JPS61121392A - Manufacture of multilayer wiring - Google Patents
Manufacture of multilayer wiringInfo
- Publication number
- JPS61121392A JPS61121392A JP24243184A JP24243184A JPS61121392A JP S61121392 A JPS61121392 A JP S61121392A JP 24243184 A JP24243184 A JP 24243184A JP 24243184 A JP24243184 A JP 24243184A JP S61121392 A JPS61121392 A JP S61121392A
- Authority
- JP
- Japan
- Prior art keywords
- interlayer
- wiring layer
- layer
- etching
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体集積回路をなじめとする各種固体デバ
イスに用いられる多層配線の製造方法に関するものでる
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing multilayer wiring used in various solid-state devices including semiconductor integrated circuits.
従来この種の多層配線は、次のよう彦方法で形成されて
いた。すなわち、2r−配線を例にとると、まず第1層
金F%をスパッタリング等により堆積し、ホトリソグラ
フィや反応性イオンエツチング(RIE)を用いて第1
配線層?形成する。引続き気相反応法等により絶縁膜を
堆積し、ホトリソグラフィや反応性イオンエツチングを
用いて接続孔(いわゆるスルーホール)を形成する。最
後に第2層金属を堆積し、パターン加工することにより
第2配線層を形成する。Conventionally, this type of multilayer wiring has been formed by the Hiko method as follows. That is, taking 2r- wiring as an example, first a first layer of gold (F%) is deposited by sputtering or the like, and then the first layer is deposited using photolithography or reactive ion etching (RIE).
Wiring layer? Form. Subsequently, an insulating film is deposited using a vapor phase reaction method or the like, and connection holes (so-called through holes) are formed using photolithography or reactive ion etching. Finally, a second metal layer is deposited and patterned to form a second wiring layer.
〔発明が解決しようとする問題点J
しかしながら、このような従来の方法でHlLSIの高
密度化・高速化にとって必要な、スルーホールの微細化
や層間絶縁膜の厚膜化を行なおうとする際に、以下に述
べるような困難がるる。[Problems to be Solved by the Invention J However, when attempting to miniaturize through holes and thicken interlayer insulating films, which are necessary for higher density and higher speed of HlLSI, using such conventional methods, However, there are some difficulties as described below.
その第1点は、スルーホールが小さくかつ深くなるにつ
れて、絶縁膜にそのスルーホールを形成する加工が癲し
くなってくることでめ9、第2点は、第2層金属上形成
する際に小さくかつ深いスルーホール内に金属が充分堆
積されず、シ九がって第1配線層と第2配線層との接続
抵抗が大となり、著しい場合には接続されない事態が生
じることでめる。The first point is that as the through hole becomes smaller and deeper, the processing to form the through hole in the insulating film becomes more difficult. Metal is not deposited sufficiently in the small and deep through-holes, and as a result, the connection resistance between the first wiring layer and the second wiring layer becomes large, and in extreme cases, a situation may occur where no connection occurs.
〔問題点を解決するための手段〕
このような問題点を解決するために、本発gAは、層間
絶縁!Nを形成する前に1上部配線層と上部配線層とを
接続する層間接続部を独立に形成するようにしたもので
るる。[Means for solving the problem] In order to solve these problems, this gA has developed interlayer insulation! In this embodiment, an interlayer connection portion for connecting one upper wiring layer to another upper wiring layer is formed independently before forming the upper wiring layer.
はじめに層間接続部を形成してしまうことにより、層間
絶縁膜に小さく深いスルーホールを形成する加工、ある
いはそのスルーホール内に導電体を堀込む困難な工程が
不要となる。By forming the interlayer connection portion first, there is no need for the process of forming a small and deep through hole in the interlayer insulating film, or the difficult process of digging a conductor into the through hole.
第1図は、本発明の−!J!施例を示す工程断頁図で6
9、以下順をおって説明する。FIG. 1 shows -! of the present invention. J! 6 with process cut-out diagrams showing examples
9. The following will be explained in order.
基板1上に第1配線層2を形成し、引続いて層間金属層
3fir:堆積する(第1図(a) )。この場合、第
1配線層2および層間金属層3が具備すべき条件は、膚
関金属層3のエツチングに除し第1配線M2がエツチン
グされないことでるり、このような条件は、例えば第1
配線層2f:At(または紅合金、以下同じ)、層間金
属層3tMo(またはMo合金、以下同じ)とし、Mo
の加工をcFa+02プラズマで行なうことによって得
られる。A first wiring layer 2 is formed on a substrate 1, and then an interlayer metal layer 3f is deposited (FIG. 1(a)). In this case, the conditions that the first wiring layer 2 and the interlayer metal layer 3 should satisfy are that the first wiring M2 is not etched except for the etching of the interlayer metal layer 3;
Wiring layer 2f: At (or red alloy, hereinafter the same), interlayer metal layer 3tMo (or Mo alloy, hereinafter the same), Mo
It can be obtained by processing using cFa+02 plasma.
るるいは、第1配線層2をMoを最上層とするAtとM
oとの積層構造とし、層間金属層3としてAt金用いて
AAの加工を5iC2t ろるいはCC24反応性イ
オンエツチングで行なうことでも可能でるる。後者の例
において、エツチングの条件からは、第1配線層全体を
ooとし、1関金属層3としてAtを用いてもよいこと
はいうまでもないがMoに比較してAtO方が導電性が
高い九め、第1配線層2をMo単独ではなくAAとの積
層構造とし次。特に、第1配線層2の最上層部のみをM
。In Rurui, the first wiring layer 2 is made of At and M with Mo as the top layer.
It is also possible to form a laminated structure with gold, and use At gold as the interlayer metal layer 3, and process AA using 5iC2t metal or CC24 reactive ion etching. In the latter example, from the etching conditions, it goes without saying that the entire first wiring layer may be set as oo and At may be used as the first metal layer 3, but AtO has higher conductivity than Mo. The first wiring layer 2 has a multilayer structure with AA instead of Mo alone. In particular, only the top layer of the first wiring layer 2 is
.
とし、他は層間接続部および第2配線層を含めてA4と
し次ものは、低抵抗化の点で望ましい例といえる。The other parts including the interlayer connection part and the second wiring layer are made of A4.The following example can be said to be a desirable example in terms of low resistance.
このように層間金属層3を形成し次後、この層間金属層
3上に公知の方法でレジストi塗布し、露光および3J
像を行なってレジストパターン4を形成する。次いで、
このパターン4をマスクとして、上述し九二つなガスを
用い次エツチングにより選択的に層間金属層を加工し、
第1配線層2と第2配線層とを接続する役割りを担う層
間接続部5を形成する(第1図(b))。層間絶縁膜に
スルーホールを形成する場合には、小さく深い孔にエツ
チングガスが十分に供給されにくいことから、微細化・
厚膜化が困難でめったが、上記1間接続部を形成する場
合は、そのまわりに十分なエツチングガスが供給される
ため加工が容易となり、t7tスルーホールに金属層を
埋込む必要もないため、微細化・厚膜化がはかれる。After forming the interlayer metal layer 3 in this way, a resist i is applied on the interlayer metal layer 3 by a known method, exposed to light and 3J
A resist pattern 4 is formed by imaging. Then,
Using this pattern 4 as a mask, the interlayer metal layer is selectively processed by subsequent etching using the above-mentioned 92 gases,
An interlayer connection portion 5 that serves to connect the first wiring layer 2 and the second wiring layer is formed (FIG. 1(b)). When forming through holes in interlayer insulating films, it is difficult to supply sufficient etching gas to small and deep holes, so miniaturization and
Although it was difficult to make the film thicker, when forming the above-mentioned connection between 1 and 2, the processing becomes easier because sufficient etching gas is supplied around it, and there is no need to fill the t7t through hole with a metal layer. , miniaturization and thickening of the film.
次いで、層間絶縁膜6として耐熱性有機塗布膜、例えば
ポリイミドをスピン塗布し、適切な温度で7ニールし安
定化させる(第1図(C))。その後、この層間絶縁膜
6を全面エツチングし、層間接続部5の上面を露出させ
る(第1図(d))。全面エツチングは、ウェット法で
もドライ法でも良く、ドライの場合には02RIE、O
F、RIEが用いられる。また、層間絶縁膜6は耐熱性
有機塗布膜に限らず、シリコン窒化膜るるいはシリコン
酸化膜と有機塗布膜の組み合せ等でも良い。肝要なのは
層間絶縁膜形成後および全面エツチング後の形状が平坦
に近いことでるる。Next, a heat-resistant organic coating film, such as polyimide, is spin-coated as the interlayer insulating film 6, and is stabilized by annealing at an appropriate temperature for 7 times (FIG. 1(C)). Thereafter, the entire surface of the interlayer insulating film 6 is etched to expose the upper surface of the interlayer connection portion 5 (FIG. 1(d)). The entire surface etching may be done by wet method or dry method, and in the case of dry method, 02RIE, O
F, RIE is used. Further, the interlayer insulating film 6 is not limited to a heat-resistant organic coating film, and may be a silicon nitride film or a combination of a silicon oxide film and an organic coating film. What is important is that the shape after the interlayer insulating film is formed and after the entire surface is etched is nearly flat.
その後金属層、例えばAlt堆積し、フォトリングラフ
ィおよびエツチングによって第2配線層7を形成する(
第1図(e))。Thereafter, a metal layer such as Alt is deposited, and a second wiring layer 7 is formed by photolithography and etching (
Figure 1(e)).
従来の方法によって、例えばAtからなる多層配線を形
成しようとする場合°、第1配線m′を完全に横切るよ
うなスルーホールが形成されてしまうと、その上にさら
にht を堆積し第2配線層のバターニングを行なう場
合に、第2配線層が上記スルーホールを完全に覆うよう
に形成されるならば問題がないが、位置合せのずれ等に
より例えばスルーホールを通して第2配線層に直交する
第1配線層が露出するような位置関係となつ友場合、そ
の露出部もエツチングにより除去されてしまい、そこで
断線が生じることとなる。それを避けるためにはスルー
ホールが配線層より充分に小さく、配線層からはみ出す
ことのないように、逆に言えば配線層幅を犬きくする必
要がめった。これに対し、本発明では上述したように第
1配線層の最上部を、層間接続部のエツチングの際にエ
ツチングされない材料としているため、層間接続部と同
一材料の第2配線層をパターニングする場合に、スルー
ホールを完全に覆う形とならなくても、そのために第1
配線層が断線するという事態は避けることができる。し
たがって、層間接続部5と第1配線層2とを同一パター
ン幅とすることも可能でる夕、この点でも微細化にも適
している。When trying to form a multilayer interconnection made of At, for example, by the conventional method, if a through hole is formed that completely crosses the first interconnection m', then more ht is deposited on top of the throughhole and the second interconnection is formed. When performing layer patterning, there is no problem if the second wiring layer is formed to completely cover the through hole, but due to misalignment, for example, the through hole may be perpendicular to the second wiring layer. If the positional relationship is such that the first wiring layer is exposed, the exposed portion will also be removed by etching, resulting in a disconnection. In order to avoid this, it was necessary to make the through hole sufficiently smaller than the wiring layer and to prevent it from protruding from the wiring layer; conversely, it was necessary to increase the width of the wiring layer. On the other hand, in the present invention, as described above, the uppermost part of the first wiring layer is made of a material that is not etched when etching the interlayer connection part, so when patterning the second wiring layer made of the same material as the interlayer connection part, However, even if the through hole is not completely covered, the first
A situation in which the wiring layer is disconnected can be avoided. Therefore, it is possible to make the interlayer connection portion 5 and the first wiring layer 2 have the same pattern width, which is also suitable for miniaturization.
以上が本発明の基本プロセスでるる。第2配線層にのみ
、電源および信号入出力用等の端子(パッド部)を設け
るような場合には以上の基本プロセスで良いが、このよ
うな端子を第1配線層にも直接設ける場合には、次のよ
うな問題が生じる。The above is the basic process of the present invention. If terminals (pads) for power supply and signal input/output are to be provided only on the second wiring layer, the above basic process is sufficient, but if such terminals are also provided directly on the first wiring layer, The following problems arise.
すカわち、層間絶縁膜として例えば有機高分子層を塗布
し九場合、パッド部などパターン寸法の大きな1間接続
部の上では、微細パターン上に比べて上記有機高分子層
が厚くなってしまい、第2図に示すようにエツチングに
より接続部5の上面が露出せず、その部分で第1配線層
と第2配線層とが接続されない事態が生じることでるる
。これを解決するため、次に述べる2つの手法が有効で
るる。That is, when an organic polymer layer is applied as an interlayer insulating film, for example, the organic polymer layer becomes thicker on the interconnection area where the pattern size is large, such as a pad area, than on the fine pattern. As a result, as shown in FIG. 2, the upper surface of the connecting portion 5 is not exposed due to etching, and the first wiring layer and the second wiring layer are not connected at that portion. To solve this problem, the following two methods are effective.
第1の方法に、第3図に示すようにパッド部など大きな
接続箇所を、パターン寸法の小さな層間接続部5Aに分
割し、塗布される有機高分子の厚さt一様にすることで
るる。なお、図中破線拡有機高分子層を塗布した後の、
実線は全面エツチング後の形状を示す。In the first method, as shown in Fig. 3, a large connection point such as a pad part is divided into interlayer connection parts 5A with small pattern dimensions, and the thickness t of the applied organic polymer is made uniform. . In addition, the broken line in the figure shows the expansion after applying the organic polymer layer.
The solid line shows the shape after etching the entire surface.
第2の方法は、第4図に示すように有機塗布膜の形成後
フォトリングラフィによって、パターン寸法の大きな、
したがって有機高分子膜厚の厚い部分を予め除去するこ
とでわる。この場合、第2配線用金属層を堆積する際に
この部分に当該金属が埋込まれるようにする必要がめる
が、もともとパターン寸法の大きな部分でるるため相対
的に浅くでき、問題はない。The second method, as shown in FIG. 4, uses photolithography after forming an organic coating film to create
Therefore, the problem can be solved by removing the thick part of the organic polymer film in advance. In this case, it is necessary to embed the metal in this portion when depositing the second wiring metal layer, but since the pattern size is originally large, it can be made relatively shallow and there is no problem.
特に、エツチング方法としてウェット法を用いれば、パ
ターン端部に傾斜をつけることができ、埋込みはさらに
容易となる。例えば、有機高分子層としてポリイミド、
レジストとしてネガレジストを用いた場合、ベーク温度
を適切に選ぶことによってレジストの現像液でポリイミ
ドがエツチングされ、かつ有機高分子層に影響を与える
ことなくレジスト除去が可能でめる。なお、図中破線に
ポリイミドをウェットエツチングし、レジストを除去し
た後の、実線はさらにポリイミド金全面エツチングし次
後の形状を示す。本方法はウェットエツチングを用いて
いるが、上述したようにもともとパターン寸法の大きな
部分にのみ適用されるので、機側化・層間絶縁膜の厚膜
化への支障とはならない。In particular, if a wet etching method is used, the edges of the pattern can be sloped, making embedding easier. For example, polyimide as an organic polymer layer,
When a negative resist is used as the resist, by appropriately selecting the baking temperature, the polyimide can be etched by the resist developer, and the resist can be removed without affecting the organic polymer layer. In the figure, the broken line shows the shape after the polyimide is wet-etched and the resist is removed, and the solid line shows the shape after the entire surface of the polyimide gold is etched. This method uses wet etching, but as mentioned above, it is applied only to portions with originally large pattern dimensions, so it does not pose a hindrance to increasing the thickness of the interlayer insulating film.
以上、2層配線を例に説明し次が、同様のプロセスを繰
返すことにより、3/il、 4/ii等の配線の製造
も可能でるることは言うまでもない。また、本発明全従
来技術と組合せて、パターン寸法の大きな層間接続箇所
はスルーホールを用い次接続とし、微細な接続箇所につ
いては本発明を適用して層間接続部を形成するものとし
てもよい。The above description has been made using two-layer wiring as an example, and it goes without saying that by repeating the same process, it is also possible to manufacture wiring such as 3/il, 4/ii, etc. In addition, in combination with all conventional techniques of the present invention, through-holes may be used for subsequent connections at interlayer connection points with large pattern dimensions, and the present invention may be applied to form interlayer connection portions for fine connection points.
以上説明したように、本発明によれば、下部配線層と上
部配線層と全接続する層間接続部の形成を層間絶縁膜形
成前に行なうことにより、微細スルーホールを必要とし
ない之め、以下に述べる多くの利点がある。As explained above, according to the present invention, by forming the interlayer connection portion that fully connects the lower wiring layer and the upper wiring layer before forming the interlayer insulating film, fine through holes are not required. There are many benefits mentioned.
まず、微細スルーホール加工およびそのスルーホールへ
の金属の埋込みに伴う困難から解放される之め、厚い絶
縁膜を用い友多層配線が可能となり、LSIの高速化・
高密度化かも友らされる。First, it frees us from the difficulties associated with processing fine through-holes and embedding metal into the through-holes, which makes it possible to use thick insulating films to create multilayer wiring, which increases the speed of LSIs.
Densification may also be an issue.
さらに、層間絶縁膜の平坦化も行なわれるため、配線層
の断線や短絡がなくなり歩xHりや信頼性も向上する。Furthermore, since the interlayer insulating film is also planarized, disconnections and short circuits in the wiring layer are eliminated, and the lead time and reliability are improved.
第1図は本発明の一実施例を示す工程断面図、第2図お
よび第3図は本発明の他の実施例を説明するための断面
図、第4図は本発明のさらに他の実施例を示す断面図で
るる。
1・・・・基板、2・・・・第1配線層、3・080層
関金属層、4****レジストパターン、5.5A・・
・・層間接続部、6・・・・層間絶縁膜、7・・・中第
2配線層。FIG. 1 is a process cross-sectional view showing one embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views for explaining other embodiments of the present invention, and FIG. 4 is a process sectional view showing another embodiment of the present invention. A cross-sectional view showing an example. DESCRIPTION OF SYMBOLS 1...Substrate, 2...1st wiring layer, 3.080 interlayer metal layer, 4***Resist pattern, 5.5A...
. . . Interlayer connection portion, 6 . . . Interlayer insulating film, 7 . . . Second wiring layer.
Claims (3)
程と、この導電体層をホトリソグラフィおよびエッチン
グにより選択的にパターン加工して層間接続部を形成す
る工程と、層間絶縁膜を形成する工程と、この層間絶縁
膜を全面エッチングして上記層間接続部上面を露出させ
る工程と、引続き上部配線層を形成する工程とを含むこ
とを特徴とする多層配線の製造方法。(1) Following the formation of the lower wiring layer, a process of depositing a conductor layer, a process of selectively patterning this conductor layer by photolithography and etching to form interlayer connections, and forming an interlayer insulating film A method for manufacturing a multilayer interconnection comprising the steps of: etching the entire surface of the interlayer insulating film to expose the upper surface of the interlayer connection portion; and subsequently forming an upper interconnection layer.
を形成する工程において、必要な接続箇所1箇所当り複
数個のパターンによる層間接続部を形成することを特徴
とする特許請求の範囲第1項記載の多層配線の製造方法
。(2) Claims characterized in that in the step of selectively patterning the conductor layer to form the interlayer connection portion, the interlayer connection portion is formed by a plurality of patterns for each required connection location. 2. The method for manufacturing multilayer wiring according to item 1.
程と、この導電体層をホトリソグラフィおよびエッチン
グにより選択的にパターン加工して層間接続部を形成す
る工程と、層間絶縁膜を形成する工程と、この層間絶縁
膜をホトリソグラフィおよびエッチングにより選択的に
パターン加工する工程と、この層間絶縁膜を全面エッチ
ングして、上記層間接続部上面を露出させる工程と、引
続き上部配線層を形成する工程とを含むことを特徴とす
る多層配線の製造方法。(3) A step of depositing a conductive layer following the formation of the lower wiring layer, a step of selectively patterning this conductive layer by photolithography and etching to form an interlayer connection, and forming an interlayer insulating film. a step of selectively patterning this interlayer insulating film by photolithography and etching, a step of etching the entire surface of this interlayer insulating film to expose the upper surface of the interlayer connection portion, and subsequently forming an upper wiring layer. A method for manufacturing a multilayer wiring, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24243184A JPS61121392A (en) | 1984-11-19 | 1984-11-19 | Manufacture of multilayer wiring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24243184A JPS61121392A (en) | 1984-11-19 | 1984-11-19 | Manufacture of multilayer wiring |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61121392A true JPS61121392A (en) | 1986-06-09 |
Family
ID=17088993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24243184A Pending JPS61121392A (en) | 1984-11-19 | 1984-11-19 | Manufacture of multilayer wiring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61121392A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000030420A1 (en) * | 1998-11-18 | 2000-05-25 | Daiwa Co., Ltd. | Method of manufacturing multilayer wiring boards |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55158697A (en) * | 1979-05-30 | 1980-12-10 | Nippon Electric Co | Multilayer wiring substrate |
JPS5662398A (en) * | 1979-10-26 | 1981-05-28 | Nippon Electric Co | Method of manufacturing high density multilayer board |
-
1984
- 1984-11-19 JP JP24243184A patent/JPS61121392A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55158697A (en) * | 1979-05-30 | 1980-12-10 | Nippon Electric Co | Multilayer wiring substrate |
JPS5662398A (en) * | 1979-10-26 | 1981-05-28 | Nippon Electric Co | Method of manufacturing high density multilayer board |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000030420A1 (en) * | 1998-11-18 | 2000-05-25 | Daiwa Co., Ltd. | Method of manufacturing multilayer wiring boards |
US6527963B1 (en) | 1998-11-18 | 2003-03-04 | Daiwa Co., Ltd. | Method of manufacturing multilayer wiring boards |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4076575A (en) | Integrated fabrication method of forming connectors through insulative layers | |
JP3137596B2 (en) | Semiconductor structure including self-aligned connector and method of manufacturing the same | |
EP0450381B1 (en) | Multilayer interconnection structure | |
US4040891A (en) | Etching process utilizing the same positive photoresist layer for two etching steps | |
JPH05267478A (en) | Method of forming inner connection conductors | |
JPH053159B2 (en) | ||
KR900001834B1 (en) | Method of manufacturing semiconductor device | |
TWI451548B (en) | Wiring substrate and manufacturing method thereof, and semiconductor device | |
JPS61121392A (en) | Manufacture of multilayer wiring | |
JP2985326B2 (en) | Method for manufacturing semiconductor device | |
JPS62263645A (en) | Construction of electric contact and method of forming the same | |
JP2938341B2 (en) | Method of forming wiring with coaxial structure | |
US11641713B2 (en) | Circuit board structure and manufacturing method thereof | |
JPS62261156A (en) | Method of forming conductive via route | |
JP2772050B2 (en) | Multilayer wiring structure and method of manufacturing the same | |
JP2715920B2 (en) | Multilayer wiring board and method of manufacturing the same | |
JPS63107043A (en) | Forming method of conductive line for semiconductor device | |
JPS62154758A (en) | Semiconductor device and manufacture thereof | |
JPH01140645A (en) | Manufacture of semiconductor integrated circuit device | |
KR100226252B1 (en) | Semiconductor device and method for manufacturing the same | |
JPS6329549A (en) | Multilayer interconnection structure | |
JPH07283306A (en) | Semiconductor device and its manufacture | |
CN118280916A (en) | Semiconductor device and method of forming the same | |
JP2738358B2 (en) | Method for manufacturing semiconductor device | |
JPS6237945A (en) | Manufacture of semiconductor device |