JPS6112086A - Thin-film solar battery device - Google Patents

Thin-film solar battery device

Info

Publication number
JPS6112086A
JPS6112086A JP59132585A JP13258584A JPS6112086A JP S6112086 A JPS6112086 A JP S6112086A JP 59132585 A JP59132585 A JP 59132585A JP 13258584 A JP13258584 A JP 13258584A JP S6112086 A JPS6112086 A JP S6112086A
Authority
JP
Japan
Prior art keywords
solar cell
film solar
amorphous silicon
transparent conductive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132585A
Other languages
Japanese (ja)
Inventor
Katsumi Imaizumi
今泉 克美
Yutaka Yamauchi
豊 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59132585A priority Critical patent/JPS6112086A/en
Publication of JPS6112086A publication Critical patent/JPS6112086A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To decelerate the increase in the wire-connecting cost and to gain a required output voltage by a method wherein a plurality of solar batteries made of amorphous semiconductor is stacked up one upon the other through the intermediary of transparent conductive films. CONSTITUTION:On a glass substrate 1, the pattern of a grid electrode 2 is printed by using a silver-based electrode paste, to be followed by the formation of a transparent conductive film 3. Next, by using a glow discharge equipment, a first stage is grown of solar battery layers P<+>/N<->/N<+> 4, 5, 6 made of amorphous silicon. Next, through the intermediary of a transparent conductive film 7 capable of transmission of incident light, a second stage is grown of solar battery layers P<+>/N<->/N<+> 8, 9, 10 of amorphous silicon. Similarly, a third stage is grown, composed of a transparent electrode film 11 and P<+>/N<->/N<+> layers 12, 13, 14 to be followed by the formation of a rear-side electrode 15.

Description

【発明の詳細な説明】 °〈技術分野〉 本発明は薄膜太陽電池において高出力を導出することが
できる太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a solar cell capable of producing high output in a thin film solar cell.

〈従来技術〉 電力用太陽電池の低コスト化の一つの方法として、シリ
コン単結晶を用いて、プロセスコストを低減させるため
、3インチウェハーか族4インチウェハー、さらに、5
インチ、6インチウェハーへと大面積ウェハーを用いる
方法が進みつつある。この場合、シリコン太陽電池素子
の最適動作電圧は0.4〜0.5■と一定であり、最適
動作電流は、単位面積当り30〜50mA/cm2であ
るので4インチウェハーや5インチウェハーでは、1枚
当りそれぞれ2,4.00−4,000mA/枚、3.
800〜6,300a+A/枚と極めて大きな電流とな
り、素子の直列抵抗を相当小さくしないと直列抵抗によ
る電力損失は無視できなくなる。直列抵抗を小さくしよ
うとすれば、現実的には電極面積の受光面積に対する割
合が増大することとなり、太陽電池素子の実効的な光電
置換効率の減少となる。この解決法の一つの方法として
、受光面から複数のリード線を取り出し、太陽電池素子
間の相互接続を行うことが考えられるが、これは接続配
線コストの増大につながる。またセンサ用太陽電池にお
いては、単一太陽電池素子の動作電圧が一定であるため
、任意な出力電圧を得るためには複数個の太陽電池素子
を直列接続する必要がある。
<Prior art> As a method of reducing the cost of power solar cells, silicon single crystals have been used to reduce process costs.
The method of using large area wafers is progressing to inch and 6 inch wafers. In this case, the optimal operating voltage of the silicon solar cell element is constant at 0.4 to 0.5 μm, and the optimal operating current is 30 to 50 mA/cm2 per unit area, so for a 4-inch wafer or a 5-inch wafer, 2, 4.00-4,000mA/sheet, 3.
The current is extremely large, 800 to 6,300 A+A/sheet, and the power loss due to the series resistance cannot be ignored unless the series resistance of the element is made considerably small. If the series resistance is to be reduced, the ratio of the electrode area to the light-receiving area will actually increase, resulting in a decrease in the effective photoelectric substitution efficiency of the solar cell element. One possible solution to this problem is to take out a plurality of lead wires from the light-receiving surface and interconnect the solar cell elements, but this leads to an increase in connection wiring costs. Furthermore, in solar cells for sensors, since the operating voltage of a single solar cell element is constant, it is necessary to connect a plurality of solar cell elements in series in order to obtain an arbitrary output voltage.

〈発明の目的〉 本発明は、上記従来装置における接続配線コスト増大の
問題及び所望出力電圧を得る接続関係の問題点に鑑みて
なされたもので、非晶質半導体の製造プロセスの利点を
有効に活用して太陽電池を複数段重ね、更に受光面側透
光性の電極側における損失の軽減を図ることにより高出
力電圧の太陽電池装置を得るものである。
<Object of the Invention> The present invention has been made in view of the problem of increased connection wiring cost and the problem of connections for obtaining a desired output voltage in the conventional device, and it is an object of the present invention to effectively utilize the advantages of the manufacturing process of amorphous semiconductors. By stacking solar cells in multiple stages and further reducing loss on the light-transmitting electrode side on the light-receiving surface side, a high-output voltage solar cell device can be obtained.

〈実施例〉 太陽電池装置の出力は、出力=電圧×電流の関係から、
受光面から厚み方向に複数の単位太陽電池に分割し、電
圧を分割数倍し、電流を相対的に分割数分の−に減少さ
せることにより、直列抵抗損失を減少させることができ
る。また一般に、非晶質半導体材料を用いた太陽電池素
子は、素子厚の増大に対し、収集効率が極めて悪くなり
(キャリアの拡散長が短い)出力電流が制限される。こ
れに対し、厚み方向に複数の単位太陽電池に分割すると
いう実施例の構造は、受光面から深いところでのキャリ
アの収集効率を増大させ、太陽電池素子の充電変換効率
向上に寄与する。センサー用太陽電池においては、分割
数を適当に選ぶことにより、任意の出力電圧を1個の太
陽電池素子から得ることができる。更に非晶質半導体の
特徴である低温プロセスは、透明導電膜と半導体あるい
は半導体間の薄膜成長時のオートド′−ピングをおさえ
ることができる。
<Example> From the relationship of output = voltage x current, the output of the solar cell device is
Series resistance loss can be reduced by dividing the solar cell into a plurality of unit solar cells in the thickness direction from the light receiving surface, multiplying the voltage by the number of divisions, and relatively reducing the current by the number of divisions. In general, solar cell elements using an amorphous semiconductor material have extremely poor collection efficiency as the element thickness increases (carrier diffusion length is short), and output current is limited. On the other hand, the structure of the embodiment in which the solar cell is divided into a plurality of unit solar cells in the thickness direction increases the carrier collection efficiency deep from the light-receiving surface and contributes to improving the charge conversion efficiency of the solar cell element. In a sensor solar cell, by appropriately selecting the number of divisions, any output voltage can be obtained from one solar cell element. Furthermore, the low-temperature process characteristic of amorphous semiconductors can suppress autodoping during the growth of a thin film between a transparent conductive film and a semiconductor or between a semiconductor.

十−+ 第1図に、P  /N  /N  アモルファスシリコ
ン単位太陽電池を3段重ねた場合の具体例を示す。
10-+ FIG. 1 shows a specific example of stacking three P/N/N amorphous silicon unit solar cells.

1は受光面を被うガラス基板(フーニング7059)で
、この上に銀糸電極ペーストによりグリッド電極2をパ
ターン印刷し、500〜850°Cで焼成する。該グリ
ッド電極2はガラス基板1上に一部ピッチで分布し、次
に形成する透明電極の高抵抗性を補って集電する。次に
1.T、O。
Reference numeral 1 denotes a glass substrate (Hooning 7059) covering the light-receiving surface, on which a pattern of grid electrodes 2 is printed using silver thread electrode paste, and baked at 500 to 850°C. The grid electrodes 2 are distributed on the glass substrate 1 at partial pitches, and collect current by compensating for the high resistance of the transparent electrodes to be formed next. Next 1. T.O.

(In203−8nO2)透明導電膜3を基板温度25
0〜450℃で、電子ビーム蒸着装置により0.100
.15μm厚蒸着する。次に水素ガスペースにモアシラ
ン(S i H4)を10%添加した混合ガス(SiH
=/H2)を原料とし、ダイオード型のグロー放電装置
によりアモルファスシリコン十−+ 単位太陽電池層P  /N  /N  (第1図4,5
゜6)の成長を行う。この場合、ガス圧は1〜5 to
rr成長速度は60〜180A/分、基板温度は+ 250〜300°Cで行い、P 層はSiH,/H2ガ
スにノボラン(B 2 HG / H2’) Nスを少
量添加し、N 層はS i H= / H2ガスのみを
用い、N+層はSiH4/H2ガスにホスフィン(PH
,/H2)ガスを少量添加して成長させる。
(In203-8nO2) transparent conductive film 3 at substrate temperature 25
0.100 by electron beam evaporation equipment at 0-450℃
.. Deposit to a thickness of 15 μm. Next, a mixed gas (SiH
=/H2) as raw material, amorphous silicon + unit solar cell layer P/N/N (Fig. 1, 4, 5
゜6) Growth is carried out. In this case, the gas pressure is 1 to 5 to
The rr growth rate was 60 to 180 A/min, and the substrate temperature was +250 to 300 °C. Only S i H= / H2 gas is used, and the N+ layer is formed by adding phosphine (PH) to SiH4/H2 gas.
, /H2) gas is added in a small amount for growth.

第1段の単位太陽電池が形成されたガラス基板1につい
て、入射光の全部或いは一部を透過させる特性をもつ透
明導電膜7を介して、8,9及び10のアモルファスシ
リコン単位太陽電池層P+/N  /N+の第2段車位
太陽電池、及び同様の透明導電膜11.12,13.1
4のアモルファスシリコン単位太陽電池層P+/N  
/N+の第3段の単位太陽電池を形成し、次に裏面電極
15をニッケルの無電解メッキ法及び電解メッキ法を併
用して形成する。
Regarding the glass substrate 1 on which the first-stage unit solar cells are formed, amorphous silicon unit solar cell layers P /N /N+ second stage solar cell and similar transparent conductive films 11.12, 13.1
4 amorphous silicon unit solar cell layer P+/N
/N+ third-stage unit solar cells are formed, and then the back electrode 15 is formed using a combination of nickel electroless plating method and electrolytic plating method.

上記の各単位太陽電池の厚みは、第2図の等価回路及び
第3図のアモルファスシリコンの吸収電流の計算例から
次のように決定した。つまり、第2図の各単位太陽電池
の光電流i1.i2.i3のうち最小の値が、太陽電池
素子の出力電流1の値を決めるので、1に12=i3の
条件の時出力電流iが最大となる。キこて本共体例では
、第3図のアモルファスシリコンの吸収電流の計算例か
ら11=i2=i3となるように、各単位太陽電池の厚
みを受光面側からそれぞれ、0.063μIII、0.
127μm、0.560μmとした。この場合、ITO
透明導電膜の透過率を100%と仮定したが、現実的に
はこの透過率とキャリア拡散長を考慮して、各単位太陽
電池の厚みを決定する必要がある。
The thickness of each of the above unit solar cells was determined as follows from the equivalent circuit shown in FIG. 2 and the calculation example of the absorption current of amorphous silicon shown in FIG. In other words, the photocurrent i1 of each unit solar cell in FIG. i2. Since the minimum value of i3 determines the value of the output current 1 of the solar cell element, the output current i becomes maximum when the condition of 1 and 12=i3. In this example, the thickness of each unit solar cell is set to 0.063 μIII and 0.03μ from the light-receiving surface side, respectively, so that 11=i2=i3 from the calculation example of the absorbed current of amorphous silicon in FIG.
They were 127 μm and 0.560 μm. In this case, ITO
Although it is assumed that the transmittance of the transparent conductive film is 100%, in reality, it is necessary to take this transmittance and the carrier diffusion length into consideration when determining the thickness of each unit solar cell.

要は光の入射方向に対して多段に重ねられた薄膜太陽電
池において、重ねられた各単位太陽電池がら得られる光
出力電流がほぼ等しくなるように、太陽電池層を成長さ
せる過程で層厚が制御される。
In short, in thin-film solar cells stacked in multiple stages in the direction of light incidence, the layer thickness is adjusted in the process of growing the solar cell layers so that the light output current obtained from each stacked unit solar cell is approximately equal. controlled.

十−+ 以上、P  /N  /N  アモルファスシリコン単
位太陽電池を3段重ねた場合の具体例を述べたが、第1
図の裏面電極15にステンレス板等を用い、裏面側から
本具体例とは逆に順次、各層を形成してガラス基板を重
ねてもよいことは、容易に類推できる。
10−+ Above, we have described a specific example in which three stages of P /N /N amorphous silicon unit solar cells are stacked.
It can be easily inferred that a stainless steel plate or the like may be used for the back electrode 15 shown in the figure, and that each layer may be sequentially formed from the back side, contrary to this specific example, and then the glass substrates may be stacked.

またこれらの他に、目的に応じて本発明により単位太陽
電池の層構造、重ね段数を任意に選ぶことにより、非晶
質半導体材料を用いた太陽電池素子の光電変換効率が向
上し、また高出力電圧が得られその応用範囲が飛躍的に
広がる。単位太陽電池構造をショットキー接合太陽電池
とした場合、ショットキー接合の金属膜が、実施例の透
明導電膜の働きを兼ねる、即ち透明導電膜を省略できる
ことは容易に類推できる。
In addition to these, by arbitrarily selecting the layer structure and the number of stacked layers of the unit solar cell according to the present invention according to the purpose, the photoelectric conversion efficiency of the solar cell element using an amorphous semiconductor material can be improved. The output voltage can be obtained and the range of applications will be expanded dramatically. When the unit solar cell structure is a Schottky junction solar cell, it can be easily inferred that the metal film of the Schottky junction also serves as the transparent conductive film of the embodiment, that is, the transparent conductive film can be omitted.

〈効 果〉 以上本発明によれば、薄膜太陽電池の製造プロセスにお
ける利点を生かして太陽電池素子を光の入射方向に対し
て複数段に重ねて構成することにより、簡単な構成で高
出力を取り出すことがで鰺且つ受光面側の透光性電極の
損失の軽減を図って出力を取り出すため、利用効率の高
い薄膜太陽電池装置を得ることができる。
<Effects> According to the present invention, high output can be achieved with a simple configuration by taking advantage of the manufacturing process of thin-film solar cells and configuring solar cell elements in multiple stages in the direction of light incidence. By taking out the output, the loss of the light-transmitting electrode on the light-receiving surface side is reduced and the output is taken out, so a thin-film solar cell device with high utilization efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

+−+ 第1図は、本発明による、P  /N  /N  アモ
ルファスシリコン単位太陽電池を3段重ねた場合の太陽
電池素子の断面図、第2図は第1図の等価回路、第3図
は入射光をAM2 75mw/cm2と仮定したときの
アモルファスシリコンの素子厚と吸収電流の関係を示す
図である。 1 ニガラス基板、    2ニゲリツド電極、3.7
.11 :透明導電膜、 + 4.8,12 : P  アモルファスシリコン層、5
.9.13 : N  アモルファスシリコン層、+ 6.10.14:N  アモルファスシリコン層、15
:裏面電極、
+-+ Fig. 1 is a cross-sectional view of a solar cell element in which three stages of P /N /N amorphous silicon unit solar cells are stacked according to the present invention, Fig. 2 is an equivalent circuit of Fig. 1, and Fig. 3 is a diagram showing the relationship between the element thickness of amorphous silicon and the absorption current when the incident light is assumed to be AM2 75 mw/cm2. 1 Nigel glass substrate, 2 Nigellid electrode, 3.7
.. 11: Transparent conductive film, +4.8, 12: P amorphous silicon layer, 5
.. 9.13: N amorphous silicon layer, + 6.10.14: N amorphous silicon layer, 15
: Back electrode,

Claims (1)

【特許請求の範囲】 1)受光面側に形成した透光性の前面電極と、背面側に
形成した電極間に複数の非晶質半導体層より成る単位薄
膜太陽電池を複数個形成し、上記前面電極に集電用の電
極を形成したことを特徴とする薄膜太陽電池装置。 2)前記各単位薄膜太陽電池はP^+/N^−/N^+
構造のアモルファスシリコン層からなることを特徴とす
る、請求の範囲第1項記載の薄膜太陽電池装置。
[Claims] 1) A plurality of unit thin film solar cells each comprising a plurality of amorphous semiconductor layers are formed between a light-transmitting front electrode formed on the light-receiving surface side and an electrode formed on the back side, A thin film solar cell device characterized in that a current collecting electrode is formed on a front electrode. 2) Each unit thin film solar cell is P^+/N^-/N^+
The thin film solar cell device according to claim 1, characterized in that the thin film solar cell device comprises an amorphous silicon layer having a structure.
JP59132585A 1984-06-26 1984-06-26 Thin-film solar battery device Pending JPS6112086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132585A JPS6112086A (en) 1984-06-26 1984-06-26 Thin-film solar battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132585A JPS6112086A (en) 1984-06-26 1984-06-26 Thin-film solar battery device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1861279A Division JPS55111180A (en) 1979-02-19 1979-02-19 Thin-film solar battery of high output voltage

Publications (1)

Publication Number Publication Date
JPS6112086A true JPS6112086A (en) 1986-01-20

Family

ID=15084774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132585A Pending JPS6112086A (en) 1984-06-26 1984-06-26 Thin-film solar battery device

Country Status (1)

Country Link
JP (1) JPS6112086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell

Similar Documents

Publication Publication Date Title
US9548409B2 (en) Solar cell having doped semiconductor heterojunction contacts
US4879251A (en) Method of making series-connected, thin-film solar module formed of crystalline silicon
JPH0575149A (en) Manufacture of solar cell device
CN104810415A (en) Solar cell and manufacturing method thereof
JP2922465B2 (en) Manufacturing method of thin film solar cell
JPH0693519B2 (en) Amorphous photoelectric conversion device
JP5501225B2 (en) Method for forming back contact of thin-layer photovoltaic cell
JPS6112086A (en) Thin-film solar battery device
JPS5963774A (en) Thin-film silicon solar cell
US20040065807A1 (en) Photoelectric conversion device
JPH0864850A (en) Thin film solar battery and fabrication thereof
JPH1012903A (en) Photoelectric transducer
JP2023531744A (en) Solar cell and its manufacturing method
JPS6035582A (en) Thin film solar battery device
JPS6035580A (en) Manufacture of laminated type thin film solar battery
JPH11135812A (en) Formation method for solar cell element
JPS6035583A (en) Thin film solar battery device
JPS60100484A (en) Thin film solar battery device
JPH10275922A (en) Optoelectric conversion device
JPS58196060A (en) Thin film semiconductor device
JPS6035581A (en) Thin film solar battery device
JP2001044468A (en) Thin film semiconductor device and fabrication thereof
JPH09181343A (en) Photoelectric conversion device
JPH0945945A (en) Solar cell element and fabrication thereof
JPS6035554A (en) Thin film solar cell