊に担持せしめられた倚孔性無機質基盀䞊
に、あるいはペレツト状に成型せしめられおなる
倚孔性無機質基盀䞊に、(a)モリブデン酞バリりム
およびモリブデン酞ランタンよりなる矀から遞ば
れた少なくずも皮ず(b)癜金、ロゞりムおよびパ
ラゞりムよりなる矀から遞ばれた少なくずも皮
の金属の化合物ずを分散担持せしめおなるこずを
特城ずするデむヌれル゚ンゞン排ガス浄化甚觊
媒。  (a)および(b)矀から遞ばれた化合物が、モル比
で(a)(b)〜90の範囲である特蚱請求の範囲第
項蚘茉の觊媒。  耐火性次元構造䜓がセラミツクフオヌム、
ワむダメツシナ、金属発泡䜓たたは目封じ型のセ
ラミツクハニカムである特蚱請求の範囲第たた
は蚘茉の觊媒。  ガスフむルタヌ機胜を有する耐火性次元構
造䜓䞊に担持せしめられた倚孔性無機質基般䞊
に、あるいはペレツト状に成型せしめられおなる
倚孔性無機質基盀䞊に、(a)モリブデン酞バリりム
およびモリブデン酞ランタンよりなる矀から遞ば
れた少なくずも皮ず(b)癜金、ロゞりムおよびパ
ラゞりムよりなる矀から遞ばれた少なくずも皮
の金属の化合物ずを分散担持せしめ、これを空気
äž­700〜1000℃の範囲の枩床で熱凊理するこずを
特城ずするデむヌれル゚ンゞン排ガス浄化甚觊媒
の補法。
[Scope of Claims] 1. On a porous inorganic base supported on a refractory three-dimensional structure having a gas filter function, or on a porous inorganic base formed into a pellet, (a) (b) a compound of at least one metal selected from the group consisting of barium molybdate and lanthanum molybdate; and (b) at least one metal selected from the group consisting of platinum, rhodium, and palladium. A catalyst for purifying diesel engine exhaust gas. 2. The catalyst according to claim 1, wherein the compounds selected from groups (a) and (b) have a molar ratio of (a)/(b)=5 to 90. 3 The fire-resistant three-dimensional structure is ceramic foam,
The catalyst according to claim 1 or 2, which is a wire mesh, a metal foam, or a plugged ceramic honeycomb. 4. (a) Barium molybdate and molybdenum are placed on a porous inorganic base supported on a refractory three-dimensional structure having a gas filter function, or on a porous inorganic base formed into a pellet. A compound of at least one metal selected from the group consisting of lanthanum acid and (b) at least one metal selected from the group consisting of platinum, rhodium, and palladium is dispersed and supported in the air at 700 to 1000°C. A method for producing a catalyst for purifying diesel engine exhaust gas, which is characterized by heat treatment at a temperature within a range.
JP59036255A 1984-02-29 1984-02-29 Exhaust gas purifying catalyst and its preparation Granted JPS60183037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036255A JPS60183037A (en) 1984-02-29 1984-02-29 Exhaust gas purifying catalyst and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036255A JPS60183037A (en) 1984-02-29 1984-02-29 Exhaust gas purifying catalyst and its preparation

Publications (2)

Publication Number Publication Date
JPS60183037A JPS60183037A (en) 1985-09-18
JPH0464735B2 true JPH0464735B2 (en) 1992-10-15

Family

ID=12464660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036255A Granted JPS60183037A (en) 1984-02-29 1984-02-29 Exhaust gas purifying catalyst and its preparation

Country Status (1)

Country Link
JP (1) JPS60183037A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347168A (en) * 2000-06-06 2001-12-18 Toyota Motor Corp Exhaust gas cleaning catalyst
CN110124640B (en) * 2019-04-19 2020-05-19 华䞭科技倧孊 Compound of lanthanum molybdate and ferromagnetic material, preparation and application of compound to adsorption dephosphorization

Also Published As

Publication number Publication date
JPS60183037A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
EP0174495B1 (en) Catalyst for purifying diesel engine exhaust gases
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US4849399A (en) Catalyst for the reduction of the ignition temperature of diesel soot
EP1368107B1 (en) A catalyzed diesel particulate matter exhaust filter
JP2716205B2 (en) Exhaust gas purification catalyst
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
KR20060093102A (en) A catalyzed diesel particulate matter filter with improved thermal stability
JP2006175386A (en) Filter catalyst for exhaust gas cleaning of diesel engine and its production method
KR20170018914A (en) Exhaust gas treatment system
JP2004330046A (en) Catalyst for cleaning diesel engine exhaust gas and its production method
CN105056970A (en) Preparation method of catalyzed diesel particulate filter (CDPF)
JPH0462778B2 (en)
JPH0442063B2 (en)
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPH0232934B2 (en)
JPH0464735B2 (en)
JPH0342936B2 (en)
JPH0558775B2 (en)
JPH0260374B2 (en)
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JPH0575457B2 (en)
JP3337081B2 (en) Diesel engine exhaust gas purification catalyst
JPH0462779B2 (en)
JPH0578385B2 (en)
JPH0337975B2 (en)