JPS61122450A - Engine-driven heat pump hot water supply device - Google Patents

Engine-driven heat pump hot water supply device

Info

Publication number
JPS61122450A
JPS61122450A JP59243785A JP24378584A JPS61122450A JP S61122450 A JPS61122450 A JP S61122450A JP 59243785 A JP59243785 A JP 59243785A JP 24378584 A JP24378584 A JP 24378584A JP S61122450 A JPS61122450 A JP S61122450A
Authority
JP
Japan
Prior art keywords
engine
heat
hot water
heat pump
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59243785A
Other languages
Japanese (ja)
Inventor
Hiroshi Karato
唐土 宏
Shuichi Inoue
修一 井上
Yoshiki Izumi
善樹 泉
Shigeo Tanaka
田中 重夫
Yukio Takada
幸雄 高田
Kaoru Hattori
薫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Panasonic Holdings Corp
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP59243785A priority Critical patent/JPS61122450A/en
Publication of JPS61122450A publication Critical patent/JPS61122450A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To raise the temperature of hot water supply by heating the hot water simultaneously by a heat pump and exhaust heat, and, in addition to that, by heating the water in an exhaust heat water heater by operating the engine only after the compressor of the heat pump is stopped. CONSTITUTION:When the heating is started for hot water supply at T1, since the coolant temperature TC in or around a coolant temperature sensor 14 of an engine 1 and a condenser 4, the water is heated by a heat pump refrigerant circuit A and a waste heat recovering circuit B. When the refrigerant temperature in the condenser 4 becomes a saturated temperature TC2 under the allowable refrigerant pressure at T2, an electromagnetic clutch 2 is disengaged to stop the compressor 3 and stop heating the water by the heat pump refrigerant circuit A. From this time on, only the engine 1 is operated, and the water is heated by the exhaust heat of the engine operated in the idling mode. In this manner, the hot water is heated from 60 deg.C to 85 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エンジン駆動のヒートポンプ給湯機に関する
もので、特に給湯水の温度を高く確保する方法に係わる
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an engine-driven heat pump water heater, and more particularly to a method for ensuring a high temperature of hot water.

従来例の構成とその問題点 新たに発電所を建設することの困難さや夏季に電力需要
のピークが発生する一方で、都市ガスが夏季に余ってい
ること等の理由から最近エンジン駆動のヒートポンプ装
置が注目されてきている。
Conventional configurations and their problems Engine-driven heat pump systems have recently been introduced due to the difficulty of constructing new power plants and the fact that there is a surplus of city gas in the summer while electricity demand peaks in the summer. has been attracting attention.

このエンジン駆動ヒートポンプ装置は、エンジンにより
圧縮機を駆動して冷暖房運転やヒートポンプ給湯運転を
行ない、同時にエンジンの排熱(シ゛リンダヘッド部や
排ガスからの排熱)回収を行なって給湯や暖房に利用す
るもので、効率が高いことが特徴である。
This engine-driven heat pump device uses the engine to drive the compressor to perform air-conditioning and heating operations and heat pump hot water supply operations, and at the same time recovers engine exhaust heat (exhaust heat from the cylinder head and exhaust gas) and uses it for hot water supply and space heating. It is characterized by high efficiency.

第3因に従来のエンジン駆動ヒートポンプ給湯機の概略
構成を示す。、この第3図を参照して従来のエンジン駆
動ヒートポンプ給湯機の問題点を説明する。
The third factor is a schematic configuration of a conventional engine-driven heat pump water heater. The problems of the conventional engine-driven heat pump water heater will be explained with reference to FIG.

同図において、1′はエンジン、2′はエンジン1′に
より駆動される圧縮機、3′は蓄熱槽4′の給湯水5′
を加熱する凝縮器、6′は減圧器、7′は蒸発器でヒー
トポンプ冷媒回路A′を構成している。又、8′はエン
ジン1の軸に直結されたポンプ、9′は冷却水(図示せ
ず)を循環してエンジン1′のシリンダ部10′から排
熱を回収して凝縮器3′で加熱された給湯水S′を加熱
する排熱器であり排熱回収回路B′を構成している。1
1′は電動ポンプで、蓄熱槽4′の給湯水5′を凝縮器
3′、そして排熱器9′に導き、ヒートポンプ冷媒回路
A′からの冷媒凝縮熱(最高55°C程度)と排熱回収
回路B′からのエイシン排熱(最高85°C程度)を回
収し、蓄熱槽4′に温度の高い給湯水5′を得るもので
ある。
In the figure, 1' is an engine, 2' is a compressor driven by the engine 1', and 3' is hot water 5' in a heat storage tank 4'.
6' is a pressure reducer, and 7' is an evaporator, forming a heat pump refrigerant circuit A'. Further, 8' is a pump directly connected to the shaft of the engine 1, and 9' is a pump that circulates cooling water (not shown) to recover exhaust heat from the cylinder section 10' of the engine 1' and heat it in the condenser 3'. This is a heat exhaust device that heats the heated hot water supply S', and constitutes an exhaust heat recovery circuit B'. 1
1' is an electric pump that guides the hot water 5' from the heat storage tank 4' to the condenser 3' and then to the heat exhauster 9', and combines the refrigerant condensation heat (up to about 55°C) from the heat pump refrigerant circuit A' with exhaust water. Eisin waste heat (up to about 85°C) is recovered from the heat recovery circuit B', and high temperature hot water 5' is obtained in the heat storage tank 4'.

しかし、上記従来のエンジン駆動ヒートポンプ給湯機は
エンジン1′と圧縮機2′とが同軸で結合されており、
運転のタイミングが同一であるのでエンジン1′の運転
時間がヒートポンプ冷媒回路A′側6       の
冷媒圧力の上昇に伴って限られてしまう。つまりエンジ
ン1の運転経過と共に蓄熱槽4′内の給湯水5′の温度
が次第に上昇し、凝縮器3′内の冷媒圧力も次第に上昇
してくる。一般に冷媒がフレオンR−22の場合は約2
3〜’24に9/crtfyの圧力が限度である。従っ
て、エンジン1′自体が充分ウオーミングアンプ出来ず
、即ちエンジン1′の排熱器9側からの排熱を充分回収
しないうちに凝縮器3′の冷媒圧力が上昇してしまい、
エンジン1′及び圧縮機2′の運転を停止せざるを得な
い状態であった。
However, in the conventional engine-driven heat pump water heater, the engine 1' and compressor 2' are coaxially connected.
Since the operating timings are the same, the operating time of the engine 1' is limited as the refrigerant pressure in the heat pump refrigerant circuit A' side 6 increases. That is, as the engine 1 operates, the temperature of the hot water 5' in the heat storage tank 4' gradually increases, and the refrigerant pressure in the condenser 3' also gradually increases. Generally, when the refrigerant is Freon R-22, it is approximately 2
The pressure is limited to 9/crtfy from 3 to '24. Therefore, the refrigerant pressure in the condenser 3' increases before the engine 1' itself is able to warm up sufficiently, that is, the exhaust heat from the exhaust heat generator 9 side of the engine 1' is not sufficiently recovered.
The operation of the engine 1' and compressor 2' had to be stopped.

その場合には凝縮器3から得られる湯温はせいぜい約5
5°Cであり、蓄熱槽4′には高い温度の給湯水5が得
にくかった。
In that case, the water temperature obtained from the condenser 3 is at most about 5
5°C, and it was difficult to obtain hot water 5 at a high temperature in the heat storage tank 4'.

発明の目的 本発明は上記問題点に鑑みてなされたもので、エンジン
排熱とヒートポンプ運転の同時運転後にエンジンのアイ
ドリング運転のみでエンジン排熱回収を行ない、蓄熱槽
内に高い温度(約70〜80°C)の給湯水を確保する
ことにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems.The present invention recovers engine exhaust heat only by idling the engine after simultaneous operation of engine exhaust heat and heat pump operation. The goal is to secure hot water at a temperature of 80°C.

発明の構成 この目的を達成するために本発明は、ヒートポンプ冷媒
回路と排熱回収回路に、エンジンにより電磁クラッチを
介して駆動される圧縮機と、凝縮器の冷媒温度を検知し
て前記電磁クラッチをオンオフする冷媒温度センナと、
前記エンジンの冷却水温度を検知して前記エンジンをオ
ンオフする冷却水温度センサを設け、さらに前記冷却水
温度センナの動作温度を前記冷媒温度センサより高く設
定して排熱器単独で給湯水を加熱する構成としたもので
ある。
Structure of the Invention To achieve this object, the present invention provides a heat pump refrigerant circuit and an exhaust heat recovery circuit with a compressor driven by an engine via an electromagnetic clutch, and a compressor driven by the electromagnetic clutch by detecting the refrigerant temperature of the condenser. with a refrigerant temperature sensor that turns on and off the
A coolant temperature sensor is provided to detect the coolant temperature of the engine and turn the engine on and off, and further, the operating temperature of the coolant temperature sensor is set higher than the coolant temperature sensor to heat the hot water using the heat exhaust unit alone. It is configured to do this.

実施例の説明 以下、第1図、第2図により本発明の実施例について説
明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明のエンジン駆動ヒートポンプ給湯機の概
略構成の一実施例であり、第2図は同じくその運転パタ
ーン及び冷却水温度及び冷媒温度の時間的変化を示した
ものである。
FIG. 1 shows an example of a schematic configuration of an engine-driven heat pump water heater of the present invention, and FIG. 2 similarly shows its operating pattern and temporal changes in cooling water temperature and refrigerant temperature.

第1図において、1はエンジン、2は電磁クラッチ、3
は前記エンジン1により電磁クラッチ2を介して駆動さ
れる圧縮機、4は蓄熱槽5の給湯水6を加熱する凝縮器
、7は減圧器、8は蒸発器で、これらを連結してヒート
ポンプ冷媒回路Aを構成している。又、9はこの実施例
の場合エンジン1の軸と同軸のポンプで、10は排熱器
であり、冷却水(図示せず)を循環してエンジン1のシ
リンダヘッド部11から排熱を回収して凝縮器4出口の
給湯水6を加熱するものであり、これらを連結して排熱
回収回路Bを構成している。12は電動ポンプで蓄熱槽
5の給湯水6を凝縮器4、そして排熱器10に導く構成
にしており、ヒートポンプ冷媒回路Aからの冷媒凝縮熱
と排熱回収回路Bからのエンジン排熱を回収する。13
は冷媒温度(又は圧力)を検知して電磁クラッチ2をオ
ンオフする冷媒温度センサであり、14は冷却水の温度
を検知してエンジン1をオンオフする冷却水温度センサ
であり、その動作温度はこれ以上温度上昇するとエンジ
ン1に不具合が生じる程度に選定される。15は制御装
置で、冷媒温度センサ13や冷却水温度センサ14から
の信号を処理して電磁クラッチ2やエンジン1のオンオ
フを行なうもので、冷却水温度センサ14の動作温度(
約90℃)は冷媒温度センサ13の動作温度(約55°
C)よりも高く設定されており、冷媒温度センサ13が
動作して電磁クラッチ2をオフしてヒートポンプ冷媒回
路Aの凝縮器4による給湯水6の加熱を停止しても冷却
水温度センサ14が動作してエンジン1が動作する迄排
熱器10による給湯水6の加熱を行なう構成になってい
るっ 攬蟻唖−間一本 上記構成の下で次にその動作を第2図を参照しながら説
明する。
In Fig. 1, 1 is an engine, 2 is an electromagnetic clutch, and 3
is a compressor driven by the engine 1 via an electromagnetic clutch 2; 4 is a condenser that heats the hot water 6 in the heat storage tank 5; 7 is a pressure reducer; and 8 is an evaporator; these are connected to produce a heat pump refrigerant. It constitutes circuit A. Further, in this embodiment, 9 is a pump coaxial with the shaft of the engine 1, and 10 is a heat exhauster, which circulates cooling water (not shown) and recovers exhaust heat from the cylinder head 11 of the engine 1. These are connected to form an exhaust heat recovery circuit B. Reference numeral 12 denotes an electric pump, which is configured to guide the hot water 6 from the heat storage tank 5 to the condenser 4 and then to the heat exhaust device 10, and collects the refrigerant condensation heat from the heat pump refrigerant circuit A and the engine exhaust heat from the exhaust heat recovery circuit B. to recover. 13
14 is a coolant temperature sensor that detects the coolant temperature (or pressure) and turns on and off the electromagnetic clutch 2; 14 is a coolant temperature sensor that detects the coolant temperature and turns the engine 1 on and off; its operating temperature is as follows. The temperature is selected to such an extent that if the temperature rises above this level, a problem will occur in the engine 1. 15 is a control device that processes signals from the refrigerant temperature sensor 13 and the coolant temperature sensor 14 to turn on and off the electromagnetic clutch 2 and the engine 1;
approximately 90°C) is the operating temperature of the refrigerant temperature sensor 13 (approximately 55°C).
C), and even if the refrigerant temperature sensor 13 operates and the electromagnetic clutch 2 is turned off to stop the heating of the hot water supply 6 by the condenser 4 of the heat pump refrigerant circuit A, the cooling water temperature sensor 14 remains unchanged. The system is configured so that the hot water 6 is heated by the heat exhaust device 10 until the engine 1 starts operating.The operation under the above configuration will be described below with reference to FIG. I will explain.

時刻T1にて給湯加熱運転を開始すると、電動ポンプ1
2と共にエンジン1を駆動し、冷却水温度センサ14の
温度は勿論のこと凝縮器4の冷媒温度Tcがまだ低い温
度TC1°Cであるため、冷媒温度センサ13の検知に
より電磁クラッチ2がオンされ、圧縮機aを駆動する。
When hot water heating operation is started at time T1, electric pump 1
Since the temperature of the coolant temperature sensor 14 and the refrigerant temperature Tc of the condenser 4 are still low (TC1°C), the electromagnetic clutch 2 is turned on by the detection of the refrigerant temperature sensor 13. , drives compressor a.

その結果ヒートポンプ冷媒回路Aが作動し、凝縮器4に
おいて冷媒凝縮熱を給湯水6に与える。
As a result, the heat pump refrigerant circuit A operates, and the heat of refrigerant condensation is applied to the hot water supply 6 in the condenser 4 .

一方、エンジン1が駆動しているのでポンプ9−   
 が回転すると同時に冷却水温度TVも上昇し、その結
果シリンダヘッド部11からのエンジン排熱を排熱器1
0へ導き、ここで凝縮器4出口の給湯水6を更に加熱す
る排熱回収回路Bが作動する。
On the other hand, since engine 1 is driving, pump 9-
At the same time as the engine rotates, the cooling water temperature TV also rises, and as a result, the engine exhaust heat from the cylinder head 11 is transferred to the exhaust heat generator 1.
0, and here the exhaust heat recovery circuit B is activated to further heat the hot water 6 at the outlet of the condenser 4.

冷却水温度センサ14は約90 ’C程度で動作するよ
うになっており、冷却水温度TVは第2図に示すように
エンジン1の運転後次第に上昇してゆくが冷却水温度セ
ンサ14は未だ動作せず、従ってエンジン1は停止しな
い。その結果、給湯水6はヒートポンプ運転による凝縮
器4の凝縮熱と排熱器10によるエンジン排熱により温
度上昇する。
The coolant temperature sensor 14 is designed to operate at about 90'C, and although the coolant temperature TV gradually rises after the engine 1 is operated as shown in FIG. It does not operate and therefore the engine 1 does not stop. As a result, the temperature of the hot water 6 increases due to the condensation heat of the condenser 4 due to the heat pump operation and the engine exhaust heat from the heat exhaust device 10.

運転の経過と共に、給湯水6の温度も上昇し、かつヒー
トポンプ冷媒回路、A内の冷媒圧力も上昇するが、許容
冷媒圧力(フロンR−22の場合23〜24Kg/cI
ly)が限度であり、時刻T2の時点で凝縮器4の冷媒
温度がTe3 (許容冷媒圧力の飽和温度)になれば冷
媒温度センサ13により電磁クラッチ2がオフとなり、
即ち圧縮機3をエン、ジン1の回転とは切離してしまい
、圧縮機3を停止させて凝縮器4からの冷媒熱回収を止
める。
As the operation progresses, the temperature of the hot water supply 6 increases, and the refrigerant pressure in the heat pump refrigerant circuit A also increases, but the allowable refrigerant pressure (23 to 24 kg/cI in the case of Freon R-22)
ly) is the limit, and if the refrigerant temperature in the condenser 4 reaches Te3 (saturation temperature of allowable refrigerant pressure) at time T2, the refrigerant temperature sensor 13 turns off the electromagnetic clutch 2,
That is, the compressor 3 is separated from the rotation of the engine 1, the compressor 3 is stopped, and refrigerant heat recovery from the condenser 4 is stopped.

この時点での給湯水6の温度は約60℃程度までは上昇
している。
At this point, the temperature of the hot water supply 6 has risen to about 60°C.

それ以後は圧縮機3を駆動せず、エンジン1のみが運転
されるいわゆるアイドリング運転となる。
After that, the compressor 3 is not driven and only the engine 1 is operated, which is a so-called idling operation.

エンジン1排熱量は負荷がかかっていないので少、なく
はなるが、冷却水温度TVすなわち給湯水6は依然とし
て上昇を続ける。
Although the amount of exhaust heat from the engine 1 decreases or disappears because no load is applied, the cooling water temperature TV, that is, the hot water supply 6, continues to rise.

そして時刻T3で冷却水温度が90°Cに達し、冷却水
温度センサ14が動作して制御装置15によりエンジン
1を停止させ、給湯加熱を完了する。
Then, at time T3, the coolant temperature reaches 90°C, the coolant temperature sensor 14 operates, and the control device 15 stops the engine 1, completing the hot water heating.

その時貯湯槽5内の給湯水6の温度は約85°C程度ま
で上昇し充分高い温度が確保出来る。
At that time, the temperature of the hot water supply 6 in the hot water storage tank 5 rises to about 85°C, and a sufficiently high temperature can be ensured.

発明の効果 以上のように本発明は、ヒートポンプ冷媒回路の凝縮熱
と排熱回収回路の排熱器による同時給揚水加熱だけでは
なく、電磁クラッチで圧縮機を切った後エンジンのみを
単独運転させて排熱器のみで給湯水を加熱するため、従
来は給湯水温度が60°C程度であったものが、約85
°C程度にまで昇温することが出来る効果を奏する。
Effects of the Invention As described above, the present invention not only simultaneously pumps and heats the condensed heat of the heat pump refrigerant circuit and the exhaust heat generator of the exhaust heat recovery circuit, but also allows only the engine to operate independently after turning off the compressor using an electromagnetic clutch. Because hot water is heated only by a heat exhaust device, the hot water temperature used to be around 60°C, but now it is about 85°C.
It has the effect of being able to raise the temperature to about °C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるエンジン駆動ヒート
ポンプ給湯機の概略構成図、第2図は同エンジン駆動ヒ
ートポンプ給湯機における運転パターン、冷却水温度、
及び冷媒温度の時間的変化を示す説明図、第3図は従来
例を示すエンジン駆動ヒートポンプ給湯機の概略構成図
である。 1・・・・エンジン、2・・・・・・電磁クラッチ、3
・・・・・圧縮機、4・・・・凝縮器、6・・・・・給
湯水、7・・・・・減圧器、8・・・・・・蒸発器、1
0・・・・・・排熱器、13・・・・・冷媒温度センサ
、14・・・・冷却水温度センサ、A・・・・・ヒート
ポンプ冷媒回路、B・・・・・排熱回収回路。
FIG. 1 is a schematic configuration diagram of an engine-driven heat pump water heater according to an embodiment of the present invention, and FIG. 2 shows the operating pattern, cooling water temperature,
FIG. 3 is a schematic configuration diagram of a conventional engine-driven heat pump water heater. 1... Engine, 2... Electromagnetic clutch, 3
... Compressor, 4 ... Condenser, 6 ... Hot water supply, 7 ... Pressure reducer, 8 ... Evaporator, 1
0... Heat exhaust device, 13... Refrigerant temperature sensor, 14... Cooling water temperature sensor, A... Heat pump refrigerant circuit, B... Exhaust heat recovery circuit.

Claims (1)

【特許請求の範囲】[Claims] エンジン、電磁クラッチ、前記エンジンにより前記電磁
クラッチを介して駆動される圧縮機、給湯水を加熱する
凝縮器、減圧器、蒸発器を連結したヒートポンプ冷媒回
路、並びに前記エンジンに冷却水を循環させてエンジン
排熱を回収し前記凝縮器で加熱された給湯水を更に加熱
する排熱器を有する排熱回収回路を設けると共に、前記
凝縮器の冷媒温度を検知して前記電磁クラッチをオンオ
フする冷媒温度センサ、及び前記冷却水の温度を検知し
て前記エンジンをオンオフする冷却水温度センサを設け
、この冷却水温度センサの動作温度を前記冷媒温度セン
サよりも高く設定して前記排熱器単独で、前記給湯水を
加熱する構成としたエンジン駆動ヒートポンプ給湯機。
An engine, an electromagnetic clutch, a compressor driven by the engine via the electromagnetic clutch, a condenser for heating hot water, a pressure reducer, a heat pump refrigerant circuit connected to an evaporator, and circulating cooling water to the engine. An exhaust heat recovery circuit is provided that has a heat exhaust device that recovers engine exhaust heat and further heats the hot water heated by the condenser, and detects the refrigerant temperature of the condenser to turn on and off the electromagnetic clutch. A sensor and a cooling water temperature sensor that detects the temperature of the cooling water and turns on and off the engine are provided, and the operating temperature of the cooling water temperature sensor is set higher than that of the refrigerant temperature sensor, and the heat exhauster is used alone. An engine-driven heat pump water heater configured to heat the hot water.
JP59243785A 1984-11-19 1984-11-19 Engine-driven heat pump hot water supply device Pending JPS61122450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59243785A JPS61122450A (en) 1984-11-19 1984-11-19 Engine-driven heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59243785A JPS61122450A (en) 1984-11-19 1984-11-19 Engine-driven heat pump hot water supply device

Publications (1)

Publication Number Publication Date
JPS61122450A true JPS61122450A (en) 1986-06-10

Family

ID=17108928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59243785A Pending JPS61122450A (en) 1984-11-19 1984-11-19 Engine-driven heat pump hot water supply device

Country Status (1)

Country Link
JP (1) JPS61122450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155386A1 (en) 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199068A (en) * 1984-10-22 1986-05-17 サンデン株式会社 Heat pump device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199068A (en) * 1984-10-22 1986-05-17 サンデン株式会社 Heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155386A1 (en) 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same

Similar Documents

Publication Publication Date Title
US20060144047A1 (en) Vapor compression refrigerating device
CN109751110B (en) Heat cycle system
JP2007205699A (en) Refrigerating device equipped with exhaust heat utilization device
JPH0545446B2 (en)
JPS61122450A (en) Engine-driven heat pump hot water supply device
JPS6310349B2 (en)
JPS63213744A (en) Freeze preventing device in hot water supply apparatus
JPS5810885Y2 (en) Engine-driven heat pump type heating device
JP4069658B2 (en) Engine-driven refrigeration cycle device and heating device
JPS5850213Y2 (en) Heat recovery heating, cooling, and hot water equipment
JPS6032532Y2 (en) Engine-driven heat pump hot water generator
JPS6255063B2 (en)
JP3303151B2 (en) Hot water supply heat pump system utilizing cooling waste heat
JP2942852B2 (en) Evaporative cooling engine of cogeneration
JPH0247415Y2 (en)
JPS58205053A (en) Hot-water supplying machine utilizing solar heat
JP2844124B2 (en) Heat pump type heating equipment using antifreeze
JPS6229605Y2 (en)
JPS5810938Y2 (en) Ray Danbouki Yutousouchi
JPS58128475A (en) Control for rankine engine
JPH0140256B2 (en)
JP2001041571A5 (en)
JPH0221503B2 (en)
JPH02169901A (en) Accumulator-cogeneration device
JP2001280736A (en) Gas heat pump type air conditioner