JPS61125166A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61125166A
JPS61125166A JP59246028A JP24602884A JPS61125166A JP S61125166 A JPS61125166 A JP S61125166A JP 59246028 A JP59246028 A JP 59246028A JP 24602884 A JP24602884 A JP 24602884A JP S61125166 A JPS61125166 A JP S61125166A
Authority
JP
Japan
Prior art keywords
type
type impurity
semiconductor device
layer
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59246028A
Other languages
Japanese (ja)
Inventor
Shuji Ikeda
修二 池田
Koichi Nagasawa
幸一 長沢
Makoto Motoyoshi
真 元吉
Kiyoshi Nagai
清 永井
Satoshi Meguro
目黒 怜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59246028A priority Critical patent/JPS61125166A/en
Priority to KR1019850008576A priority patent/KR940006668B1/en
Priority to EP85114857A priority patent/EP0183204A3/en
Priority to CN85109742A priority patent/CN85109742B/en
Priority to US06/800,954 priority patent/US4734383A/en
Publication of JPS61125166A publication Critical patent/JPS61125166A/en
Priority to US07/351,323 priority patent/US5055420A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Abstract

PURPOSE:To prevent the generation of an alloy spike without increasing manufacturing processes by forming a contact hole for a CMOS device and introducing an N type impurity through the contact hole in concentration lower than a P type impurity layer. CONSTITUTION:A P type well 3 and an N type well 4 are formed onto a substrate 1 consisting of an N type silicon single crystal, a field insulating film 2 and a gate insulating film 21 are shaped, and gate electrodes 7, 11 and polycrystalline silicon films 14, 15 for wirings are formed. N type source-drain regions 8 and P type source-drain regions 12 are shaped, and an inter-layer insulating film 16 and a polycrystalline silicon film 17 are formed. Contact holes 22-26 are shaped, and N type impurity ions are implated to the whole surface in the quantity of low concentration, thus forming an impurity layer 9 having a deep junction. Al wirings are shaped, thus forming a CMOS type semiconductor device.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はCMOS(相補型MOSトランジスタ)回路を
備える半導体装置の製造方法に関し、特に不純物層にお
けるアロイスパイクの防止を図った半導体装置の型造方
法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a semiconductor device including a CMOS (complementary MOS transistor) circuit, and more particularly to a method for molding a semiconductor device that aims to prevent alloy spikes in an impurity layer. It is.

〔背景技術〕[Background technology]

近年におけろIC,LSI等の半導体装置の高集積化に
伴って素子の微細化が進められ、MOS型半導体装置で
はMOS)ランジスタのスケールダウン、即ちショート
チャネル化が進められ℃(・る。そしてこのショートチ
ャネル化に伴って、素子の不純物層(一般にはソース・
ドレイン領域等)の接合深さも0.2〜0.4μm程度
に浅くされて(・る。
In recent years, as semiconductor devices such as ICs and LSIs have become more highly integrated, elements have become smaller and smaller, and transistors in MOS type semiconductor devices have been scaled down, that is, short-channeled. Along with this short channel, the impurity layer (generally the source layer) of the element
The junction depth of the drain region, etc.) is also made shallow to about 0.2 to 0.4 μm.

ところで、配線層は通常アルミニウム(AI)が用いら
れるので、この不純物層は通常Alと接続されてし・る
。このAJと不純物層(Si)との接続のオーミンク性
を得るための熱処理によって、不純物層(基板)中のS
iがAI中に溶出するという所謂アロイスパイクが発生
する。モし℃、このアロイスパイクが不純物層の接合面
に達すると接合が短絡したりリーク電流が増大する等素
子の信頼性が低下される。したがって、前述のように接
合深さが益々浅(され℃きている近年のMOSトランジ
スタでは、アロイスパイクによる信頼性の低下が著しく
、高集積化を妨げる原因の一つになって−・る。
By the way, since aluminum (AI) is usually used for the wiring layer, this impurity layer is usually connected to Al. By heat treatment to obtain the ohmink property of the connection between this AJ and the impurity layer (Si), S
A so-called alloy spike occurs in which i is eluted into AI. At low temperatures, if this alloy spike reaches the junction surface of the impurity layer, the junction may be short-circuited, leakage current may increase, and the reliability of the device may be reduced. Therefore, as mentioned above, in recent MOS transistors in which the junction depth has become shallower and shallower, reliability is significantly lowered due to alloy spikes, which is one of the reasons for hindering higher integration.

このようなことから、アロイスパイクを抑制ないし防止
する稿々の試みもなされている。例えばAIの形成前の
コンタクトホールを通して不純物層にこれと同一導電型
の不純物を再度拡散(補助拡散)させ、その部位の接合
深さを局部的に大きくする方法が提案されて〜・る。こ
の方法は拡散工程を一つ付加するだけで簡便に実施でき
、しかも効果も大きいので有効である。
For this reason, attempts have been made to suppress or prevent alloy spikes. For example, a method has been proposed in which an impurity of the same conductivity type is re-diffused (auxiliary diffusion) into the impurity layer through a contact hole before the formation of the AI, thereby locally increasing the junction depth at that location. This method is effective because it can be easily carried out by adding one diffusion step and is highly effective.

しかしながら、この方法は異なる導電型の不純物層・9
まりP型歪細物層とN型不純物層が併存する半導体装置
(一般にはCMO3装置)にそのまま適用することがで
きない。したがって製造工程数の多いCMOS装置の製
造工程を更に大幅に増大させると℃・う問題が生じろ。
However, this method requires impurity layers of different conductivity types.
Therefore, it cannot be directly applied to a semiconductor device (generally a CMO3 device) in which a P-type strained thin layer and an N-type impurity layer coexist. Therefore, if the number of manufacturing steps for a CMOS device is significantly increased, problems will arise.

なお、アロイスパイクの種々の防止法としては、日経マ
グロウヒル社発行、「日経エレクトロニクス(別冊マイ
クロデノ、くイセズ)」、19 s O年1月23日号
、P122に記載のものがある。
Various methods for preventing alloy spikes include those described in "Nikkei Electronics (Special Issue Microdeno, Kuisezu)" published by Nikkei McGraw-Hill, January 23, 19 s O, p. 122.

し発明の目的〕 本発明の目的はCMOS装置におい℃も極めて容易にし
かも工程数を殆んど増710させることなくアロイスパ
イクの防止を図ることのできる半導体装置の製造方法を
提供することにある。
OBJECT OF THE INVENTION] An object of the present invention is to provide a method for manufacturing a semiconductor device that can extremely easily reduce temperature in a CMOS device and prevent alloy spikes without increasing the number of steps. .

また、本発明の他の目的は多結晶シリコン層。Another object of the present invention is to provide a polycrystalline silicon layer.

高融点金属シリサイド層ある(・はポリサイド層とAI
とのコンタクト(接続)の改善を図ることのできる方法
を提供することにある。
There is a high melting point metal silicide layer (・ is a polycide layer and an AI
The purpose is to provide a method that can improve contact (connection) with.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかKなるであ
ろう。
The above and other objects and novel features of the present invention include:
It will be clear from the description of this specification and the accompanying drawings.

[発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、CMOS装置のコンタクトホールな形成した
上で、P型不純物層よりも低濃夏でN型不純物をコンタ
クトホールを通して導入することにより、P型不純物層
の特性を阻害することなくN型不純物層の接合を局部的
に大きくし、これによりP型およびN型不純物層でのア
ロイスパイクの発生を防止するものである。
In other words, by forming a contact hole for a CMOS device and then introducing N-type impurities through the contact hole at a lower concentration than the P-type impurity layer, the N-type impurity layer can be formed without impairing the characteristics of the P-type impurity layer. The purpose of this is to locally enlarge the junction, thereby preventing the occurrence of alloy spikes in the P-type and N-type impurity layers.

また、CMOS装置のコンタクトホールな形成した上で
、少なくともP型不純物層のコンタクトホールを閉塞し
、その上で充分大きなイオン打込量でN型不純物のイオ
ン打込入を行ない、N型不純物層の接合glAすを充分
太き(してアロイスパイクの防止を確実なものとし、合
わせて多結晶シリコンとAJとのコンタクトの改善を図
るものである。
In addition, after forming a contact hole for a CMOS device, at least the contact hole of the P-type impurity layer is closed, and then N-type impurity ions are implanted with a sufficiently large ion implantation amount to form an N-type impurity layer. The purpose is to make the junction GL sufficiently thick to ensure prevention of alloy spikes and to improve the contact between the polycrystalline silicon and the AJ.

〔実施例1〕 第1図は本発明の方法により製造するCMOS構造の半
導体装置を示す。
[Example 1] FIG. 1 shows a CMOS structure semiconductor device manufactured by the method of the present invention.

N型シリコン単結晶からなる半導体基板1上のフィール
ド絶縁膜(Siか膜)2によって画成された領域KP型
タウエルとN型ウェル4を形成し、ここにNチャネルM
O8+−ランジスタ5とPチャネルMOSトランジスタ
6を夫々形成しil、・る。
A region KP-type twell and an N-type well 4 defined by a field insulating film (Si film) 2 on a semiconductor substrate 1 made of an N-type silicon single crystal are formed, and an N-channel M well 4 is formed here.
An O8+- transistor 5 and a P-channel MOS transistor 6 are formed, respectively.

NチャネルMO8)ランジスタ5は多結晶シリコンから
なるゲートを極7と、N型不純物(AS )をイオン打
込みして形成したN型ソース・ドレイン領域8とで構成
して℃・る。これらソース・ドレイン領域8は接合深さ
が約0.2μmであるが、本例ではドレイン側の一部下
側にN型不純物層9を設けて局部的に深く形成し、ここ
にAl配線10を接続して℃・る。
N-channel MO transistor 5 consists of a gate made of polycrystalline silicon, a pole 7, and an N-type source/drain region 8 formed by ion implantation of N-type impurities (AS). These source/drain regions 8 have a junction depth of approximately 0.2 μm, but in this example, an N-type impurity layer 9 is provided below a portion of the drain side to form a locally deep layer, and an Al wiring 10 is placed here. Connect ℃・ru.

また、PチャンネルMOSトランジスタ6は多結晶シリ
コンからなるゲート電極11と、P型不純物(B)をイ
オン打込入して形成したP型ンース・ドレイン領域12
とで構成して℃・る。このソース・ドレイン領域12の
接合深さは約0.4μmであり、ドレイン側にAJ配線
13を接続している。
The P-channel MOS transistor 6 also includes a gate electrode 11 made of polycrystalline silicon, and a P-type source/drain region 12 formed by ion-implanting P-type impurities (B).
It is composed of ℃・ru. The junction depth of this source/drain region 12 is approximately 0.4 μm, and the AJ wiring 13 is connected to the drain side.

更に前記各ゲート電極7,11と同時に形成した多M 
晶シリコン膜14.15およびその上に層間絶縁膜16
を介して形成した第2多結晶シリコン膜17には夫々A
l配線18,19,20を接続している。図中、21は
ゲート絶縁膜である。
Further, a multilayer M formed at the same time as each gate electrode 7, 11
A crystalline silicon film 14, 15 and an interlayer insulating film 16 thereon.
The second polycrystalline silicon film 17 formed through the A
l wirings 18, 19, and 20 are connected. In the figure, 21 is a gate insulating film.

次に以上の構成のCMOSの製造方法は、第2図に示す
ように常法によりコンタクトホールノ形成までを行なう
。すなわち、 (1)シリコン基板1にP型ウェル3. Nff1ウエ
ル4を選訳的に不純物を導入し、これを熱拡散すること
により形成し、その上でフィールド絶縁膜2とゲート絶
縁膜21を形成する。
Next, in the method for manufacturing the CMOS having the above structure, as shown in FIG. 2, the steps up to the formation of contact holes are carried out by a conventional method. That is, (1) P-type well 3. The Nff1 well 4 is formed by selectively introducing impurities and thermally diffusing the impurities, and then the field insulating film 2 and the gate insulating film 21 are formed thereon.

(2)N型にドープさせた多結晶シリコン膜を堆積しか
つパターニングすることによりゲート電極7゜11と配
線用の多結晶シリコン膜14,15を形成する。
(2) A gate electrode 7.11 and polycrystalline silicon films 14 and 15 for wiring are formed by depositing and patterning an N-type doped polycrystalline silicon film.

(31N型ウエル4側をレジスト等のマスクで覆った状
態でP型ウェル3に対しセルファライン法によってAs
(ひ素)をイオン打込みし、N型ソース・ドレイン領域
8.8を形成する。濃度は102102l”である。
(With the 31N type well 4 side covered with a mask such as a resist, As is applied to the P type well 3 using the self-line method.
(Arsenic) ions are implanted to form N-type source/drain regions 8.8. The concentration is 102102 l''.

(4)今度はP型ウェル3側をレジスト等のマスクで覆
った状態でN型つニ/L/4に対しセルファライン法に
よってB(ボロン)をイオン打込みし、P型ンース・ド
レイン領域12.12を形成する。
(4) Next, with the P-type well 3 side covered with a mask such as a resist, B (boron) ions are implanted into the N-type Tsuni/L/4 by the self-line method, and the P-type drain region 12 Form .12.

濃度は1020 cm−3である。The concentration is 1020 cm-3.

(5)シかる上で、PSG等の層間絶縁膜16を形成し
、その上建第2多侍晶シリコン膜17を形成し、更にそ
の上に前述と同質の層間絶縁膜16(符号は同じ)を形
成する。
(5) On top of the film, an interlayer insulating film 16 such as PSG is formed, and a second polymorphous silicon film 17 is formed thereon, and an interlayer insulating film 16 of the same quality as described above (same reference numerals are ) to form.

(6)そして、Al配線を接続すべき位置、つまりN型
ドレイン領域(不純物層)8、P型ドレイン頒域(不純
物層)12、多結晶シリコン膜14゜15、第2多結晶
シリコン膜17に夫々対応する位置にコンタクトホール
22,23,24,25゜26を形成する。
(6) Then, the positions where the Al wiring should be connected, that is, the N-type drain region (impurity layer) 8, the P-type drain region (impurity layer) 12, the polycrystalline silicon film 14° 15, the second polycrystalline silicon film 17 Contact holes 22, 23, 24, and 25° 26 are formed at positions corresponding to , respectively.

そして、本例にあっては、第2図に示すように、このコ
ンタクトホール22. 23. 24. 25゜26が
全て開放された状態で全面にP(りん)等のN型不純物
をイオン打込みして℃・る。この場合、イオン打込量は
1020cm+3よりも小さい量でイオン打込みを行な
う。この結果、N型ドレイン領域8ではAsよりも拡散
速度の大きなPが打込まれるためコンタクトホール22
の対応部位で深く拡散され、第1図に示したように局部
的に深〜・接合の不純物層9が形成されることになる。
In this example, as shown in FIG. 2, this contact hole 22. 23. 24. With all 25° and 26 open, an N-type impurity such as P (phosphorus) is ion-implanted into the entire surface at a temperature of 25°C. In this case, the ion implantation amount is smaller than 1020 cm+3. As a result, P, which has a higher diffusion rate than As, is implanted into the N-type drain region 8, so the contact hole 22
The impurity layer 9 is diffused deeply in the corresponding region, and a deep junction impurity layer 9 is locally formed as shown in FIG.

−万、P型ドレイン12においては、Pの拡散運屓がB
より若干小さいことおよび濃度がBよりも小さく・こと
から、N型不純物層がNウェル領域に達するまで下刃に
形成されることはなく、かつP型ドレイン12が損傷さ
れることもな〜・。
-10,000, in the P-type drain 12, the diffusion transport of P is B
Since it is slightly smaller than B and its concentration is lower than that of B, the N-type impurity layer is not formed on the lower blade until it reaches the N-well region, and the P-type drain 12 is not damaged. .

したがって、その後にAJ膜の堆積、パターニングを行
なってAl配線10,13.1B、19゜20を形成す
れば、eKN型ドレイン10にお℃・てはPのイオン打
込みにより接合深さか大きくされているためにアロイス
パイクが生じることはな(・。マタ、P型ドレイン12
にあっては、もともと接合が深℃・ためにアロイスパイ
クは生じな(・。
Therefore, if the AJ film is deposited and patterned after that to form the Al interconnects 10, 13.1B, 19°20, the junction depth will be increased by ion implantation of P into the eKN type drain 10 at °C. Alloy spikes do not occur because of the
In this case, alloy spikes do not occur because the bond is originally deep.

これにより、従来のCMOS央造工程の途中でイオン打
込量の制限されたイオン打込工程を行なうだけでアロイ
スパイクの生じなし・装置を完成することができ、容易
に高信頼性のcMos型半導体装置を得ることができろ
As a result, it is possible to complete a device without producing alloy spikes by simply performing an ion implantation process with a limited amount of ion implantation during the conventional CMOS central fabrication process, and it is possible to easily create a highly reliable cMOS type device. You can get semiconductor devices.

〔実施例2〕 第3図は本発明の他の実施例を示し、前記第1図のCM
OS!!置を製造する別の方法を示して℃・る。
[Embodiment 2] FIG. 3 shows another embodiment of the present invention, and the CM of FIG.
OS! ! Here we show another method of manufacturing the temperature range.

すなわち、前例と同様にコンタクトホール22゜23.
24,25.26を形成した後にN型ドレイン8のみを
開放させるように他のコンタクトホール23,24,2
5.26上にレジスト27をパターニングしてこれを閉
塞している。そして、その上からN型不純物のPをイオ
ン打込みすることKよりN型ドレイン領域8のみにPを
イオン打込入でき、その下側にN型不純物層9を形成し
て接合深さを大きくすることができる。この場合、P型
ドレイン領域12には全くPがイオン打込されないので
、Pのイオン打込tはP型ドレイン領域のイオン打込量
を考慮する必要はなく、光分に大きな量、つまり@度に
して10 !0cm−’以上の量での打込みを可能とし
、アロイスパイクを防止し得る充分な深さの接合を形成
することができる。
That is, as in the previous example, the contact holes 22°, 23.
After forming contact holes 24, 25, and 26, other contact holes 23, 24, and 2 are formed so that only the N-type drain 8 is opened.
A resist 27 is patterned on 5.26 to close it. Then, by ion-implanting P as an N-type impurity from above, P can be ion-implanted only into the N-type drain region 8, and an N-type impurity layer 9 is formed below it to increase the junction depth. can do. In this case, since no P ions are implanted into the P-type drain region 12, the P ion implantation t does not need to take into account the ion implantation amount of the P-type drain region, and is a large amount in terms of light, that is, @ 10 times! It is possible to implant with an amount of 0 cm-' or more, and to form a bond of sufficient depth to prevent alloy spikes.

なお、工程としてはレジスト工程が1工程必要とされる
が、大喝な工程の増加ではな(製造を複雑化することは
ない。
Although one resist step is required as a process, it is not a drastic increase in the number of steps (it does not complicate the manufacturing process).

第4図は前述方法の一部を変形したものであり、レジス
ト28をP型ドレイン領域12のコンタクトホール23
をのみ閉塞するようにパターニングしたものである。こ
の場合においても、N型不純物としてのPのイオン打込
みに際しては、P型ドレイン領域12へのPの打込みを
考慮する必要がな(・ことから、必要なイオン打込量で
のN型不純物層9の形成を行なうことができ、N型ドレ
イン領域8においてアロイスパイクを防止するのに光分
な接合深さを得ろことができる。
FIG. 4 shows a partial modification of the above-mentioned method, in which the resist 28 is applied to the contact hole 23 of the P-type drain region 12.
It is patterned to occlude only the . Even in this case, when ion implanting P as an N-type impurity, there is no need to consider implanting P into the P-type drain region 12. 9 can be formed, and a junction depth sufficient to prevent alloy spikes in the N-type drain region 8 can be obtained.

また、これと共にコンタクトホール24,25゜26を
通して多結晶シリコン膜14,15と第2多結晶シリコ
71gI!17にも充分にPをイオン打込入してそのf
Ik度を高めることができるので、その抵抗を下げ、A
I!配1gJ18,19.20との接続を良好なものに
できる。特に、PチャンネルMOSトランジスタ6の近
傍の多結晶シリコン膜15ではP型ンース・ドレイン領
域12.12の形成の際のBのイオン打込入に工つてN
型不純物濃度が低下された状態にあるため、改めてPを
イオン打込みすることによりこれを修正し、前述のよう
に艮好な接続を得ることができる。
At the same time, the polycrystalline silicon films 14 and 15 are connected to the second polycrystalline silicon film 71gI! through the contact holes 24 and 25°26. 17 is also sufficiently ion-implanted with P, and its f
Since the Ik degree can be increased, the resistance can be lowered and the A
I! Good connection with wiring 1gJ18, 19.20 can be achieved. In particular, in the polycrystalline silicon film 15 near the P-channel MOS transistor 6, N
Since the type impurity concentration is in a reduced state, this can be corrected by anew P ion implantation, and a good connection can be obtained as described above.

〔効果〕〔effect〕

(11CM OS装置のコンタクトホールを形成した後
に、P型ソース・ドレイン領域のイオン打込量より小さ
いイオン打込量で全面にりん等のN型不純物をイオン打
込入しているので、P型ノース・ドレイン領域を損傷す
ることなくN型ソース・ドレイン領域に局部的に深い接
合を形成でき、Alコンタクトによるアロイスパイクを
防止し、半導体装置の信頼性を向上できる。
(After forming the contact holes for the 11CM OS device, N-type impurities such as phosphorus are ion-implanted into the entire surface with a smaller ion-implantation amount than the ion-implantation amount for the P-type source/drain regions. A locally deep junction can be formed in the N-type source/drain region without damaging the north/drain region, preventing alloy spikes caused by Al contacts, and improving the reliability of the semiconductor device.

(2)  これまでと同じCMOS製造工程の途中でN
型不純物のイオン打込みを行なうだけでアロイスパイク
の防止を図ることができるので、製造工程を殆んど増加
することはなく、容易に製造できる。
(2) During the same CMOS manufacturing process as before, N
Since alloy spikes can be prevented simply by ion implantation of type impurities, the manufacturing process can be easily manufactured with almost no increase in the number of manufacturing steps.

(3)少なくともP型ソース・ドレイン領域のコンタク
トホールを閉塞した状態でN型不純物のイオン打込みを
行なうので、P型ノース・ドレイン領域のイオン打込量
よりも大きいイオン打込みを行なってもP型ソニス・ド
レイン領域を損傷することはなく、これKよりN型ソー
ス・ドレイン領域に充分の量のN型不純物の打込みを可
能とし、アロイスパイクの防止に充分な深(・接合を得
ることができる。
(3) Since N-type impurity ions are implanted with at least the contact holes in the P-type source/drain region blocked, even if the ion implantation amount is larger than that of the P-type north drain region, the P-type It does not damage the sonic/drain regions, and it is possible to implant a sufficient amount of N-type impurities into the N-type source/drain regions using K, and to obtain a junction deep enough to prevent alloy spikes. .

(4)  これまでと同じCMOSjJ造工程の途少工
程レジスト工程とイオン打込み工程を付加するだけでよ
いので、大喝な工程の増力0は必要なく、他のアロイス
パイク防止方法に比較して容易に行なうことができる。
(4) Since it is only necessary to add the resist process and ion implantation process to the same CMOSJJ fabrication process as before, there is no need to increase the force of the major process, and it is easier than other alloy spike prevention methods. can be done.

(5)N型ソース・ドレイン領域へのN型不純物のイオ
ン打込みと同時に多結晶ポリシリコン膜へのイオン打込
みを行なって℃・ろので、多結晶ポリシリコンの低抵抗
化を図り、AIlコンタクトとの接続を良好なものにす
ることができる。
(5) At the same time as the ion implantation of N-type impurity into the N-type source/drain region, the ion implantation into the polycrystalline polysilicon film is performed to lower the resistance of the polycrystalline polysilicon and connect it to the Al contact. connection can be made good.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しなし・範囲で種々変更
可能であることはいうまでもない。たとえば、第2実施
例の方法ではN型不純物にAsを用℃・ることもできる
。また、不純物層はN型ソース・ドレイン以外にも基板
コンタクトやウェルコンタクト等のN型不純物層にも適
用できる。
Although the invention made by the present inventor has been specifically explained based on the examples above, the present invention is not limited to the above examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say. For example, in the method of the second embodiment, As can be used as the N-type impurity. Furthermore, the impurity layer can be applied not only to N-type sources and drains but also to N-type impurity layers such as substrate contacts and well contacts.

またポリシリコン層は高融点金属層、あるいはそのシリ
サイド層、またはポリシリコン層とその上に形成された
高融点金属層またはそのシリサイド層からなる2層構造
であってもよい。
Further, the polysilicon layer may be a high melting point metal layer, a silicide layer thereof, or a two-layer structure consisting of a polysilicon layer and a high melting point metal layer or silicide layer formed thereon.

し利用分野〕 以上の説明では主として本発明者′VCよってなされた
発明をその背景となった利用分野である0MO8装置の
N型ソース・ドレイン領域でのアロイスパイク防止方法
に適用した場合について説明したが、それに限定される
ものではな(前述のように基板コンタクト、ウェルコン
タクトやその外のコンタクトを有するN型不純物層への
適用、およびAJ以外のコンタクト材料を用(・る場合
にも同様に適用できる。
[Field of Application] The above explanation has mainly been about the application of the invention made by the present inventor, VC, to a method for preventing alloy spikes in the N-type source/drain region of an 0MO8 device, which is the field of application that formed the background of the invention. However, it is not limited to this (as mentioned above, it can be applied to an N-type impurity layer having a substrate contact, well contact, or other contact), or when using a contact material other than AJ. Applicable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により製造する0MO5装置の断面
図、 第2図は本発明の一実施例方法を説明するための断面図
、 第3図は本発明の他の実施例方法を説明するための断面
図、 第4図はその変形方法の断面図である。 1・・・シリコン基板、3・・・N型りエル、4・・・
P型ウェル、5・・・Nチャネ/I/MOSトランジス
タ、6・・・PチャネルMOSトランジスタ、7・・・
ゲート電極、8・・・N型ソース・ドレイン領域、9・
・・N型不純物層、10・・・A!配置1!(コンタク
ト)、11・・・ゲート電極、12・・・P型ソース・
ドレイン領域、13・・・AI配M(コンタクト)、1
4.15・・・多結晶シリコン膜、19・・・層間絶l
ik鵬、17川第2多結晶シリコン膜、18,19.2
0・・・A!配線(コンタクト)、22〜26・・・コ
ンタクトホール、27.28・・・レジスト。
Fig. 1 is a cross-sectional view of an 0MO5 device manufactured by the method of the present invention, Fig. 2 is a cross-sectional view for explaining one embodiment of the method of the present invention, and Fig. 3 is a cross-sectional view for explaining another embodiment of the method of the present invention. FIG. 4 is a cross-sectional view of the deformation method. 1...Silicon substrate, 3...N type reel, 4...
P-type well, 5... N channel/I/MOS transistor, 6... P channel MOS transistor, 7...
Gate electrode, 8... N-type source/drain region, 9.
...N-type impurity layer, 10...A! Placement 1! (contact), 11...gate electrode, 12...P-type source
Drain region, 13... AI contact (contact), 1
4.15...polycrystalline silicon film, 19...layer interlayer l
ik Peng, 17 River 2nd polycrystalline silicon film, 18, 19.2
0...A! Wiring (contact), 22-26... Contact hole, 27.28... Resist.

Claims (1)

【特許請求の範囲】 1、CMOS構造の半導体装置のコンタクトホール形成
後に、P型不純物層よりも小さいイオン打込量で前記コ
ンタクトホールを通してN型不純物をイオン打込みする
ことを特徴とする半導体装置の製造方法。 2、コンタクトホールはN型、P型の各不純物層、多結
晶シリコン層、高融点金属層、高融点金属シリサイド層
あるいはポリサイド層に対して形成する特許請求の範囲
第1項記載の半導体装置の製造方法。 3、N型不純物はりん又はひ素である特許請求の範囲第
1項又は第2項記載の半導体装置の製造方法。 4、P型、N型不純物層は夫々Pチャネル、Nチャネル
各MOSトランジスタのソース・ドレイン領域および配
線領域である特許請求の範囲第1項ないし第3項のいず
れかに記載の半導体装置の製造方法。 5、CMOS構造の半導体装置のコンタクトホール形成
後に、少なくともP型不純物層のホールを閉塞してN型
不純物をイオン打込みすることを特徴とする半導体装置
の製造方法。 6、N型不純物層のホールのみを開放状態にしてN型不
純物層をイオン打込みしてなる特許請求の範囲第5項記
載の半導体装置の製造方法。 7、N型不純物はP型不純物層よりも大きいイオン打込
量でイオン打込みしてなる特許請求の範囲第5項又は第
6項記載の半導体装置の製造方法。 8、N型不純物はりん又はひ素である特許請求の範囲第
5項ないし第7項のいずれかに記載の半導体装置の製造
方法。 9、コンタクトホールはパターニングしたフォトレジス
トで閉塞する特許請求の範囲第5項ないし第8項のいず
れかに記載の半導体装置の製造方法。
[Claims] 1. After forming a contact hole of a semiconductor device having a CMOS structure, an N-type impurity is ion-implanted through the contact hole with a smaller ion implantation amount than that of a P-type impurity layer. Production method. 2. The semiconductor device according to claim 1, wherein the contact hole is formed in each of N-type and P-type impurity layers, a polycrystalline silicon layer, a high melting point metal layer, a high melting point metal silicide layer, or a polycide layer. Production method. 3. The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the N-type impurity is phosphorus or arsenic. 4. Manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the P-type and N-type impurity layers are source/drain regions and wiring regions of P-channel and N-channel MOS transistors, respectively. Method. 5. A method for manufacturing a semiconductor device, which comprises, after forming a contact hole in a CMOS structure semiconductor device, blocking at least a hole in a P-type impurity layer and implanting N-type impurity ions. 6. The method of manufacturing a semiconductor device according to claim 5, wherein the N-type impurity layer is ion-implanted with only the holes in the N-type impurity layer open. 7. The method of manufacturing a semiconductor device according to claim 5 or 6, wherein the N-type impurity is ion-implanted with a larger ion implantation amount than the P-type impurity layer. 8. The method for manufacturing a semiconductor device according to any one of claims 5 to 7, wherein the N-type impurity is phosphorus or arsenic. 9. The method of manufacturing a semiconductor device according to any one of claims 5 to 8, wherein the contact hole is closed with a patterned photoresist.
JP59246028A 1984-11-22 1984-11-22 Manufacture of semiconductor device Pending JPS61125166A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59246028A JPS61125166A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device
KR1019850008576A KR940006668B1 (en) 1984-11-22 1985-11-16 Manufacturing method of semiconductor ic device
EP85114857A EP0183204A3 (en) 1984-11-22 1985-11-22 Process for fabricating semiconductor integrated circuit devices
CN85109742A CN85109742B (en) 1984-11-22 1985-11-22 Method of producing semiconductor integrated circuit devices
US06/800,954 US4734383A (en) 1984-11-22 1985-11-22 Fabricating semiconductor devices to prevent alloy spiking
US07/351,323 US5055420A (en) 1984-11-22 1989-05-09 Process for fabricating semiconductor integrated circuit devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246028A JPS61125166A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61125166A true JPS61125166A (en) 1986-06-12

Family

ID=17142373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246028A Pending JPS61125166A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61125166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235369A (en) * 1989-03-09 1990-09-18 Fujitsu Ltd Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856450A (en) * 1981-09-30 1983-04-04 Nec Corp Complementary mos semiconductor device
JPS5874070A (en) * 1982-10-08 1983-05-04 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856450A (en) * 1981-09-30 1983-04-04 Nec Corp Complementary mos semiconductor device
JPS5874070A (en) * 1982-10-08 1983-05-04 Hitachi Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235369A (en) * 1989-03-09 1990-09-18 Fujitsu Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US4663825A (en) Method of manufacturing semiconductor device
JPS59148369A (en) Method of producing mos transistor
US5055420A (en) Process for fabricating semiconductor integrated circuit devices
KR0178551B1 (en) Method of manufacturing semiconductor integrated circuit
KR100324144B1 (en) Semiconductor Device and Method for Making the Same
US4965216A (en) Method of fabricating a bi-CMOS device
US5409843A (en) Method of producing a semiconductor device by forming contacts after flowing a glass layer
US5190886A (en) Semiconductor device and method of production
US5759883A (en) Method for making semiconductor device capable of independently forming MOS transistors and bipolar transistor
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPS61125166A (en) Manufacture of semiconductor device
JPH0837239A (en) Semiconductor device and manufacture thereof
JP3167362B2 (en) Manufacturing method of bipolar type MOS semiconductor device
JP3247498B2 (en) Method for manufacturing semiconductor device
JPH0481336B2 (en)
JPH0527975B2 (en)
JPH07161826A (en) Manufacture of semiconductor device
JP2945069B2 (en) Connection structure of different polarity conductive layers
JPH0517701B2 (en)
JPH03261168A (en) Bicmos integrated circuit device
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH06224379A (en) Manufacture of semiconductor device
JPS6047749B2 (en) Manufacturing method of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPS6281051A (en) Semiconductor device and manufacture thereof