JP2942852B2 - Evaporative cooling engine of cogeneration - Google Patents

Evaporative cooling engine of cogeneration

Info

Publication number
JP2942852B2
JP2942852B2 JP5281710A JP28171093A JP2942852B2 JP 2942852 B2 JP2942852 B2 JP 2942852B2 JP 5281710 A JP5281710 A JP 5281710A JP 28171093 A JP28171093 A JP 28171093A JP 2942852 B2 JP2942852 B2 JP 2942852B2
Authority
JP
Japan
Prior art keywords
engine
heat
cooling water
cogeneration
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5281710A
Other languages
Japanese (ja)
Other versions
JPH07113567A (en
Inventor
高之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP5281710A priority Critical patent/JP2942852B2/en
Publication of JPH07113567A publication Critical patent/JPH07113567A/en
Application granted granted Critical
Publication of JP2942852B2 publication Critical patent/JP2942852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はコ―ジェネレ―ションの
エンジン冷却機構に関し、特にエンジンを冷却水の蒸発
潜熱により気化冷却するものに関する。コ―ジェネレ―
ションは、エンジン等の原動機により発電機を駆動して
電気エネルギ―を取り出すと共に、原動機の排熱により
温水や高温蒸気のような熱エネルギ―も取り出すもの
で、装置全体の総合効率が比較的高くとれ省エネルギ―
になり、且つ、電力消費の平準化にもなり、最近特に普
及が広まっているものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration engine cooling mechanism and, more particularly, to an engine cooling mechanism for evaporating and cooling an engine using latent heat of evaporation of cooling water. Co-generation
In addition to driving electric generators by engines such as engines to extract electric energy, heat energy such as hot water or high-temperature steam is also extracted by the exhaust heat of the motors, and the overall efficiency of the entire system is relatively high. Energy saving
In addition, power consumption has been leveled, and it has recently become particularly popular.

【0002】[0002]

【従来技術】従来の一般的なコ―ジェネレ―ションとし
ては例えば、ガスエンジンを原動機として使用するもの
が用いられていた。これは、ガスエンジンにより発電機
を駆動して電気エネルギ―を得ると共に、ガスエンジン
の外周にジャケット部を設け、このジャケット部に冷却
水タンクから冷却水を供給し、ガスエンジンの排熱によ
って冷却水を暖めて冷却水タンクの上部に戻し、一部を
管を介して低圧の蒸気として取り出すと共に温水として
も取り出して、別途の熱使用装置で熱エネルギ―として
利用するものである。
2. Description of the Related Art As a conventional general cogeneration, for example, one using a gas engine as a prime mover has been used. In this method, a generator is driven by a gas engine to obtain electric energy, a jacket is provided on the outer periphery of the gas engine, cooling water is supplied from a cooling water tank to the jacket, and cooling is performed by exhaust heat of the gas engine. The water is warmed and returned to the upper part of the cooling water tank, a part of which is taken out as low-pressure steam through a pipe and also taken out as hot water, and used as heat energy by a separate heat-using device.

【0003】[0003]

【本発明が解決しようとする課題】上記従来のコ―ジェ
ネレ―ションは、ガスエンジンの排熱をジャケット部で
熱交換して一部の低圧蒸気と温水に変換するのである
が、温水の熱エネルギ―としての使用箇所は限られたも
のしかなく、温水の使用箇所が無い場合は熱エネルギ―
を有効に利用することができない問題があった。温水は
蒸気と比較して保有する熱量が少なく、また、遠隔輸送
時には温度低下を来たす等の問題があり使用箇所が限ら
れるのである。
In the conventional cogeneration described above, the exhaust heat of the gas engine is exchanged with the jacket portion to convert a part of the exhaust gas into low-pressure steam and hot water. There are only a limited number of places where energy can be used.
There was a problem that could not be used effectively. Hot water has a smaller amount of heat than steam and has a problem such as a temperature drop during remote transportation, so that its use is limited.

【0004】従って本発明の技術的課題は、エンジンの
排熱と熱交換した冷却水を、できるだけ多くの蒸気に変
換することにより、熱エネルギ―の有効利用を計ること
である。
[0004] Therefore, a technical problem of the present invention is to effectively utilize heat energy by converting cooling water that has exchanged heat with exhaust heat of an engine into as much steam as possible.

【0005】[0005]

【課題を解決する為の手段】本発明のコ―ジェネレ―シ
ョンの気化冷却エンジンの構成は次の通りである。エン
ジンにより発電機を駆動して電気エネルギ―と熱エネル
ギ―を同時に取り出すコ―ジェネレ―ションにおいて、
エンジン外周にジャケット部を設けて冷却水供給管を接
続すると共に、該ジャケット部を減圧状態に維持する吸
引手段と接続して、該吸引手段とジャケット部との間に
熱交換装置を介在したものである。
The structure of the cogeneration evaporative cooling engine of the present invention is as follows. In co-generation in which a generator is driven by an engine to extract electric energy and heat energy simultaneously,
A cooling water supply pipe is connected by providing a jacket portion on the outer periphery of the engine, and a heat exchange device is interposed between the suction portion and the jacket portion by connecting the suction portion to maintain the jacket portion in a reduced pressure state. It is.

【0006】[0006]

【作用】熱交換装置を介在してジャケット部を吸引手段
に接続して減圧状態としたことにより、エンジンの排熱
により暖められた温水は同じ温度であってもより多くが
気化して蒸気となり、熱交換装置に至って別途の被熱交
換物と熱交換することにより、被熱交換物を減圧蒸気に
よって加熱する。減圧状態が大気圧以下の場合は、10
0度C以下の蒸気でもって被加熱物を加熱することがで
きる。蒸気は温水と比較してより多くの熱量を有してい
るために、効率良く加熱することができる。吸引手段と
しては、所謂真空ポンプを用いることができ、水封式真
空ポンプとかエゼクタ―とか、あるいは、エゼクタ―と
渦巻きポンプの組み合わせポンプ等を用いることができ
る。
[Function] By connecting the jacket portion to the suction means via a heat exchange device to reduce the pressure, more of the warm water heated by the exhaust heat of the engine is vaporized into steam even at the same temperature. Then, the heat exchange device is heated and exchanged with another heat exchange object, thereby heating the heat exchange object with the reduced-pressure steam. If the reduced pressure is below atmospheric pressure, 10
The object to be heated can be heated with steam at 0 ° C. or lower. Since steam has more heat than hot water, it can be efficiently heated. As the suction means, a so-called vacuum pump can be used, and a water-sealed vacuum pump, an ejector, a combination pump of an ejector and a spiral pump, or the like can be used.

【0007】[0007]

【実施例】図示の実施例を詳細に説明する。本実施例に
おいては、従来例にて説明したものと同様のガスエンジ
ンを用いたコ―ジェネレ―ションを示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In this embodiment, a cogeneration using the same gas engine as that described in the conventional example will be described.

【0008】図1において、ガスエンジン1と発電機2
と、ガスエンジン1の外周に設けたジャケット部3と、
冷却水タンク4と、吸引手段としての真空ポンプ12、
及び、熱交換装置6とでコ―ジェネレ―ションを構成す
る。
In FIG. 1, a gas engine 1 and a generator 2
And a jacket portion 3 provided on the outer periphery of the gas engine 1;
A cooling water tank 4, a vacuum pump 12 as a suction means,
And, cogeneration is constituted by the heat exchange device 6.

【0009】ガスエンジン1のジャケット部3は、下部
連通管13により冷却水タンク4の下部と接続し、上部
連通管15により冷却水タンク4の上部空間16と接続
する。上部空間16にはバルブ30を介して低圧蒸気管
5を連通する。冷却水タンク4には給水管17を接続し
て冷却水を補給する。
The jacket 3 of the gas engine 1 is connected to a lower portion of the cooling water tank 4 by a lower communication pipe 13 and is connected to an upper space 16 of the cooling water tank 4 by an upper communication pipe 15. The low pressure steam pipe 5 communicates with the upper space 16 via a valve 30. A water supply pipe 17 is connected to the cooling water tank 4 to supply cooling water.

【0010】低圧蒸気管5を熱交換装置6と接続する。
熱交換装置6内を通過した低圧蒸気管5は、真空ポンプ
12内のエゼクタ―21部と接続する。熱交換装置6へ
は管23を介して被加熱物を供給し、管24を介して被
加熱物を収容する。
[0010] The low-pressure steam pipe 5 is connected to a heat exchange device 6.
The low-pressure steam pipe 5 passing through the heat exchange device 6 is connected to an ejector 21 in the vacuum pump 12. The object to be heated is supplied to the heat exchange device 6 through a tube 23, and the object to be heated is accommodated through a tube 24.

【0011】真空ポンプ12はエゼクタ―21と、タン
ク19と、循環ポンプとしての渦巻きポンプ22とで構
成する。渦巻きポンプ22からエゼクタ―21とタンク
19へは循環路18で連通する。タンク19の上部に
は、タンク19へ冷却水を補給する冷却水供給管20を
接続する。渦巻きポンプ22を駆動することにより、タ
ンク19内の水がエゼクタ―21部へ供給される。水が
エゼクタ―21部を通過することにより吸引力が生じ
て、低圧蒸気管5から上部空間16を減圧状態とすると
共に、上部連通管15を介してジャケット部3内も減圧
状態とするものである。
The vacuum pump 12 comprises an ejector 21, a tank 19, and a spiral pump 22 as a circulation pump. The vortex pump 22 communicates with the ejector 21 and the tank 19 through the circulation path 18. A cooling water supply pipe 20 for supplying cooling water to the tank 19 is connected to an upper portion of the tank 19. By driving the spiral pump 22, the water in the tank 19 is supplied to the ejector 21. When the water passes through the ejector 21 part, a suction force is generated and the upper space 16 is depressurized from the low-pressure steam pipe 5 and the inside of the jacket part 3 is also depressurized via the upper communication pipe 15. is there.

【0012】ジャケット部3の上部を管7を介して熱交
換器8と接続する。熱交換器8には管9から給水がさ
れ、ガスエンジン1の高温の排気ガスと熱交換され、高
圧蒸気となって管10から別途の図示しない高圧蒸気使
用装置へ供給される。
The upper portion of the jacket 3 is connected to a heat exchanger 8 via a pipe 7. Water is supplied to the heat exchanger 8 from a pipe 9, heat-exchanges with high-temperature exhaust gas of the gas engine 1, becomes high-pressure steam, and is supplied from a pipe 10 to a separate high-pressure steam using device (not shown).

【0013】次に作用を説明する。渦巻きポンプ22を
駆動してエゼクタ―21に水を通過させることにより吸
引力を生じて、低圧蒸気管5から冷却水タンク4の上部
空間16と上部連通管15、及び、ジャケット部3内を
例えば大気圧以下の減圧状態とすることができる。下部
連通管13からジャケット部3に供給された冷却水は、
ガスエンジン1の排熱により熱交換され温水となる。こ
の場合ジャケット部3内から上部空間16は所定の減圧
状態となっているために、温水はただちに気化して蒸気
となり低圧蒸気管5を介して熱交換装置6へ供給され、
管23から供給される被加熱物を加熱する。温水の温度
が同じ場合であっても減圧度を高めることにより蒸気の
量を増やすことができる。
Next, the operation will be described. By driving the vortex pump 22 to cause water to pass through the ejector 21, a suction force is generated, for example, the low-pressure steam pipe 5, the upper space 16 of the cooling water tank 4, the upper communication pipe 15, and the inside of the jacket portion 3. The pressure can be reduced to the atmospheric pressure or less. The cooling water supplied to the jacket part 3 from the lower communication pipe 13 is:
Heat is exchanged by the exhaust heat of the gas engine 1 to become hot water. In this case, since the upper space 16 is in a predetermined decompressed state from the inside of the jacket portion 3, the hot water is immediately vaporized to become steam and supplied to the heat exchange device 6 through the low-pressure steam pipe 5,
The object to be heated supplied from the pipe 23 is heated. Even when the temperature of the hot water is the same, the amount of steam can be increased by increasing the degree of pressure reduction.

【0014】エゼクタ―21部で生じる吸引力は、エゼ
クタ―21を通過する水の温度を調節することにより制
御することができる。即ち、エゼクタ―21部の吸引力
は通過流体温度の飽和圧力までしか生じないために、タ
ンク19への冷却水の量を図示しない温度センサ等によ
って検出し冷却水量を制御して、通過流体温度を下げる
ことにより吸引力を高めて減圧度を高めることができ
る。
The suction force generated in the ejector 21 can be controlled by adjusting the temperature of the water passing through the ejector 21. That is, since the suction force of the ejector 21 is generated only up to the saturation pressure of the passing fluid temperature, the amount of the cooling water to the tank 19 is detected by a temperature sensor or the like (not shown) to control the amount of the cooling water. , The suction force can be increased to increase the degree of decompression.

【0015】[0015]

【発明の効果】本発明によれば、熱交換装置を介在して
ジャケット部を吸引手段により減圧状態としたことによ
り、より多くの減圧蒸気が発生することとなり、この減
圧蒸気によって熱交換装置で被加熱物を効率良く加熱す
ることができ、熱エネルギ―の有効利用を計ることがで
きる。
According to the present invention, since the jacket portion is depressurized by the suction means via the heat exchange device, more depressurized steam is generated, and this depressurized steam causes the heat exchange device to operate. The object to be heated can be efficiently heated, and the effective use of heat energy can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコ―ジェネレ―ションの気化冷却エン
ジンの実施例の概要構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a cogeneration evaporative cooling engine of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスエンジン 2 発電機 3 ジャケット部 4 冷却水タンク 5 低圧蒸気管 6 熱交換装置 12 真空ポンプ 13 下部連通管 15 上部連通管 16 上部空間 19 タンク 21 エゼクタ― 22 渦巻きポンプ DESCRIPTION OF SYMBOLS 1 Gas engine 2 Generator 3 Jacket part 4 Cooling water tank 5 Low pressure steam pipe 6 Heat exchange device 12 Vacuum pump 13 Lower communication pipe 15 Upper communication pipe 16 Upper space 19 Tank 21 Ejector 22 Spiral pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジンにより発電機を駆動して電気エ
ネルギ―と熱エネルギ―を同時に取り出すコ―ジェネレ
―ションにおいて、エンジン外周にジャケット部を設け
て冷却水供給管を接続すると共に、該ジャケット部を減
圧状態に維持する吸引手段と接続して、該吸引手段とジ
ャケット部との間に熱交換装置を介在したことを特徴と
するコ―ジェネレ―ションの気化冷却エンジン。
In a cogeneration system in which a generator is driven by an engine to extract electric energy and heat energy simultaneously, a jacket portion is provided on an outer periphery of the engine to connect a cooling water supply pipe, and the jacket portion is provided. An evaporative cooling engine for a cogeneration system, characterized in that a heat exchange device is interposed between the suction means and the jacket part, the suction means being connected to a suction means for maintaining the pressure in a reduced pressure state.
JP5281710A 1993-10-15 1993-10-15 Evaporative cooling engine of cogeneration Expired - Fee Related JP2942852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281710A JP2942852B2 (en) 1993-10-15 1993-10-15 Evaporative cooling engine of cogeneration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281710A JP2942852B2 (en) 1993-10-15 1993-10-15 Evaporative cooling engine of cogeneration

Publications (2)

Publication Number Publication Date
JPH07113567A JPH07113567A (en) 1995-05-02
JP2942852B2 true JP2942852B2 (en) 1999-08-30

Family

ID=17642909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281710A Expired - Fee Related JP2942852B2 (en) 1993-10-15 1993-10-15 Evaporative cooling engine of cogeneration

Country Status (1)

Country Link
JP (1) JP2942852B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313556B2 (en) 2009-02-17 2012-11-20 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
EP2470786A4 (en) * 2009-08-27 2015-03-04 Mcalister Technologies Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
WO2019150474A1 (en) * 2018-01-31 2019-08-08 千代田化工建設株式会社 Power generation system and plant accessory equipment

Also Published As

Publication number Publication date
JPH07113567A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
US5678401A (en) Energy supply system utilizing gas and steam turbines
JPH07259510A (en) Cooling method of thermally loaded component of gas turbine group
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
CN207647564U (en) Integrated enclosed afterheat steam turbine unit
JP4555784B2 (en) Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method
JP2942851B2 (en) Evaporative cooling engine of cogeneration
JP2003161164A (en) Combined-cycle power generation plant
JP2942852B2 (en) Evaporative cooling engine of cogeneration
JP2680288B2 (en) Steam injection gas turbine system and operating method thereof
JPH0688538A (en) Gas turbine plant
JP3640411B2 (en) Waste heat recovery system
JP2003312588A (en) Gas turbine system for vessel provided with water purifying apparatus
JP3773225B2 (en) Waste heat recovery device for internal combustion engine
JPH03264712A (en) Composite power generating equipment
CN107989666A (en) Integrated enclosed afterheat steam turbine unit
JP2969208B2 (en) Evaporative cooling engine of cogeneration
JP2942853B2 (en) Evaporative cooling engine of cogeneration
JPS598641B2 (en) heat cycle equipment
JP2002242700A (en) Ultra-turbine
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
RU2190104C1 (en) Power installation
JPS6345404A (en) Complex generating set
JPH0318656A (en) Co-generation system
JPS58202313A (en) Thermal power plant using low temperature liquefied gas as fuel
JPH03264711A (en) Midnight regenerative power generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees