JP4555784B2 - Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method - Google Patents

Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method Download PDF

Info

Publication number
JP4555784B2
JP4555784B2 JP2006025990A JP2006025990A JP4555784B2 JP 4555784 B2 JP4555784 B2 JP 4555784B2 JP 2006025990 A JP2006025990 A JP 2006025990A JP 2006025990 A JP2006025990 A JP 2006025990A JP 4555784 B2 JP4555784 B2 JP 4555784B2
Authority
JP
Japan
Prior art keywords
compressor
evaporator
water
steam
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025990A
Other languages
Japanese (ja)
Other versions
JP2007205657A (en
Inventor
敏彦 福島
重雄 幡宮
貴範 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006025990A priority Critical patent/JP4555784B2/en
Publication of JP2007205657A publication Critical patent/JP2007205657A/en
Application granted granted Critical
Publication of JP4555784B2 publication Critical patent/JP4555784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、低温廃熱を利用した水蒸気発生装置、その装置を用いた熱電供給装置、及び水蒸気発生方法に関する。 The present invention, steam generation equipment using low-temperature waste heat, cogeneration apparatus using the device of that, and a steam generation process.

近年、エネルギーの有効利用を図るために、従来はそのまま捨てられていた廃熱を有効利用する試みがなされており、その例として、内燃機関を用いて電力及び熱を供給する熱電供給装置が様々提案されている。   In recent years, in order to make effective use of energy, attempts have been made to effectively use waste heat that has been discarded as it is, and various examples of thermoelectric supply devices that use an internal combustion engine to supply electric power and heat are various. Proposed.

例えば、特許文献1には、内燃機関に連結された発電機によって発電を行い、かつ、内燃機関の廃熱を回収した冷却水をそのまま給湯タンク等の熱負荷に供給することにより、電力及び熱を供給することが記載されている。   For example, in Patent Document 1, electric power and heat are generated by generating electric power with a generator connected to an internal combustion engine and supplying cooling water that has recovered waste heat of the internal combustion engine to a heat load such as a hot water supply tank as it is. Is described.

特開2003−21393号公報JP 2003-21393 A

しかしながら、特許文献1では、熱エネルギーとして有効利用可能な水蒸気を発生させることについて考慮されていない。すなわち、内燃機関の廃熱を回収した冷却水の温度は、例えば80℃〜90℃であることから、その廃熱で水蒸気を発生させることは一般に困難である。しかし、食品加工場や製紙工場などにおいては、熱エネルギーとして水蒸気を利用することが多いため、発電機を駆動する内燃機関の廃熱により温水ではなく水蒸気を発生させることができれば有効活用できる。同様に、プラント内で発生する低温廃熱や河川水などの低温廃熱を利用して水蒸気による熱を発生させることが望まれている。   However, Patent Document 1 does not consider generation of water vapor that can be effectively used as thermal energy. That is, since the temperature of the cooling water that recovered the waste heat of the internal combustion engine is, for example, 80 ° C. to 90 ° C., it is generally difficult to generate water vapor with the waste heat. However, in food processing plants, paper mills, and the like, steam is often used as thermal energy. Therefore, if steam can be generated instead of warm water by the waste heat of the internal combustion engine that drives the generator, it can be effectively used. Similarly, it is desired to generate heat by steam using low-temperature waste heat generated in the plant or low-temperature waste heat such as river water.

本発明は、低温廃熱を利用して有効利用可能な水蒸気を発生させることを課題とする。 An object of the present invention and this generating effective available steam by utilizing the low-temperature waste heat.

上記課題を解決するため、本発明の水蒸気発生装置は、低温廃熱を熱源として水を蒸発させる蒸発器と、蒸発器で蒸発した水蒸気を圧縮する圧縮機とを備え、圧縮機の回転数を変化させるための制御手段と、蒸発器に水を供給する流路に設けた弁と、弁の弁開度を調整する制御手段とを備え、低温廃熱の温度に対応して圧縮機の回転数と弁の弁開度を制御して蒸発器の内圧を制御することを特徴とする。 In order to solve the above problems, a steam generator of the present invention includes an evaporator that evaporates water using low-temperature waste heat as a heat source, and a compressor that compresses water vapor evaporated by the evaporator, and the rotation speed of the compressor is increased. The control means for changing, the valve provided in the flow path for supplying water to the evaporator, and the control means for adjusting the valve opening of the valve , the rotation of the compressor corresponding to the temperature of the low-temperature waste heat The internal pressure of the evaporator is controlled by controlling the number and the valve opening degree of the valve .

すなわち、このような構成とすることで、熱源が低温であったとしても、その温度に対応して蒸発器内の圧力を真空側に調整して、蒸発器に供給された水を低温で蒸発させることができる。そして、蒸発器で蒸発した水蒸気を圧縮機で圧縮することにより、所望の高温・高圧の水蒸気を発生することができる。したがって、低温廃熱により有効利用可能な高温・高圧の水蒸気を発生することができる。   That is, with such a configuration, even if the heat source is at a low temperature, the pressure in the evaporator is adjusted to the vacuum side according to the temperature, and the water supplied to the evaporator is evaporated at a low temperature. Can be made. Then, by compressing the water vapor evaporated in the evaporator with a compressor, desired high-temperature and high-pressure water vapor can be generated. Therefore, high-temperature and high-pressure steam that can be effectively used by low-temperature waste heat can be generated.

この場合において、圧縮機は、複数台の圧縮機を直列に接続した多段圧縮機とし、多段圧縮機の各圧縮機間に、それぞれ各圧縮機で圧縮された水蒸気を、飽和蒸気となるように冷却する冷却手段を設けてなることが望ましい。 In this case, the compressor is a multistage compressor in which a plurality of compressors are connected in series, and the steam compressed by each compressor is saturated steam between the compressors of the multistage compressor. It is desirable to provide cooling means for cooling.

すなわち、高圧の水蒸気を所望する場合に、1台の圧縮機で水蒸気を所望圧力まで圧縮すると、水蒸気が高温になりすぎるので圧縮機の材料選択に制約を受ける場合がある。そこで、蒸発器で蒸発した水蒸気を、複数台の圧縮機の各圧縮機間に設けられた冷却手段で冷却しながら段階的に圧縮することにより、水蒸気の温度が高温になりすぎることを抑制できる。つまり、温度を抑えて所望の圧力の水蒸気を発生することができ、かつ、各圧縮機の信頼性を保つことができる。   That is, when high-pressure water vapor is desired, if the water vapor is compressed to a desired pressure with a single compressor, the water vapor becomes too high, which may restrict the selection of the material for the compressor. Therefore, the temperature of the water vapor can be prevented from becoming too high by compressing the water vapor evaporated by the evaporator in stages while cooling with the cooling means provided between the compressors of the plurality of compressors. . That is, it is possible to generate water vapor at a desired pressure while suppressing the temperature, and to maintain the reliability of each compressor.

この場合において、冷却手段は、各圧縮機間の水蒸気に水をインジェクションする手段を用いることが望ましい。これにより、インジェクションされた水は水蒸気の内部エネルギーとして保存されるため熱効率を向上できる。   In this case, as the cooling means, it is desirable to use means for injecting water into water vapor between the compressors. Thereby, since the injected water is preserve | saved as internal energy of water vapor | steam, thermal efficiency can be improved.

また、本発明の熱電供給装置は、内燃機関と、内燃機関により駆動され電力負荷に電力を供給する発電機と、内燃機関に冷却水を供給する冷却水供給手段と、冷却水供給手段に流れる冷却水を熱源として水を蒸発させる蒸発器と、蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する圧縮機と、圧縮機の回転数を変化させるための制御手段と、蒸発器に水を供給する流路に設けた弁と、弁の弁開度を調整する制御手段とを備え、圧縮機は、発電機で発電された電気の一部又は全部により駆動され、低温廃熱の温度に対応して圧縮機の回転数と弁の弁開度を制御して蒸発器の内圧を制御することを特徴とする。 The thermoelectric supply device of the present invention flows through an internal combustion engine, a generator that is driven by the internal combustion engine and supplies power to a power load, a cooling water supply unit that supplies cooling water to the internal combustion engine, and a cooling water supply unit An evaporator that evaporates water using the cooling water as a heat source, a compressor that compresses water vapor evaporated by the evaporator and supplies the heat load to a heat load, a control means for changing the rotation speed of the compressor, and water in the evaporator And a control means for adjusting the valve opening degree of the valve, and the compressor is driven by part or all of the electricity generated by the generator , and the temperature of the low-temperature waste heat by controlling the valve opening degree of the rotational speed and the valve of the compressor in response characterized that you control the internal pressure of the evaporator.

すなわち、蒸発器の熱源は、内燃機関の廃熱を回収した冷却水を用いるので、例えば80℃〜90℃であるが、この構成によれば、熱源の温度に対応して蒸発器内の圧力を真空側に調整して、蒸発器に供給された水を冷却水の温度で蒸発することができる。また、蒸発器で蒸発した水蒸気を圧縮機で圧縮することにより、所望の高温・高圧の水蒸気を発生することができる。さらに、内燃機関により駆動される発電機によって電力を発生することができる。したがって、低温廃熱を利用して有効利用可能な高温・高圧の水蒸気を発生して熱負荷に供給することができ、かつ、電力負荷に電力を供給することができる。   That is, the heat source of the evaporator uses, for example, 80 ° C. to 90 ° C. because it uses the cooling water from which the waste heat of the internal combustion engine is recovered. According to this configuration, the pressure in the evaporator corresponds to the temperature of the heat source. Can be adjusted to the vacuum side, and the water supplied to the evaporator can be evaporated at the temperature of the cooling water. Moreover, the desired high-temperature and high-pressure steam can be generated by compressing the water vapor evaporated in the evaporator with a compressor. Furthermore, electric power can be generated by a generator driven by an internal combustion engine. Therefore, it is possible to generate high-temperature and high-pressure steam that can be effectively used by using low-temperature waste heat and supply it to the heat load, and to supply power to the power load.

この場合においても、圧縮機は、複数台の圧縮機を直列に接続した多段圧縮機とし、多段圧縮機の各圧縮機間に、それぞれ各圧縮機で圧縮された水蒸気を、飽和蒸気となるように冷却する冷却手段を設けてなることが望ましい。 Even in this case, the compressor is a multi-stage compressor in which a plurality of compressors are connected in series, and the steam compressed by each compressor is saturated between each compressor of the multi-stage compressor. it is desirable comprising a cooling means for cooling the.

また、熱電供給装置は、内燃機関と、内燃機関により駆動され電力負荷に電力を供給する発電機と、内燃機関に冷却水を供給する冷却水供給手段と、冷却水供給手段に流れる冷却水を熱源として水を蒸発させる第1の蒸発器と、冷却水以外の低温廃熱を熱源として水を蒸発させる第2の蒸発器と、第1の蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する第1の圧縮機と、第2の蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する第2の圧縮機とを備え、冷却水以外の低温廃熱は、第3の圧縮機と、凝縮器として作用する第2の蒸発器と、絞り弁と、第3の蒸発器とを含んで形成される冷凍サイクルの冷媒であり、第1の圧縮機、第2の圧縮機、及び第3の圧縮機は、発電機で発電された電気の一部又は全部により駆動されることが好ましい。
The thermoelectric supply device also includes an internal combustion engine, a generator that is driven by the internal combustion engine and supplies electric power to an electric power load, cooling water supply means that supplies cooling water to the internal combustion engine, and cooling water that flows through the cooling water supply means. A first evaporator that evaporates water as a heat source, a second evaporator that evaporates water using low-temperature waste heat other than cooling water as a heat source, and compresses water vapor evaporated in the first evaporator to heat load a first compressor for supplying, to compress the water vapor evaporated in the second evaporator and a second compressor supplied to the heat load, low-temperature waste heat other than the cooling water, the third compressor A refrigerant of a refrigeration cycle formed including a second evaporator acting as a condenser, a throttle valve, and a third evaporator, and a first compressor, a second compressor, and The third compressor is preferably driven by part or all of the electricity generated by the generator. Yes.

これによれば、第2の蒸発器と第2の圧縮機により内燃機関の廃熱以外の低温廃熱を利用して有効利用可能な高温・高圧の水蒸気を発生することができるので、熱負荷に供給することのできる水蒸気量を増大することができる。   According to this, since the second evaporator and the second compressor can generate high-temperature and high-pressure steam that can be effectively used by using low-temperature waste heat other than the waste heat of the internal combustion engine, The amount of water vapor that can be supplied to can be increased.

この場合において、第1の圧縮機及び第2の圧縮機のうち、温度の低い方の熱源によって蒸発した水蒸気を圧縮する圧縮機(以下、低温熱源側の圧縮機という。)の吐出側は、もう一方の圧縮機の吸入側に連結されてなることが好ましい。   In this case, of the first compressor and the second compressor, the discharge side of a compressor that compresses water vapor evaporated by a heat source having a lower temperature (hereinafter referred to as a low-temperature heat source compressor) is It is preferably connected to the suction side of the other compressor.

つまり、低温熱源側の圧縮機で発生させる水蒸気を、もう一方の圧縮機で発生させる水蒸気と同じ圧力まで圧縮するよりも、もう一方の圧縮機の吸入側圧力まで圧縮するほうが、低温熱源側の圧縮機の圧力比(吐出側の圧力を吸入側の圧力で除した値)を低減することができる。したがって、低温熱源側の圧縮機の消費電力を低減することができ、その結果、両圧縮機の総合的な消費電力を低減することができる。   In other words, it is better to compress the steam generated in the compressor on the low-temperature heat source side to the same pressure as the steam generated in the other compressor to the suction side pressure of the other compressor. The pressure ratio of the compressor (the value obtained by dividing the pressure on the discharge side by the pressure on the suction side) can be reduced. Therefore, the power consumption of the compressor on the low-temperature heat source side can be reduced, and as a result, the overall power consumption of both compressors can be reduced.

本発明によれば、低温廃熱を利用して有効利用可能な水蒸気を発生する装置及びその装置を用いた熱電供給装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the apparatus which generate | occur | produces the water vapor | steam which can be utilized effectively using low-temperature waste heat, and the thermoelectric supply apparatus using the apparatus are realizable.

以下、本発明を適用してなる水蒸気発生装置及びその装置を用いた熱電供給装置の実施例を、図1〜図8を用いて説明する。なお、以下の説明では、同一機能部品については同一符号を付して重複説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a water vapor generating apparatus to which the present invention is applied and a thermoelectric supply apparatus using the apparatus will be described with reference to FIGS. In the following description, the same functional parts are denoted by the same reference numerals, and redundant description is omitted.

図1に、本発明の一実施例の水蒸気発生装置を適用して構成した実施例1の熱電供給装置の構成を示す。図1に示すように、熱電供給装置1は、内燃機関2と、内燃機関2により駆動されて電力発電をする発電機3と、内燃機関2に冷却水を供給する冷却水循環ポンプ4と、内燃機関2に供給された冷却水を熱源として水を蒸発させる蒸発器5aと、蒸発器5aで蒸発した水蒸気を圧縮する圧縮機6aと、圧縮機6aを駆動するモータ7aで構成されている。   In FIG. 1, the structure of the thermoelectric supply apparatus of Example 1 comprised by applying the steam generator of one Example of this invention is shown. As shown in FIG. 1, the thermoelectric supply device 1 includes an internal combustion engine 2, a generator 3 that is driven by the internal combustion engine 2 to generate electric power, a cooling water circulation pump 4 that supplies cooling water to the internal combustion engine 2, an internal combustion engine An evaporator 5a that evaporates water using the cooling water supplied to the engine 2 as a heat source, a compressor 6a that compresses water vapor evaporated by the evaporator 5a, and a motor 7a that drives the compressor 6a.

次に、本実施例の熱電供給装置1の動作について説明する。蒸発器5aに供給された供給水9は、冷却水循環ポンプ4によって冷却水ジャケットを循環して内燃機関2の廃熱を回収した冷却水10で加熱されて蒸発する。そして、蒸発した水蒸気は、圧縮機6aに吸入されて圧縮されることにより所望の高圧・高温の水蒸気11となり、水蒸気利用設備に供給される。   Next, operation | movement of the thermoelectric supply apparatus 1 of a present Example is demonstrated. The supply water 9 supplied to the evaporator 5a is heated and evaporated by the cooling water 10 that is circulated through the cooling water jacket by the cooling water circulation pump 4 and recovered the waste heat of the internal combustion engine 2. The evaporated water vapor is sucked into the compressor 6a and compressed to become a desired high-pressure / high-temperature water vapor 11, which is supplied to the water vapor utilization facility.

また、圧縮機6aを駆動するモータ7aは、発電機3で発電した電力12の一部又は全部13を使用して駆動され、圧縮機6aを駆動するために使用される電力以外は、電力利用設備に供給される。   Further, the motor 7a for driving the compressor 6a is driven by using a part or all 13 of the electric power 12 generated by the generator 3, and uses electric power except for the electric power used for driving the compressor 6a. Supplied to the facility.

本実施例の熱電供給装置1によれば、内燃機関2の廃熱を利用して水蒸気利用設備に有効利用可能な水蒸気を供給することができ、かつ、電力利用設備に電力を供給することができる。   According to the thermoelectric supply device 1 of the present embodiment, it is possible to supply water vapor that can be effectively used to the steam utilization facility using the waste heat of the internal combustion engine 2 and to supply power to the power utilization facility. it can.

ここで、蒸発器5aの熱源となる内燃機関2の廃熱を回収した冷却水10が、大気圧中で水を蒸発させる100℃未満であったとしても、蒸発器5aの内部は、熱源の温度に対応して水を蒸発させることのできる大気圧以下の圧力に調整されるので、供給水9を蒸発することができる。蒸発器5aの内部の圧力を調整する手段は、例えば、供給水9を蒸発器5aに供給する配管に絞り弁を設けて弁開度を調整したり、圧縮機6aの回転速度を調整することなどで実現される。   Here, even if the cooling water 10 that recovered the waste heat of the internal combustion engine 2 serving as the heat source of the evaporator 5a is less than 100 ° C. that evaporates water at atmospheric pressure, the inside of the evaporator 5a is the heat source. Since the pressure is adjusted to a pressure equal to or lower than the atmospheric pressure that can evaporate water according to the temperature, the supply water 9 can be evaporated. The means for adjusting the pressure inside the evaporator 5a is, for example, providing a throttle valve in a pipe for supplying the supply water 9 to the evaporator 5a to adjust the valve opening, or adjusting the rotational speed of the compressor 6a. Etc.

また、上述のように、本実施例は、本発明の一実施例の水蒸気発生装置を適用して構成されている。すなわち、本実施例における水蒸気発生装置は、低温廃熱(本実施例では、内燃機関2の廃熱を回収した冷却水10)を熱源として水を蒸発させる蒸発器5aと、蒸発器5aで蒸発した水蒸気を圧縮して所望の高温・高圧の水蒸気を発生させる圧縮機6aと、圧縮機6aを駆動するモータ7aで構成されている。   Further, as described above, the present embodiment is configured by applying the water vapor generating apparatus according to one embodiment of the present invention. That is, the steam generator in the present embodiment has an evaporator 5a that evaporates water using low-temperature waste heat (in this embodiment, the cooling water 10 that recovered the waste heat of the internal combustion engine 2) as a heat source, and the evaporator 5a evaporates. The compressor 6a that compresses the generated steam to generate desired high-temperature and high-pressure steam, and a motor 7a that drives the compressor 6a.

図2に、本発明の実施例2における熱電供給装置の構成を示す。本実施例の熱源供給装置は、実施例1の熱電供給装置1に、内燃機関2の廃熱を回収した冷却水10以外の低温廃熱を熱源として高温・高圧の水蒸気を発生させる系統を追加したものであるので、実施例1と重複する部分の説明は省略する。   In FIG. 2, the structure of the thermoelectric supply apparatus in Example 2 of this invention is shown. The heat source supply device of the present embodiment adds a system for generating high-temperature and high-pressure steam to the thermoelectric supply device 1 of the first embodiment using low-temperature waste heat other than the cooling water 10 that recovered the waste heat of the internal combustion engine 2 as a heat source. Therefore, the description of the same parts as those in the first embodiment is omitted.

図2に示すように、熱電供給装置1は、実施例1の熱電供給装置1に、低温廃熱15を熱源として水を蒸発させる蒸発器5bと、蒸発器5bにより蒸発した水蒸気を圧縮する圧縮機6bと、圧縮機6bを駆動するモータ7bを追加して構成されている。また、蒸発器5bには、蒸発器5aと同様に供給水9が供給され、圧縮機6bで圧縮された水蒸気は、圧縮機6aで圧縮された水蒸気と共に水蒸気利用設備に供給されるように構成されている。さらに、モータ7bには、モータ7aと同様に発電機3で発電された電力12の一部又は全部13が供給されるように構成されている。   As shown in FIG. 2, the thermoelectric supply device 1 compresses the thermoelectric supply device 1 according to the first embodiment with an evaporator 5b that evaporates water using the low-temperature waste heat 15 as a heat source, and a water vapor that is evaporated by the evaporator 5b. A machine 6b and a motor 7b for driving the compressor 6b are added. Further, the evaporator 5b is supplied with the supply water 9 similarly to the evaporator 5a, and the steam compressed by the compressor 6b is supplied to the steam utilization facility together with the steam compressed by the compressor 6a. Has been. Further, a part or all 13 of the electric power 12 generated by the generator 3 is supplied to the motor 7b as in the motor 7a.

次に、本実施例の熱電供給装置1の動作について説明する。蒸発器5bに供給された供給水9は、蒸発器5bに供給された低温廃熱15で加熱されて蒸発する。そして、蒸発した水蒸気は、圧縮機6bに吸入されて圧縮されることにより所望の高圧・高温の水蒸気11となり、水蒸気利用設備に供給される。   Next, operation | movement of the thermoelectric supply apparatus 1 of a present Example is demonstrated. The supply water 9 supplied to the evaporator 5b is heated by the low-temperature waste heat 15 supplied to the evaporator 5b to evaporate. The evaporated water vapor is sucked into the compressor 6b and compressed to become a desired high-pressure / high-temperature water vapor 11, which is supplied to the water vapor utilization facility.

ここで、低温廃熱15は、例えばプラント内で発生する低温廃熱や、河川水など蒸発器5bの熱源として利用できるものであればよい。   Here, the low-temperature waste heat 15 may be anything that can be used as a heat source for the evaporator 5b, such as low-temperature waste heat generated in a plant or river water.

本実施例の熱電供給装置1によれば、内燃機関2の廃熱を回収した冷却水10以外の低温廃熱15も水蒸気発生に利用できるので、水蒸気利用施設に供給することのできる水蒸気量を増大することができる。   According to the thermoelectric supply device 1 of the present embodiment, since the low-temperature waste heat 15 other than the cooling water 10 that recovered the waste heat of the internal combustion engine 2 can also be used for steam generation, the amount of steam that can be supplied to the steam utilization facility is reduced. Can be increased.

図3に、本発明の実施例3における熱電供給装置の構成を示す。本実施例の熱電供給装置は、実施例2の熱電供給装置1における圧縮機6bの吐出側の接続先が異なるだけであるので、実施例2と重複する部分については説明を省略する。   In FIG. 3, the structure of the thermoelectric supply apparatus in Example 3 of this invention is shown. Since the thermoelectric supply device of the present embodiment is different only in the connection side on the discharge side of the compressor 6b in the thermoelectric supply device 1 of the second embodiment, the description of the portions overlapping with those of the second embodiment is omitted.

また、本実施例は、蒸発器5aの熱源となる内燃機関2の廃熱を回収した冷却水10より、蒸発器5bの熱源となる低温廃熱15の温度が低い場合を例にした実施例であり、図3に示すように、圧縮機6bの吐出側は、圧縮機6aの吸入側に接続されている。   In this embodiment, the temperature of the low-temperature waste heat 15 serving as the heat source of the evaporator 5b is lower than the cooling water 10 that recovered the waste heat of the internal combustion engine 2 serving as the heat source of the evaporator 5a. As shown in FIG. 3, the discharge side of the compressor 6b is connected to the suction side of the compressor 6a.

本実施例の熱電供給装置1によれば、圧縮機6bは、圧縮機6aの吸入側の圧力まで水蒸気を圧縮すればよいので、実施例2に比べて圧縮機6bの圧力比(吐出側の圧力を吸入側の圧力で除した値)を低減することができる。したがって、圧縮機6bの消費電力を低減することができ、その結果、圧縮機6a及び圧縮機6bの総合的な消費電力を低減することができる。   According to the thermoelectric supply device 1 of the present embodiment, the compressor 6b only needs to compress the water vapor to the pressure on the suction side of the compressor 6a, so the pressure ratio of the compressor 6b (on the discharge side) compared to the second embodiment. The value obtained by dividing the pressure by the pressure on the suction side) can be reduced. Therefore, the power consumption of the compressor 6b can be reduced, and as a result, the total power consumption of the compressor 6a and the compressor 6b can be reduced.

ここで、本実施例では、蒸発器5aの熱源より蒸発器5bの熱源の温度が低い場合を例示したが、熱源の温度の大小関係が反対になる場合は、圧縮機6aの吐出側を圧縮機6bの吸入側に接続し、圧縮機6bで圧縮された水蒸気を水蒸気利用設備に供給すればよい。   Here, in the present embodiment, the case where the temperature of the heat source of the evaporator 5b is lower than the heat source of the evaporator 5a is illustrated, but when the magnitude relation of the temperature of the heat source is opposite, the discharge side of the compressor 6a is compressed. What is necessary is just to supply the water vapor | steam compressed by the compressor 6b to the water vapor | steam utilization equipment by connecting with the suction side of the machine 6b.

図4に、本発明の実施例4における熱電供給装置の構成を示す。本実施例の熱電供給装置は、実施例3における熱電供給装置1の圧縮機6a及び圧縮機6bを多段圧縮機とし、中間冷却を行うよう構成した点が異なるだけであるので、実施例3と重複する部分については説明を省略する。   In FIG. 4, the structure of the thermoelectric supply apparatus in Example 4 of this invention is shown. The thermoelectric supply device of the present embodiment is different from the third embodiment only in that the compressor 6a and the compressor 6b of the thermoelectric supply device 1 in the third embodiment are configured as multistage compressors and perform intermediate cooling. Description of overlapping parts is omitted.

図4に示すように、圧縮機6aは、直列に接続された圧縮機6a―1と圧縮機6a―2で構成され、圧縮機6bは、直列に接続された圧縮機6b−1と圧縮機6b−2で構成されている。また、各圧縮機間には、それぞれインジェクションノズル16が設けられており、インジェクションノズル16と供給水9は、インジェクションポンプ17を介して接続されている。   As shown in FIG. 4, the compressor 6a includes a compressor 6a-1 and a compressor 6a-2 connected in series, and the compressor 6b includes a compressor 6b-1 and a compressor connected in series. 6b-2. An injection nozzle 16 is provided between the compressors, and the injection nozzle 16 and the supply water 9 are connected via an injection pump 17.

次に、本実施例の動作を説明する。蒸発器5bに供給された供給水9は、蒸発器5bで蒸発して圧縮機6b−2に吸入されて圧縮される。圧縮機6b−2で圧縮された水蒸気は、インジェクションポンプ17で加圧されインジェクションノズル16にて噴霧される水により冷却された後、圧縮機6b−1に吸入され更に圧縮される。圧縮機6b−1で圧縮された水蒸気は、同様に冷却された後、蒸発器5aによって蒸発した水蒸気と共に圧縮機6a−2に吸入され更に圧縮される。そして、圧縮機6a−2で圧縮された水蒸気は、同様に冷却された後、圧縮機6a−1に吸入されて更に圧縮されて、所望の高温・高圧の水蒸気11となり水蒸気利用設備に供給される。   Next, the operation of this embodiment will be described. The supply water 9 supplied to the evaporator 5b evaporates in the evaporator 5b and is sucked into the compressor 6b-2 and compressed. The water vapor compressed by the compressor 6b-2 is pressurized by the injection pump 17 and cooled by water sprayed by the injection nozzle 16, and is then sucked into the compressor 6b-1 and further compressed. The water vapor compressed by the compressor 6b-1 is similarly cooled and then sucked into the compressor 6a-2 together with the water vapor evaporated by the evaporator 5a and further compressed. Then, the water vapor compressed by the compressor 6a-2 is cooled in the same manner, and then sucked into the compressor 6a-1 and further compressed to become the desired high-temperature / high-pressure water vapor 11 and supplied to the water vapor utilization facility. The

次に、本実施例の多段圧縮機及び中間冷却の効果を、図5を用いて説明する。図5は、水蒸気の状態を温度と比エントロピーを用いて表した、いわゆるT−s線図である。縦軸360℃付近から横軸9.2kJ/kg・K付近へ至る曲線は飽和蒸気線で、この線より上の領域は過熱蒸気、下の領域は気液二相の状態である。また、右上から左下へ伸びて飽和蒸気線に交差した後、二相域で左へ水平に伸びる線は等圧線であり二相域では等温線と一致する。ここで、60℃、20kPaの飽和蒸気Aを600kPaまで圧縮して159℃の飽和蒸気を発生させる場合を例に説明する。なお、圧縮機の断熱効率は100%とする。状態Aの飽和蒸気を600kPaまで一段で圧縮すると状態Bとなり、吐出側の水蒸気温度は466℃にもなる。必要な蒸気温度は159℃であるので、圧縮機駆動電力が無駄となり、また高温のため圧縮機の信頼性も低下する。一方これを、中間冷却を行いながら各段圧力比2.34で600kPaまで段階的に圧縮すると吐出側の水蒸気温度217℃の状態Cとなり、圧縮機の駆動電力を低減し信頼性も向上できる。なお、中間冷却の方法としては液インジェクションのほかに、インタークーラ等の使用も可能である。   Next, the effect of the multistage compressor and the intermediate cooling of the present embodiment will be described with reference to FIG. FIG. 5 is a so-called Ts diagram showing the state of water vapor using temperature and specific entropy. The curve from the vertical axis of 360 ° C. to the horizontal axis of 9.2 kJ / kg · K is a saturated vapor line, the region above this line is superheated steam, and the region below is a gas-liquid two-phase state. Further, after extending from the upper right to the lower left and intersecting the saturated vapor line, the line extending horizontally to the left in the two-phase region is an isobaric line and coincides with the isotherm in the two-phase region. Here, the case where the saturated steam A of 60 ° C. and 20 kPa is compressed to 600 kPa to generate saturated steam of 159 ° C. will be described as an example. The heat insulation efficiency of the compressor is 100%. When the saturated steam in state A is compressed to 600 kPa in one step, state B is obtained, and the water vapor temperature on the discharge side becomes 466 ° C. Since the necessary steam temperature is 159 ° C., the compressor driving power is wasted, and the reliability of the compressor is also reduced due to the high temperature. On the other hand, if this is compressed stepwise up to 600 kPa at each stage pressure ratio of 2.34 while performing intermediate cooling, it becomes a state C where the steam temperature on the discharge side is 217 ° C., and the driving power of the compressor can be reduced and the reliability can be improved. As an intermediate cooling method, an intercooler or the like can be used in addition to liquid injection.

図6に、本発明の実施例5における熱電供給装置の構成を示す。本実施例の熱電供給装置は、実施例4の熱電供給装置1における蒸発器5bの熱源が異なるだけであるので、実施例4と重複する部分の説明は省略する。   In FIG. 6, the structure of the thermoelectric supply apparatus in Example 5 of this invention is shown. Since the thermoelectric supply device of the present embodiment is different only in the heat source of the evaporator 5b in the thermoelectric supply device 1 of the fourth embodiment, the description of the parts overlapping with those of the fourth embodiment is omitted.

図6に示すように、蒸発器5bの熱源は、蒸発器5bと、絞り弁20と、蒸発器5cと、圧縮機6cで形成される冷凍サイクルの冷媒21を用いる。また、蒸発器5cは、冷水循環ポンプ22を介して建家と循環接続されている。   As shown in FIG. 6, the refrigerant 21 of the refrigeration cycle formed by the evaporator 5b, the throttle valve 20, the evaporator 5c, and the compressor 6c is used as the heat source of the evaporator 5b. Further, the evaporator 5 c is circulated and connected to the building via the cold water circulation pump 22.

ここで、蒸発器5bの熱源となる冷媒21は、例えば0℃以下でも凝固しないHFC134aなどである。冷媒21は、建屋の冷房に使用した12℃程度の戻り冷水23を熱源として蒸発器5cで蒸発してモータ7cで駆動される圧縮機6cに吸入される。圧縮機6cで圧縮され過熱ガスとなった冷媒21は、蒸発器5bに供給される供給水9に熱を与えて冷却され凝縮・液化する。そして、絞り弁20で減圧された後に蒸発器5cに戻る。また、建屋の冷房に使用した戻り冷水23は、蒸発器5cで7℃程度に冷却されて冷水循環ポンプ22で建屋に戻される。   Here, the refrigerant | coolant 21 used as the heat source of the evaporator 5b is HFC134a etc. which do not solidify even if it is 0 degrees C or less, for example. The refrigerant 21 is evaporated by the evaporator 5c using the return cold water 23 of about 12 ° C. used for cooling the building as a heat source, and is sucked into the compressor 6c driven by the motor 7c. The refrigerant 21 compressed into the superheated gas by the compressor 6c gives heat to the supply water 9 supplied to the evaporator 5b and is cooled and condensed and liquefied. Then, after the pressure is reduced by the throttle valve 20, the flow returns to the evaporator 5c. The return cold water 23 used for cooling the building is cooled to about 7 ° C. by the evaporator 5 c and returned to the building by the cold water circulation pump 22.

本実施例の熱電供給装置1によれば、実施例4より更に低温の廃熱を熱源として、高温・高圧の水蒸気を発生することができる。   According to the thermoelectric supply device 1 of the present embodiment, high-temperature and high-pressure steam can be generated using waste heat at a lower temperature than that of the fourth embodiment as a heat source.

図7に、本発明の実施例6における熱電供給装置の構成を示す。本実施例の熱電供給装置は、実施例5における蒸発器5cの熱源が異なるのみであるので、実施例5と重複する部分の説明は省略する。   In FIG. 7, the structure of the thermoelectric supply apparatus in Example 6 of this invention is shown. Since the thermoelectric supply device of the present embodiment is different only in the heat source of the evaporator 5c in the fifth embodiment, the description of the parts overlapping with the fifth embodiment is omitted.

図7に示すように、蒸発器5cの熱源は、ヒーティングタワー24で大気から熱を回収して循環ポンプ25によって蒸発器5cに供給される不凍液26である。不凍液26の温度は、夏場で32℃程度、冬場で−7℃程度である。   As shown in FIG. 7, the heat source of the evaporator 5 c is an antifreeze liquid 26 that recovers heat from the atmosphere by the heating tower 24 and is supplied to the evaporator 5 c by the circulation pump 25. The temperature of the antifreeze liquid 26 is about 32 ° C. in summer and about −7 ° C. in winter.

本実施例の熱電供給装置1によれば、例えばプラント内で発生する低温廃熱や河川水などの廃熱、又は建屋がない場合でも、身近にある大気から熱を回収して利用することにより、高温・高圧の水蒸気を発生することができる。   According to the thermoelectric supply device 1 of the present embodiment, for example, even when there is no waste heat such as low-temperature waste heat or river water generated in the plant, or even when there is no building, by recovering and using heat from the ambient air High temperature and high pressure water vapor can be generated.

図8に、本発明の実施例7における熱電供給装置の構成を示す。本実施例の熱電供給装置は、実施例6の熱電供給装置1に排ガスボイラーを追加したものであるので、実施例6と重複する部分の説明は省略する。   In FIG. 8, the structure of the thermoelectric supply apparatus in Example 7 of this invention is shown. Since the thermoelectric supply device of the present embodiment is obtained by adding an exhaust gas boiler to the thermoelectric supply device 1 of the sixth embodiment, the description of the portions overlapping with those of the sixth embodiment is omitted.

図8に示すように、実施例6の熱電供給装置1に、排ガスボイラー27が併設されており、排ガスボイラー27に供給された供給水9は、内燃機関2の排気ガス28を熱源として蒸発し、水蒸気利用設備に供給される。   As shown in FIG. 8, an exhaust gas boiler 27 is provided together with the thermoelectric supply device 1 of the sixth embodiment, and the supply water 9 supplied to the exhaust gas boiler 27 evaporates using the exhaust gas 28 of the internal combustion engine 2 as a heat source. , Supplied to steam utilization equipment.

本実施例の熱電供給装置1によれば、内燃機関2の廃熱や、それ以外の低温廃熱に加えて、内燃機関2の排気ガス28の熱も水蒸気発生に利用でき、水蒸気利用設備に供給する水蒸気量をさらに増大することができる。   According to the thermoelectric supply device 1 of this embodiment, in addition to the waste heat of the internal combustion engine 2 and other low-temperature waste heat, the heat of the exhaust gas 28 of the internal combustion engine 2 can also be used for the generation of water vapor. The amount of water vapor supplied can be further increased.

本発明の実施例1における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 1 of this invention. 本発明の実施例2における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 2 of this invention. 本発明の実施例3における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 3 of this invention. 本発明の実施例4における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 4 of this invention. 本発明の多段圧縮及び中間冷却の効果を説明する水蒸気のT−s線図である。It is a Ts diagram of water vapor explaining the effect of multistage compression and intermediate cooling of the present invention. 本発明の実施例5における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 5 of this invention. 本発明の実施例6における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 6 of this invention. 本発明の実施例7における熱電供給装置の構成を示す図である。It is a figure which shows the structure of the thermoelectric supply apparatus in Example 7 of this invention.

符号の説明Explanation of symbols

1 熱電供給装置
2 内燃機関
3 発電機
4 冷却水循環ポンプ
5 蒸発器
6 圧縮機
7 モータ
9 供給水
10 冷却水
11 水蒸気
16 インジェクションノズル
17 インジェクションポンプ
27 排ガスボイラー
DESCRIPTION OF SYMBOLS 1 Thermoelectric supply device 2 Internal combustion engine 3 Generator 4 Cooling water circulation pump 5 Evaporator 6 Compressor 7 Motor 9 Supply water 10 Cooling water 11 Water vapor 16 Injection nozzle 17 Injection pump 27 Exhaust gas boiler

Claims (8)

低温廃熱を熱源として水を蒸発させる蒸発器と、該蒸発器で蒸発した水蒸気を圧縮する圧縮機とを備えてなる水蒸気発生装置において、
前記圧縮機の回転数を変化させるための制御手段と、
前記蒸発器に水を供給する流路に設けた弁と、
前記弁の弁開度を調整する制御手段とを備え、
前記低温廃熱の温度に対応して前記圧縮機の回転数と前記弁の弁開度を制御して前記蒸発器の内圧を制御することを特徴とする蒸気発生装置。
In a steam generator comprising: an evaporator that evaporates water using low-temperature waste heat as a heat source; and a compressor that compresses water vapor evaporated in the evaporator,
Control means for changing the rotational speed of the compressor;
A valve provided in a flow path for supplying water to the evaporator;
Control means for adjusting the valve opening of the valve ,
A steam generator characterized in that the internal pressure of the evaporator is controlled by controlling the rotational speed of the compressor and the valve opening of the valve in accordance with the temperature of the low-temperature waste heat .
前記圧縮機は、複数台の圧縮機が直列に接続された多段圧縮機であり、該多段圧縮機の各圧縮機間に、それぞれ前記各圧縮機で圧縮された水蒸気を、飽和蒸気となるように冷却する冷却手段を設けてなることを特徴とする請求項1に記載の水蒸気発生装置。   The compressor is a multi-stage compressor in which a plurality of compressors are connected in series, and the steam compressed by each of the compressors becomes saturated steam between the compressors of the multi-stage compressor. The steam generator according to claim 1, further comprising a cooling means for cooling. 内燃機関と、該内燃機関により駆動され電力負荷に電力を供給する発電機と、前記内燃機関に冷却水を供給する冷却水供給手段と、該冷却水供給手段に流れる冷却水を熱源として水を蒸発させる蒸発器と、該蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する圧縮機と、前記圧縮機の回転数を変化させるための制御手段と、前記蒸発器に水を供給する流路に設けた弁と、前記弁の弁開度を調整する制御手段とを備え、前記圧縮機は、前記発電機で発電された電気の一部又は全部により駆動され、前記低温廃熱の温度に対応して前記圧縮機の回転数と前記弁の弁開度を制御して前記蒸発器の内圧を制御する熱電供給装置。 An internal combustion engine, a generator that is driven by the internal combustion engine and supplies power to an electric power load, a cooling water supply means that supplies cooling water to the internal combustion engine, and water that uses the cooling water flowing through the cooling water supply means as a heat source An evaporator for evaporating, a compressor for compressing water vapor evaporated in the evaporator and supplying it to a heat load, a control means for changing the rotational speed of the compressor, and a flow for supplying water to the evaporator A valve provided on the passage, and a control means for adjusting the valve opening of the valve, wherein the compressor is driven by part or all of the electricity generated by the generator, and the temperature of the low-temperature waste heat The thermoelectric supply device which controls the internal pressure of the evaporator by controlling the rotation speed of the compressor and the valve opening degree of the valve correspondingly . 前記圧縮機は、複数台の圧縮機が直列に接続された多段圧縮機であり、該多段圧縮機の各圧縮機間に、それぞれ前記各圧縮機で圧縮された水蒸気を、飽和蒸気となるように冷却する冷却手段を設けてなることを特徴とする請求項3に記載の熱電供給装置。   The compressor is a multi-stage compressor in which a plurality of compressors are connected in series, and the steam compressed by each of the compressors becomes saturated steam between the compressors of the multi-stage compressor. The thermoelectric supply device according to claim 3, further comprising cooling means for cooling. 内燃機関と、該内燃機関により駆動され電力負荷に電力を供給する発電機と、前記内燃機関に冷却水を供給する冷却水供給手段と、該冷却水供給手段に流れる冷却水を熱源として水を蒸発させる第1の蒸発器と、前記冷却水以外の低温廃熱を熱源として水を蒸発させる第2の蒸発器と、前記第1の蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する第1の圧縮機と、前記第2の蒸発器で蒸発した水蒸気を圧縮して熱負荷に供給する第2の圧縮機とを備え、前記冷却水以外の低温廃熱は、第3の圧縮機と、凝縮器として作用する前記第2の蒸発器と、絞り弁と、第3の蒸発器とを含んで形成される冷凍サイクルの冷媒であり、前記第1の圧縮機、前記第2の圧縮機、及び前記第3の圧縮機は、前記発電機で発電された電気の一部又は全部により駆動される熱電供給装置。   An internal combustion engine, a generator that is driven by the internal combustion engine and supplies power to an electric power load, a cooling water supply means that supplies cooling water to the internal combustion engine, and water that uses the cooling water flowing through the cooling water supply means as a heat source A first evaporator to be evaporated, a second evaporator to evaporate water using low-temperature waste heat other than the cooling water as a heat source, and water vapor evaporated by the first evaporator is compressed and supplied to a heat load A first compressor, and a second compressor that compresses the water vapor evaporated by the second evaporator and supplies the compressed heat to a heat load. The low-temperature waste heat other than the cooling water is a third compressor. And a refrigerant of a refrigeration cycle formed including the second evaporator acting as a condenser, a throttle valve, and a third evaporator, the first compressor, the second compression And the third compressor is a part or all of the electricity generated by the generator. Driven thermoelectric supply device. 前記第1の圧縮機及び前記第2の圧縮機のうち、温度の低い方の熱源によって蒸発した水蒸気を圧縮する圧縮機の吐出側は、もう一方の圧縮機の吸入側に連結されてなることを特徴とする請求項5に記載の熱電供給装置。   Of the first compressor and the second compressor, a discharge side of a compressor that compresses water vapor evaporated by a heat source having a lower temperature is connected to a suction side of the other compressor. The thermoelectric supply device according to claim 5. 前記第1の圧縮機及び前記第2の圧縮機は、それぞれ複数台の圧縮機が直列に接続された多段圧縮機であり、該多段圧縮機の各圧縮機間に、それぞれ前記各圧縮機で圧縮された水蒸気を、飽和蒸気となるように冷却する冷却手段を設けてなることを特徴とする請求項6に記載の熱電供給装置。   Each of the first compressor and the second compressor is a multistage compressor in which a plurality of compressors are connected in series, and each compressor is interposed between the compressors of the multistage compressor. The thermoelectric supply device according to claim 6, further comprising a cooling unit that cools the compressed water vapor so as to become saturated steam. 低温廃熱を熱源として水を蒸発させる蒸発器と、該蒸発器で蒸発した水蒸気を圧縮する圧縮機とを備えてなる水蒸気発生装置を用いて水蒸気を発生させる方法において、
前記圧縮機の回転数を変化させるための制御手段と、
前記蒸発器に水を供給する流路に設けた弁の弁開度を調整する制御手段とによって、
低温廃熱の温度に対応して蒸発器の内圧を制御して蒸気を発生させる水蒸気発生方法。
In a method of generating water vapor using a water vapor generator comprising an evaporator that evaporates water using low-temperature waste heat as a heat source, and a compressor that compresses water vapor evaporated in the evaporator,
Control means for changing the rotational speed of the compressor;
And a control means for adjusting a valve opening degree of a valve provided in a flow path for supplying water to the evaporator,
A steam generation method that generates steam by controlling the internal pressure of the evaporator according to the temperature of the low-temperature waste heat.
JP2006025990A 2006-02-02 2006-02-02 Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method Expired - Fee Related JP4555784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025990A JP4555784B2 (en) 2006-02-02 2006-02-02 Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025990A JP4555784B2 (en) 2006-02-02 2006-02-02 Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method

Publications (2)

Publication Number Publication Date
JP2007205657A JP2007205657A (en) 2007-08-16
JP4555784B2 true JP4555784B2 (en) 2010-10-06

Family

ID=38485281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025990A Expired - Fee Related JP4555784B2 (en) 2006-02-02 2006-02-02 Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method

Country Status (1)

Country Link
JP (1) JP4555784B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242225B2 (en) * 2008-04-10 2013-07-24 株式会社神戸製鋼所 Boiler blowdown energy recovery system
JP5213673B2 (en) * 2008-12-05 2013-06-19 中国電力株式会社 NOx reduction device for internal combustion engine
WO2014208938A1 (en) 2013-06-24 2014-12-31 주식회사 엘지화학 Heat recovery apparatus
WO2015198656A1 (en) * 2014-06-25 2015-12-30 株式会社マリタイムイノベーションジャパン Heat supply system
JP6463181B2 (en) * 2015-03-20 2019-01-30 大阪瓦斯株式会社 Steam generation type cogeneration system
CN109099405A (en) * 2018-09-05 2018-12-28 夏文庆 A kind of steam generator system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102539U (en) * 1976-01-30 1977-08-04
JPS60221602A (en) * 1984-04-18 1985-11-06 三井造船株式会社 Manufacture of steam
JPS63131901A (en) * 1986-11-25 1988-06-03 徳山石油化学株式会社 Method of recovering heat of reaction
JPS6432401U (en) * 1987-08-24 1989-03-01
JPH04327701A (en) * 1991-04-25 1992-11-17 Yanmar Diesel Engine Co Ltd Steam generator
JPH04370303A (en) * 1991-06-20 1992-12-22 Hitachi Ltd Heat-electricity co-supply plant
JPH05272304A (en) * 1992-03-24 1993-10-19 Yoshiharu Tachibana Isothermal steam compression-isobaric heating regenerative heat cycle
JPH07113566A (en) * 1993-10-15 1995-05-02 Tlv Co Ltd Vaporization-cooled engine for cogeneration
JP2001074333A (en) * 1999-09-03 2001-03-23 Daikin Ind Ltd Heat pump
JP2001317704A (en) * 2000-05-01 2001-11-16 Mitsubishi Heavy Ind Ltd Combined plant and method for supplying water in exhaust heat recovery boiler
JP2005139443A (en) * 2003-10-17 2005-06-02 Mitsubishi Heavy Ind Ltd Gasifying system of high water content organic material and latent heat recovery boiler

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102539U (en) * 1976-01-30 1977-08-04
JPS60221602A (en) * 1984-04-18 1985-11-06 三井造船株式会社 Manufacture of steam
JPS63131901A (en) * 1986-11-25 1988-06-03 徳山石油化学株式会社 Method of recovering heat of reaction
JPS6432401U (en) * 1987-08-24 1989-03-01
JPH04327701A (en) * 1991-04-25 1992-11-17 Yanmar Diesel Engine Co Ltd Steam generator
JPH04370303A (en) * 1991-06-20 1992-12-22 Hitachi Ltd Heat-electricity co-supply plant
JPH05272304A (en) * 1992-03-24 1993-10-19 Yoshiharu Tachibana Isothermal steam compression-isobaric heating regenerative heat cycle
JPH07113566A (en) * 1993-10-15 1995-05-02 Tlv Co Ltd Vaporization-cooled engine for cogeneration
JP2001074333A (en) * 1999-09-03 2001-03-23 Daikin Ind Ltd Heat pump
JP2001317704A (en) * 2000-05-01 2001-11-16 Mitsubishi Heavy Ind Ltd Combined plant and method for supplying water in exhaust heat recovery boiler
JP2005139443A (en) * 2003-10-17 2005-06-02 Mitsubishi Heavy Ind Ltd Gasifying system of high water content organic material and latent heat recovery boiler

Also Published As

Publication number Publication date
JP2007205657A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US8286431B2 (en) Combined cycle power plant including a refrigeration cycle
CN100429387C (en) Heat and electric power supply system and operation method thereof
US5622044A (en) Apparatus for augmenting power produced from gas turbines
US20090266075A1 (en) Process and device for using of low temperature heat for the production of electrical energy
US6332321B1 (en) Apparatus for augmenting power produced from gas turbines
KR20170086135A (en) Gas turbine energy supplementing systems and heating systems, and methods of making and using the same
JP4555784B2 (en) Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method
KR20020097208A (en) An engine
CN101059101A (en) Gas turbine inlet conditioning system and method
JP2001099520A (en) Hybrid absorbing type electrical power and cold heat or hot heat supplying device
WO2002040916A2 (en) Gas pipeline compressor stations with kalina cycles®
JPS60184932A (en) Power generation method
US20080127657A1 (en) Power generation system driven by heat pump
US6119445A (en) Method of and apparatus for augmenting power produced from gas turbines
CN111608741B (en) ORC system for recycling waste heat of generator
US20110056219A1 (en) Utilization of Exhaust of Low Pressure Condensing Steam Turbine as Heat Input to Silica Gel-Water Working Pair Adsorption Chiller
US8297064B2 (en) Energy efficient air conditioning system
JPH08144850A (en) Exhaust heat recovery system
KR20170076220A (en) Hybrid Air-Brayton Cycle Power Generator System using Waste Heat, which generates simultaneously both high temperature steam and air
CN1069950C (en) Method for refrigerating and electrically generating using low-temp. medium and refrigerating generating station
EP0605159A1 (en) Method for utilizing liquified natural gas as a heat sink for a gas turbine inlet chiller
JPS61201831A (en) Power generation method
Erickson et al. Absorption refrigeration cycle turbine inlet conditioning
EP4314507A1 (en) Bottoming cycle power system
CN204202233U (en) The organic Rankine of Driven by Solar Energy-spray compression combined formula refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees