JPS61118967A - Alkali-zinc storage battery - Google Patents
Alkali-zinc storage batteryInfo
- Publication number
- JPS61118967A JPS61118967A JP59240003A JP24000384A JPS61118967A JP S61118967 A JPS61118967 A JP S61118967A JP 59240003 A JP59240003 A JP 59240003A JP 24000384 A JP24000384 A JP 24000384A JP S61118967 A JPS61118967 A JP S61118967A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- gallium
- oxide
- indium
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はニッケルー亜鉛電池、銀−亜鉛電池などのよう
に負極活物質として亜鉛を用いるアルカリ亜鉛蓄電池に
関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to alkaline zinc storage batteries that use zinc as a negative electrode active material, such as nickel-zinc batteries and silver-zinc batteries.
(ロ)従来の技術
負極活物質としての亜鉛は単位重量あたりのエネルギー
密度が大きく且つ安価である利点を有する反面、放電時
に亜鉛が亜鉛酸イオンとして電解液中に溶出し、充電時
にその亜鉛酸イオンが亜鉛となって樹枝状あるいは海綿
状に電析するため。(b) Conventional technology Zinc as a negative electrode active material has the advantage of having a high energy density per unit weight and being inexpensive, but on the other hand, zinc is eluted into the electrolyte as zincate ions during discharge, and during charging, zinc This is because the ions become zinc and are deposited in a dendritic or spongy form.
電析亜鉛が生長してセパレータを貫通し対極と接して内
部短絡を起こし易く、またアルカリ電解液中で自己放電
して水素ガスが発生するためサイクル寿命が短い欠点が
ある。Electrodeposited zinc grows and penetrates the separator and comes into contact with the counter electrode, which tends to cause internal short circuits.Also, it self-discharges in the alkaline electrolyte and generates hydrogen gas, resulting in a short cycle life.
このサイグル寿命を改善するために特開昭51−123
65号公報では亜鉛極への添加剤としてインジウムやタ
リウムなどの金属もしくはこれら金属の酸化物が提案さ
れている。また特開昭53−85349号公報では負極
活物質としてインジウムなどの金属と合金化した亜鉛合
金を用いることが提案されている。この様にインジウム
など水紫過電圧が高く亜鉛の酸化還元電位より貴である
ものを亜鉛極に添加することにより亜鉛の樹枝状結晶の
生長を抑制し極板変形を抑えることができサイクル寿命
の向上をはかることができ例。しかしながらインジウム
などの金属もしくは金属酸化物を添加剤として亜鉛極に
含有させた場合、添加剤が比較的電解液に溶出し易いた
め充放電によって溶解及び析出を繰り返し次第に添加剤
が偏在化するようになり添加剤の存在しない部分から極
板変形が起こる。また、亜鉛合金を活物質とした場合に
は亜鉛と合金化したインジウムなどの金属の偏在化は抑
制されるものの1合金化により亜鉛の活性度が前記金属
や金属酸化物を添加した場合より低下した。In order to improve this cycle life, Japanese Patent Application Laid-Open No. 51-123
No. 65 proposes metals such as indium and thallium or oxides of these metals as additives to zinc electrodes. Furthermore, Japanese Patent Application Laid-Open No. 53-85349 proposes the use of a zinc alloy alloyed with a metal such as indium as a negative electrode active material. In this way, by adding indium, which has a high water-purple overvoltage and is nobler than the oxidation-reduction potential of zinc, to the zinc electrode, the growth of zinc dendrites can be suppressed, suppressing the deformation of the electrode plate and improving the cycle life. You can measure the example. However, when metals such as indium or metal oxides are contained in zinc electrodes as additives, the additives are relatively easily eluted into the electrolyte, so as they are repeatedly dissolved and precipitated by charging and discharging, the additives become unevenly distributed. Therefore, deformation of the electrode plate occurs from the part where no additive is present. In addition, when a zinc alloy is used as an active material, the uneven distribution of metals such as indium alloyed with zinc is suppressed, but by forming a single alloy, the activity of zinc is lower than when the above metals or metal oxides are added. did.
(ハ)発明が解決しようとする問題点
本発明は亜鉛の樹枝状結晶の生長を効果的に抑制し、よ
り長期にわたるサイクル寿命を得ようとするものである
。(c) Problems to be Solved by the Invention The present invention aims to effectively suppress the growth of zinc dendrites and obtain a longer cycle life.
に)問題点を解決するための手段
本発明のアルカリ亜鉛蓄電池はインジウム及びガリウム
を含む亜鉛合金と、酸化亜鉛と、インジウムの酸化物ま
たは水酸化物と、ガリウムの酸化物または水酸化物とを
含有する活物質混合物を備えた亜鉛極を負極に用いたも
のであり、前記亜鉛合金中のインジウム及びガリウムを
夫々合金の0゜5乃至5重量%とし、前記インジウムの
酸化物または水酸化物及びガリウムの酸化物または水酸
化物の総量を前記活物質混合物の1乃至10重tSとし
、更に前記活物質混合物中の亜鉛合金を前記酸化亜鉛の
5乃至100重量俤とすると、より一層の効果を奏する
ものである。B) Means for Solving the Problems The alkaline zinc storage battery of the present invention contains a zinc alloy containing indium and gallium, zinc oxide, an oxide or hydroxide of indium, and an oxide or hydroxide of gallium. A zinc electrode with an active material mixture containing the active material mixture is used as the negative electrode, and the indium and gallium in the zinc alloy are each 0.5 to 5% by weight of the alloy, and the indium oxide or hydroxide and When the total amount of gallium oxide or hydroxide is 1 to 10 weight tS of the active material mixture, and the zinc alloy in the active material mixture is 5 to 100 weight tS of the zinc oxide, further effects can be obtained. It is something to play.
(ホ)作 用
亜鉛極に添加するインジウム及びガリウムを含む亜鉛合
金は、インジウム及びガリウムの酸化物または水酸化物
に比べて合金中のインジウム及びガリウムの亜鉛極内に
於ける偏在化が起こり難く長期にわたってその効果を持
続することができる。(e) Effect Zinc alloys containing indium and gallium added to zinc electrodes are less likely to cause uneven distribution of indium and gallium in the zinc electrodes than indium and gallium oxides or hydroxides. The effect can be maintained for a long period of time.
また、前記合金中のインジウム及びガリウムの量は多過
ぎると合金を形成している亜鉛の活性度が低下して充放
電効率が低下し、少な過ぎると合金中のインジウム及び
ガリウムの効果がほとんどあられれなくなるため1合金
の夫々0.5乃至5重量%であることが必要である。In addition, if the amount of indium and gallium in the alloy is too large, the activity of zinc forming the alloy will be reduced and the charge/discharge efficiency will be reduced, and if the amount is too small, the effect of indium and gallium in the alloy will be negligible. Therefore, it is necessary that the amount of each of these elements be 0.5 to 5% by weight of each alloy.
前記亜鉛合金に加えてインジウム及びガリウムの酸化物
または水酸化物を亜鉛極に添加すると、亜鉛合金のみ添
加した場合及びインジウム及びガリウムの酸化物または
水酸化物のみ添加した場合に比べてサイクル寿命が延び
る。この理由は明らかではないが、これら亜鉛合金とイ
ンジウム及びガリウムの酸化物または水酸化物の相乗効
果が表われたためと考えられる・。このとき亜鉛極に添
加するインジウム及びガリウムの酸化物オたは水酸化物
の総量は、多過ぎると亜鉛極中の有効な活物質量が減少
し添加剤の濃度が増加して活物質が不活性化し易くなり
電池容量の低下をきたすため。When indium and gallium oxides or hydroxides are added to the zinc electrode in addition to the zinc alloy, the cycle life is increased compared to when only the zinc alloy is added and when only the indium and gallium oxides or hydroxides are added. Extends. The reason for this is not clear, but it is thought to be due to the synergistic effect of these zinc alloys and the oxides or hydroxides of indium and gallium. At this time, if the total amount of indium and gallium oxides or hydroxides added to the zinc electrode is too large, the effective amount of active material in the zinc electrode will decrease, the concentration of the additive will increase, and the active material will become inactive. This is because it becomes easier to activate and causes a decrease in battery capacity.
活物質混合物の1乃至100重量%あることが望寸しく
、前記活物質混合物中の亜鉛合金は多過ぎると導電性及
び有効な活物質量は向上するが酸化亜鉛量が減少して電
極の含液性が低下して電池性能に悪影響を与えるため、
酸化亜鉛の5乃至100重量部が望ましい。Preferably, the amount of zinc alloy in the active material mixture is between 1 and 100% by weight; too much zinc alloy in the active material mixture improves the conductivity and the effective amount of active material, but decreases the amount of zinc oxide and reduces the content of the electrode. Because the liquid property decreases and has a negative impact on battery performance,
5 to 100 parts by weight of zinc oxide is preferred.
(へ)実施例
亜鉛粉末94重量%と、インジウム粉末3軍量チと、ガ
リウム粉末3重t%とからなる混合粉末をルツボ中で溶
融させて、インジウム及びガリウムを含む亜鉛合金を得
、該合金を粉砕して100乃至300メツシユパスの粉
末を得る。溶融温度は一般に400〜600℃が好まし
く、前記亜鉛合金作製時には溶融温度を500℃とした
。こう・して作製したインジウム及びガリウムを夫々3
重fii%含有する亜鉛合金粉末20重徴チ、酸化亜鉛
粉末73重量係、添加剤としての酸化インジウム粉末1
重量%、酸化ガリウム粉末1重量%及び結着剤としての
フッ素樹脂粉末からなる混合粉末に水を加えて混練しロ
ーラによってシート状にした後このシート状の活物質混
合物を銅などからなる多孔質集電体の両面に付着し加圧
成型し、その後乾燥を行なって亜鉛極を作製する。次い
で該亜鉛極を焼結式ニッケル極と組み合わせ第1図に示
すようなニッケルー亜鉛蓄電池(6)を作製した。第1
図に於いて(1)は負極としての亜鉛極、(2)は正極
としてのニッケルi、(3)はセパンータ、(4)は保
液層。(f) Example A mixed powder consisting of 94% by weight of zinc powder, 3% by weight of indium powder, and 3% by weight of gallium powder was melted in a crucible to obtain a zinc alloy containing indium and gallium. The alloy is ground to obtain a powder of 100 to 300 mesh passes. The melting temperature is generally preferably 400 to 600°C, and the melting temperature was 500°C when producing the zinc alloy. Indium and gallium prepared in this way were each
Zinc alloy powder containing 20% by weight, 73% by weight of zinc oxide powder, 1% by weight of indium oxide powder as an additive.
Water is added to a mixed powder consisting of 1% by weight of gallium oxide powder and fluororesin powder as a binder, and the mixture is kneaded and made into a sheet by rollers. This sheet-like active material mixture is then made into a porous material made of copper or the like. It is attached to both sides of a current collector, pressure-molded, and then dried to produce a zinc electrode. Next, the zinc electrode was combined with a sintered nickel electrode to produce a nickel-zinc storage battery (6) as shown in FIG. 1st
In the figure, (1) is a zinc electrode as a negative electrode, (2) is a nickel i as a positive electrode, (3) is a sepanator, and (4) is a liquid retaining layer.
(5)は電槽、(6)は電槽蓋、(7)は正極端子、(
8)は負橋端子である。(5) is the battery case, (6) is the battery case lid, (7) is the positive terminal, (
8) is a negative bridge terminal.
また、比較として前記インジウム及びガリウムを含む手
鎖合金を金属亜鉛に代えその他の条件は前記電池(8)
と同一でニッケルー亜鉛蓄電池(B)を。For comparison, the hand-chain alloy containing indium and gallium was replaced with metal zinc, and the other conditions were as in the battery (8).
Same as nickel-zinc storage battery (B).
更に前記添加剤としての酸化インジウム及び酸化ガリウ
ムを加えず、その分酸化亜鉛の′!iを増加させ、その
他の条件は前記電池(4)と同一でニッケルー亜鉛蓄電
池(C)を作製した。Furthermore, without adding indium oxide and gallium oxide as the additives, zinc oxide'! A nickel-zinc storage battery (C) was prepared by increasing i and using the same conditions as battery (4) above.
第2図は本発明による電池(4)と比較電池中)及び(
0)のサイクル特性図であり、150maで6時間充電
した@150mAで放電し電池電圧が1.Ovに達する
時点で放電停止するサイクル条件で充放電を繰り返し行
なって測定したものである。′@2図から明らかな様に
本発明電池(4)は比較電池(B)及び(C)に比ベナ
イグル特性が向上していることがわかる。Figure 2 shows the battery (4) according to the present invention and the comparative battery () and (
0), the battery voltage is 1.0 after charging at 150 mA for 6 hours and discharging at 150 mA. The measurements were taken by repeatedly charging and discharging under cycle conditions in which the discharge was stopped when Ov was reached. '@2 As is clear from Fig. 2, it can be seen that the battery of the present invention (4) has improved Benaigle characteristics compared to the comparative batteries (B) and (C).
次いで亜鉛極の構成物の比率及び亜鉛合金中のインジウ
ム及びガリウムの割合の最適値を求める試験を行なった
。この結果t−以下にボし説明する。Next, tests were conducted to determine the optimal values for the ratio of the components of the zinc electrode and the ratio of indium and gallium in the zinc alloy. This result t- will be omitted and explained below.
〔試験 1〕
亜鉛、インジウム及びガリウムを合金化した亜鉛合金粉
末をインジウム及びガリウムのtを合金の重置に対して
種々変化させて作製し、こうして作製された亜鉛合金粉
末20重量%と酸化亜鉛粉末75重量%及び結着剤とし
てのフッ素樹脂粉末5重it%と全混合し、こうして得
られた混合粉末を用い前述と同様の操作で亜鉛極を作製
すると共にこの亜鉛極を用いてニッケルー亜鉛蓄電池を
作製した。′L%3図はそのサイグル寿命を示す図面で
ある。図中インジウム及びガリウムの添那量とは亜鉛合
金に対する合金中のインジウム及びガリウムの総量を重
量比率で表わしたものであり、インジウム及びガリウム
は合金中に同轍添加されている。またサイクル寿命とは
前述したサイクル条件で充放電を繰り返し行ない、電池
容置が初期容量の50チを切った時点のサイクル数をサ
イクル寿命として示している。第3図に示した結果から
亜鉛台蛍甲のインジウム及びガリウムの総量は亜鉛合金
の1乃至10重ff15J、換言すると亜鉛合金中のイ
ンジウム及びガリウムの量は夫々亜鉛合金の0.5乃至
5重量%で良好なサイクル寿命が得られることがわかる
。[Test 1] Zinc alloy powder, which is an alloy of zinc, indium, and gallium, was prepared by varying the t of indium and gallium with respect to the superposition of the alloy, and 20% by weight of the thus prepared zinc alloy powder and zinc oxide were mixed. Completely mix 75% by weight of powder and 5% by weight of fluororesin powder as a binder, use the mixed powder thus obtained to produce a zinc electrode in the same manner as described above, and use this zinc electrode to form a nickel-zinc electrode. A storage battery was created. Figure 'L%3 is a diagram showing the cycle life. In the figure, the amounts of indium and gallium added are expressed as the total amount of indium and gallium in the alloy relative to the zinc alloy, and indium and gallium are added to the alloy at the same rate. Moreover, the cycle life is the number of cycles when the battery container becomes less than 50 cm of its initial capacity after repeated charging and discharging under the above-mentioned cycle conditions. From the results shown in Figure 3, the total amount of indium and gallium in the zinc alloy is 1 to 10 weights ff15J of the zinc alloy, in other words, the amounts of indium and gallium in the zinc alloy are 0.5 to 5 weights of the zinc alloy, respectively. %, it can be seen that a good cycle life can be obtained.
〔試験2〕
インジウム及びガリウムを夫々合金の3重i1%含有す
る亜鉛金曾30重瀘チ、酸化亜鉛X重通幅。[Test 2] Zinc gold 30 layers containing indium and gallium at 1% of the alloy, respectively, and zinc oxide X layer width.
添加剤としての酸化インジクムY重徽チ、酸化ガリクム
Z重潅チ及び結着剤としてのフッ素樹脂5im%よりな
る混合粉末を表1の(7)乃至(ト)に示すようにX、
Y、Zの値を種々変化させて作製し。A mixed powder consisting of indicum oxide Y as an additive, gallicum oxide Z as an additive, and 5 im% of a fluororesin as a binder was mixed with X as shown in (7) to (g) in Table 1.
Produced by varying the Y and Z values.
こうして得られた混合粉末を用い前述と同様の操作で亜
鉛極を作製すると共にこの亜鉛極を用いてニッケルー亜
鉛蓄電池を作製した。第4図はそのり・イクル寿命を示
す図面でちり、サイクル寿命は試験1と同一方法で測定
した。第4図から添加剤としての酸化インジウム及び酸
化ガリウムの総量が活物質混含物の1乃至10亀量チで
良好なサイクル寿命が得られることがわかる。A zinc electrode was produced using the mixed powder thus obtained in the same manner as described above, and a nickel-zinc storage battery was also produced using this zinc electrode. FIG. 4 is a drawing showing the dust and cycle life of the product, and the cycle life was measured using the same method as Test 1. It can be seen from FIG. 4 that a good cycle life can be obtained when the total amount of indium oxide and gallium oxide as additives is 1 to 10 grams of the active material mixture.
表1
〔試験 3〕
試験1及び2に於いて亜鉛極に用いる亜鉛蕾伯中のイン
ジウム及びガリウムの駐及び添加剤としての酸化インジ
ウムとcl化ガリウムの総体がわかったので更に亜鉛極
に用いる亜鉛合金の適量を媚べだ。Table 1 [Test 3] In Tests 1 and 2, the concentration of indium and gallium in the zinc oxide used in zinc electrodes and the total amount of indium oxide and gallium chloride as additives were known, so we further determined the amount of zinc used in zinc electrodes. Use the right amount of alloy.
インジウム及びガリウムを夫々3重情弔含有する亜鉛合
蛍V東恒チ、酸化亜鉛W項@チ、添加剤としての酸化イ
ンジウム2.5重駄チ、酸化ガリウム2.5獣垣チ及び
結着剤どしてのフッ票樹脂粉末5重獄チより′P−る混
合粉末を表2のけ)乃至に)に示すようにV及びWの値
を種々変化させて作製し。Zinc mixture containing triple concentrations of indium and gallium, zinc oxide W term @ 2, 2.5 indium oxide as additive, 2.5 gallium oxide, and binding. As shown in Table 2, mixed powders were prepared from the resin powder 5-gokuchi as an agent by varying the values of V and W as shown in Table 2).
こうして得られた混合粉末を用い前述と同様の操作で亜
鉛極上作製すると共にこの亜鉛極を用いてニッケルー亜
鉛蓄電池を作製した。第5図はそのサイグル寿命を示す
図面であり、サイクル寿命は試騎1と同一方法により測
定した。喝5図から亜鉛舎くにの筺が1支化亜鉛の隘の
5乃至100市世チで良好なサイクル寿命が得られるこ
とがわかる。Using the thus obtained mixed powder, a zinc electrode was prepared in the same manner as described above, and a nickel-zinc storage battery was also prepared using this zinc electrode. FIG. 5 is a drawing showing the cycle life, and the cycle life was measured by the same method as Test Riding 1. From Figure 5, it can be seen that the zinc casing can have a good cycle life for 5 to 100 cycles of one zinc oxide.
表 2
尚、上記実施例では添加剤として酸fヒインジワム及び
酸化ガリウムを用いたが、これに代えて水【2化インク
クム支び水酸化ガリウムを用いても同様な効果が得られ
る。Table 2 Incidentally, in the above example, acid fine diam and gallium oxide were used as additives, but the same effect can be obtained by using water hydroxide and gallium hydroxide instead.
(ト) 発明の効果
不発明のアルカリ亜鉛蓄電池はインジウム及びガリウム
を含む亜鉛合金と、酸化亜鉛と、インジウムの酸化物ま
たは水酸化物と、ガリウムの酸化物または水酸化物とを
含有する活物質混合物を備えた亜鉛極を負極に用いたも
のであるから、インジウム及びガリウムを含む亜鉛合金
とインジウムの酸化物または水酸化物及びガリウムの酸
化物または水酸化物の相乗効果によシ効果的に亜鉛の樹
枝状成長や亜鉛極の形状変化が養秦釣瞬抑見られ。(G) Effects of the Invention The uninvented alkaline zinc storage battery uses an active material containing a zinc alloy containing indium and gallium, zinc oxide, an oxide or hydroxide of indium, and an oxide or hydroxide of gallium. Since the zinc electrode with the mixture is used as the negative electrode, it is effective due to the synergistic effect of the zinc alloy containing indium and gallium, the oxide or hydroxide of indium, and the oxide or hydroxide of gallium. Dendritic growth of zinc and changes in the shape of zinc poles were observed to be suppressed by Yohata fishing.
より長期にわたるサイクル寿命を得ることができる。Longer cycle life can be obtained.
【図面の簡単な説明】
弔1図は本発明の一実施例に於けるアルカリ亜鉛蓄電池
の断面図、@2図は本発明電池(4)と比較電池−)及
び側のサイクル特性図、第3図は亜鉛極に含有させた亜
鉛合金中のインジウム及びガリウムの量と電池のサイク
ル寿命の関係を示した図面。
第4図は活物質混合物に対する酸化インジウム及び酸化
ガリウムの総量の割合とサイクル寿命の関係を示す図面
、第5図は酸化亜鉛に対する亜鉛合金の割合とサイクル
寿命との関係を示す図面である。
(1)・・・亜鉛%、 (21・・・ニッケル極、 (
3)・・・セバレ−3)(4)・・・保液層、(5)用
電槽、(6)・・・電槽蓋、(7)・・・正掻端子、(
8)・・・負極端子。[Brief Description of the Drawings] Figure 1 is a sectional view of an alkaline zinc storage battery according to an embodiment of the present invention, Figure 2 is a cycle characteristic diagram of the battery of the present invention (4) and a comparative battery (-), Figure 3 is a diagram showing the relationship between the amount of indium and gallium in the zinc alloy contained in the zinc electrode and the cycle life of the battery. FIG. 4 is a diagram showing the relationship between the ratio of the total amount of indium oxide and gallium oxide to the active material mixture and cycle life, and FIG. 5 is a diagram showing the relationship between the ratio of zinc alloy to zinc oxide and cycle life. (1)...Zinc%, (21...Nickel electrode, (
3)...Sebaret-3)(4)...liquid retaining layer, (5) battery case, (6)...container lid, (7)...positive scratch terminal, (
8)...Negative terminal.
Claims (4)
亜鉛と、インジウムの酸化物または水酸化物と、ガリウ
ムの酸化物または水酸化物とを含有する活物質混合物を
備えた亜鉛極を負極に用いたアルカリ亜鉛蓄電池。(1) A zinc electrode comprising an active material mixture containing a zinc alloy containing indium and gallium, zinc oxide, an oxide or hydroxide of indium, and an oxide or hydroxide of gallium is used as a negative electrode. Alkaline zinc storage battery.
合金の0.5乃至5重量%である特許請求の範囲第(1
)項記載のアルカリ亜鉛蓄電池。(2) Claim No. 1, wherein indium and gallium in the zinc alloy each account for 0.5 to 5% by weight of the alloy.
) Alkaline zinc storage battery described in item 2.
ウムの酸化物または水酸化物の総量が前記活物質混合物
の1乃至10重量%である特許請求の範囲第(1)項記
載のアルカリ亜鉛蓄電池。(3) The alkaline zinc storage battery according to claim (1), wherein the total amount of the indium oxide or hydroxide and the gallium oxide or hydroxide is 1 to 10% by weight of the active material mixture. .
5乃至100重量%である特許請求の範囲第(1)項記
載のアルカリ亜鉛蓄電池。(4) The alkaline zinc storage battery according to claim (1), wherein the zinc alloy in the active material mixture is 5 to 100% by weight of the zinc oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59240003A JPS61118967A (en) | 1984-11-14 | 1984-11-14 | Alkali-zinc storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59240003A JPS61118967A (en) | 1984-11-14 | 1984-11-14 | Alkali-zinc storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61118967A true JPS61118967A (en) | 1986-06-06 |
JPH0584027B2 JPH0584027B2 (en) | 1993-11-30 |
Family
ID=17053014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59240003A Granted JPS61118967A (en) | 1984-11-14 | 1984-11-14 | Alkali-zinc storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61118967A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2742927A1 (en) * | 1995-12-21 | 1997-06-27 | Leclanche Sa | Mercury-free miniature alkaline cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4889342A (en) * | 1972-02-29 | 1973-11-22 | ||
JPS5385349A (en) * | 1977-01-07 | 1978-07-27 | Matsushita Electric Ind Co Ltd | Nickel zinc storage battery |
JPS53111441A (en) * | 1977-12-19 | 1978-09-29 | Tokyo Shibaura Electric Co | Alkaline battery |
JPS59186258A (en) * | 1983-03-31 | 1984-10-23 | グリロ−ヴエルケ・ア−ゲ− | Method of producing zinc powder for alkali battery |
-
1984
- 1984-11-14 JP JP59240003A patent/JPS61118967A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4889342A (en) * | 1972-02-29 | 1973-11-22 | ||
JPS5385349A (en) * | 1977-01-07 | 1978-07-27 | Matsushita Electric Ind Co Ltd | Nickel zinc storage battery |
JPS53111441A (en) * | 1977-12-19 | 1978-09-29 | Tokyo Shibaura Electric Co | Alkaline battery |
JPS59186258A (en) * | 1983-03-31 | 1984-10-23 | グリロ−ヴエルケ・ア−ゲ− | Method of producing zinc powder for alkali battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2742927A1 (en) * | 1995-12-21 | 1997-06-27 | Leclanche Sa | Mercury-free miniature alkaline cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0584027B2 (en) | 1993-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5122375A (en) | Zinc electrode for alkaline batteries | |
JPS61118967A (en) | Alkali-zinc storage battery | |
JPS6196666A (en) | Alkaline zinc storage battery | |
JPS5966060A (en) | Zinc electrode for alkaline zinc storage battery | |
JP2871065B2 (en) | Metal oxide-hydrogen storage battery | |
JP2562669B2 (en) | Alkaline storage battery | |
JP2931316B2 (en) | Manufacturing method of alkaline zinc storage battery | |
JPS6084768A (en) | Alkaline zinc storage battery | |
JP2538303B2 (en) | Zinc electrode for alkaline storage battery | |
JPH01134862A (en) | Alkaline zinc storage battery | |
JPH073793B2 (en) | Alkaline zinc storage battery | |
JPS63158749A (en) | Zinc electrode for alkaline storage battery | |
JPS5942775A (en) | Zinc electrode | |
JPH0568073B2 (en) | ||
JPS58163160A (en) | Alkaline zinc storage battery | |
JPH01117279A (en) | Lead-acid battery | |
JPS62108467A (en) | Alkaline zinc storage battery | |
JPS58137964A (en) | Alkaline zinc storage battery | |
JPS61104564A (en) | Alkaline zinc storage battery | |
JPH03122235A (en) | Zinc electrode for alkaline storage battery | |
JPH079804B2 (en) | Zinc pole | |
JPH06124706A (en) | Sealed nickel-zinc storage battery | |
JPS59189563A (en) | Alkaline zinc storage battery | |
JPH0584024B2 (en) | ||
JPH01200556A (en) | Zinc pole for alkaline storage battery |