JPS61116626A - Flame sensor - Google Patents

Flame sensor

Info

Publication number
JPS61116626A
JPS61116626A JP59236666A JP23666684A JPS61116626A JP S61116626 A JPS61116626 A JP S61116626A JP 59236666 A JP59236666 A JP 59236666A JP 23666684 A JP23666684 A JP 23666684A JP S61116626 A JPS61116626 A JP S61116626A
Authority
JP
Japan
Prior art keywords
thermocouple
thick film
ceramic substrate
metal silicide
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59236666A
Other languages
Japanese (ja)
Other versions
JPH0519646B2 (en
Inventor
Shunji Ichida
市田 俊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP59236666A priority Critical patent/JPS61116626A/en
Publication of JPS61116626A publication Critical patent/JPS61116626A/en
Publication of JPH0519646B2 publication Critical patent/JPH0519646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity as well as response, by building up a thermocouple with a thick film of a metal silicide with a large thermoelectromotive capacity while joints thereof are separated from the ceramic substrate with a spacer. CONSTITUTION:A thick film pattern 2 of a p-type metal silicide and a thick film pattern 3 of an n-type metal silicide comprising the thick film pattern 2 and a thermocouple are provided on a ceramic substrate and electrodes 4 are provided at the final ends of both the patterns 2 and 3 respectively to be connected to a lead. Then, a spacer made of polyvinyl alcohol 7 is provided between joints 6 on the one hand of the thick film patterns 2 and 3 and the ceramic substrate 1 so as to lift the joints 6. This provides a less heat capacity of the thermocouple with an increase in the thermoelectromotive force while enabling a thermal separation to obtain a highly accurate flame sensor with a quicker response.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は火炎センナに係り、特に、熱起電症の大きな金
属けい化物の熱電素子金、基板と熱的に分離した厚膜で
形成した火炎センナに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flame sensor, and particularly to a thermoelectric element made of metal silicide, which is highly thermoelectrogenic, and is made of a thick film thermally isolated from the substrate. Regarding flame senna.

〔従来技術とその問題点〕[Prior art and its problems]

燃焼制御装置における燃焼の有無を非接触で検出する火
炎センナとしては、サーモパイルがよく知られている。
A thermopile is well known as a flame sensor that non-contact detects the presence or absence of combustion in a combustion control device.

このサーモパイルは、セラミック基板上に多数の熱電対
t−厘副列接続隣接して配置し、火炎の光の入射により
各熱電対に発生する熱起電力を直列で取り出すことで、
火炎の有無音検出するものである。この従来技術の欠点
は、サーモパイルの熱電対の熱起電力が小さいために、
感温部である熱電対の接合部の数を増やさねばならない
ことから、熱電対のパターンが複雑となり製品コストが
高くなるという問題点があった。更にこの従来技術では
、サーモパイルをセラミック基板上に形成するため、基
板と熱的に分離されておらず、従って感度と応答性が落
ちるという問題点があった。
This thermopile is constructed by arranging a large number of thermocouples adjacent to each other on a ceramic substrate, and extracting the thermoelectromotive force generated in each thermocouple by the incidence of flame light in series.
It detects the presence or absence of flame. The disadvantage of this conventional technology is that the thermoelectromotive force of the thermopile thermocouple is small;
Since the number of junctions of the thermocouple, which is the temperature-sensing part, has to be increased, the pattern of the thermocouple becomes complicated and the product cost increases. Furthermore, in this conventional technique, since the thermopile is formed on the ceramic substrate, it is not thermally isolated from the substrate, and therefore there is a problem in that sensitivity and responsiveness are reduced.

〔発明の概要〕[Summary of the invention]

本発明はかかる問題点に鑑みてなされたものであって、
熱起電能の大きな金属けい化物の熱電対のパターンを厚
膜の製造プロセスで形成するとともに、これらの熱電対
を基板から浮かせて熱的分離を図ることで熱電対の熱容
量を小さくなるように構成し、単純な熱電対パターンで
高い感度と速い応答性を有するサーモバイルの火炎セン
サラ提供することを目的とする。
The present invention has been made in view of such problems, and includes:
Thermocouple patterns made of metal silicide with high thermoelectromotive potential are formed using a thick film manufacturing process, and these thermocouples are floated from the substrate to achieve thermal isolation, thereby reducing the heat capacity of the thermocouples. The purpose of this invention is to provide a thermomobile flame sensor with high sensitivity and fast response using a simple thermocouple pattern.

以下に、まず発明の詳細な説明し、その後に本発明の実
施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, the invention will first be described in detail, and then embodiments of the invention will be described.

〔発明の背景〕[Background of the invention]

金属けい化物の熱電対が大きな熱起電能を示すことから
、従来からも、この熱電対を火炎中に配置することで火
炎センナとなすことが用いられている。例えば、金属け
い化物であるFe5itで庵等により不純物制御された
P型と、 Co等によシネ鈍物制御されたn型とからな
る熱電対は、600℃の温度差で約800〜asomv
と極めて大きな熱起電力を発生する。この金属けい化物
の熱電対は、ホットプレスあるいはコールドプレスと焼
結処理の組合わせ等で製造されている。もち論、これら
の従来技術では、熱電対自身の形状が極めて大きくなり
、従って熱容量が大きくなることから、非接触の火炎セ
ンサには適用できない。
Since thermocouples made of metal silicides exhibit large thermoelectricity, it has been conventionally used to form a flame sensor by placing these thermocouples in a flame. For example, a thermocouple consisting of a P-type whose impurities are controlled by a metal silicide such as Fe5it, and an N-type whose impurities are controlled by a cine dulling material such as Co, has a temperature difference of about 800 to asomv with a temperature difference of 600°C.
This generates an extremely large thermoelectromotive force. This metal silicide thermocouple is manufactured by a combination of hot pressing or cold pressing and sintering. Of course, these conventional techniques cannot be applied to non-contact flame sensors because the shape of the thermocouple itself is extremely large and therefore has a large heat capacity.

一方、本発明における発明者が共同発明者である特公昭
54−41816号に開示されているように、金属けい
化物を厚膜の製造プロセスで、平面パターンの厚膜に形
成することが可能である。
On the other hand, as disclosed in Japanese Patent Publication No. 54-41816 of which the inventor of the present invention is a co-inventor, it is possible to form a metal silicide into a thick film with a planar pattern using a thick film manufacturing process. be.

本発明は、ここで開示された金属けい化物の厚膜の製造
プロセスを使い、金属けい化物の厚膜によるサーモノ(
イルを提案するものである。
The present invention utilizes the metal silicide thick film manufacturing process disclosed herein to produce thermoplastics (
This is a proposal for an illumination.

〔発明の実施例〕[Embodiments of the invention]

第1−1図に、本発明に係る火炎センナの一実施例を示
す。図において、1はセラミック基板であり、2は該セ
ラミック基板1上に形成されるP型の金属けい化物の厚
膜パターン、3は該厚膜ノくターン2と熱電対を構成す
るn型の金属けい化物の厚膜パターンである。4は電極
であり、各々の上記した厚膜パターン2,3の終端に設
けられ、熱起電力1−*り出すためのリード線が接続さ
れる。
FIG. 1-1 shows an embodiment of a flame sensor according to the present invention. In the figure, 1 is a ceramic substrate, 2 is a P-type metal silicide thick film pattern formed on the ceramic substrate 1, and 3 is an N-type metal silicide film pattern forming a thermocouple with the thick film notch 2. It is a thick film pattern of metal silicide. Reference numeral 4 denotes an electrode, which is provided at the end of each of the thick film patterns 2 and 3 described above, and is connected to a lead wire for extracting the thermoelectromotive force 1-*.

上記した厚膜パターン2,6の形成は、特公昭54−4
1316号公報で開示したように、不純物制御によりP
型化及びn型化された金属けい化物の粉末を粘結剤水溶
液に混合分散させ、この水溶液全通常の厚膜製造プロセ
スと同様に型紙等を使ってハケで塗布することで実現で
きる。ここで、この金属けい化物の熱電対の片方の接合
部群6は、Ml−2図に示すように、セラミック基板1
との間にポリビニルアルコール7をはさんでセラミック
基板1と密着しないように形成される。厚膜パターンを
このように塗布した後、乾燥し焼結して熱電対を形成す
るものであるが、ポリビニルアルコール7は焼結時にカ
ーボン化し蒸発するので、熱電対の接合部群6idセラ
ミック基板1から浮き上がって構成されることになる。
The above-mentioned thick film patterns 2 and 6 were formed in
As disclosed in Publication No. 1316, P by controlling impurities
This can be achieved by mixing and dispersing the molded and n-type metal silicide powder in an aqueous binder solution, and applying this aqueous solution with a brush using a paper pattern, etc., in the same manner as in the usual thick film manufacturing process. Here, one joint group 6 of this metal silicide thermocouple is connected to the ceramic substrate 1 as shown in Fig. Ml-2.
The polyvinyl alcohol 7 is sandwiched between the ceramic substrate 1 and the ceramic substrate 1 so as not to be in close contact with the ceramic substrate 1. After the thick film pattern is applied in this way, it is dried and sintered to form a thermocouple, but since the polyvinyl alcohol 7 turns into carbon and evaporates during sintering, the thermocouple joint group 6id ceramic substrate 1 It will be constructed by rising from the surface.

従って、熱的に分離された熱容量の小さな金槁けい化物
の熱電対が得られる。ここで、仮のスペーサとなる上記
したポリビニルアルコール7は、特公昭54−4181
6号公報に開示される粘結剤であってもよい。
Therefore, a thermally isolated gold silicide thermocouple with a small heat capacity is obtained. Here, the above-mentioned polyvinyl alcohol 7, which will serve as a temporary spacer, is
The binder disclosed in Japanese Patent No. 6 may also be used.

このように構成される金属けい化物の熱電対の接合部群
6に、図示しないレンズを介して火炎光が照射されると
、接合部群6の温度が上昇し火炎の有無を検出すること
ができることになる。前述したように、この厚膜の接合
部群6は、セラミック基板1と熱的に分離されているこ
とと、金属けい化物の熱電対の熱起電力が極めて大きい
ことから、この火炎の有無の検出は確実なものとなシ、
極めて応答性の速いものとなる。
When the joint group 6 of the metal silicide thermocouple constructed in this manner is irradiated with flame light through a lens (not shown), the temperature of the joint group 6 rises, making it possible to detect the presence or absence of flame. It will be possible. As mentioned above, the thick film joint group 6 is thermally isolated from the ceramic substrate 1 and the thermoelectromotive force of the metal silicide thermocouple is extremely large, so it is difficult to determine whether this flame is present or not. Detection must be reliable.
The response is extremely fast.

第2.−1図に、本発明の他の実施例金示す。この実施
例では、第2−2図に示すように、セラミック基板1に
長孔8t−設け、厚膜パターンの塗布時には、この長孔
8にポリビニルアルコール7t−詰めておくことで接合
部群6t−空気中に浮かせる構成としている。なお、こ
の長孔8は貫通しているものに限られることなく、凹部
状態であってもよい。
Second. Figure 1 shows another embodiment of the present invention. In this embodiment, as shown in FIG. 2-2, a long hole 8t is provided in the ceramic substrate 1, and when a thick film pattern is applied, the long hole 8 is filled with 7t of polyvinyl alcohol to form a joint group 6t. -It is designed to float in the air. Note that the elongated hole 8 is not limited to a penetrating hole, and may be a recessed hole.

、第8−1図に、パッケージ化した本発明の他の実施例
を示す。この実施例では、接合部群6は、円形のセラミ
ック基板1の中心に集中されるように配置され、かつ第
8−2図に示すように、中心孔9により第2−1図の実
施例と同様な方法で空気中に浮かせられている。ここで
、火炎の光は、ガラス10全介して接合部群6に照射さ
れるが、ガラス10を固定する金属カッ<−11がセラ
ミック基板1の周辺に配置されるもう一方の熱電対の接
合部群に光が照射されないようにすることで、熱起電力
を発生させる構成としている。
, FIG. 8-1 shows another embodiment of the present invention packaged. In this embodiment, the joint group 6 is arranged so as to be concentrated at the center of the circular ceramic substrate 1, and as shown in FIG. suspended in the air in a similar manner. Here, the flame light is irradiated to the joint group 6 through the entire glass 10, but the metal cup <-11 that fixes the glass 10 is connected to the joint of the other thermocouple arranged around the ceramic substrate 1. The structure is such that thermoelectromotive force is generated by preventing light from being irradiated onto the parts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、熱起電能の大きな
金属けい化物の熱電対のノくターン金厚膜の製造プロセ
スで形成するとともに、これらの熱電対全空気中に浮か
せた状態で熱的分離を図る構成としたので、金属けい化
物を採用したことから熱起電力の大きなものが得られ、
また厚膜構成とじたので熱電対の熱容量を小さくするこ
とができ、さらに熱電対を基板上から浮かせるようにし
たので、熱的分離が可能となり応答性が速くなって失火
に対して直ちに安全サイドに動作でき、精度の高い火炎
センサを得られる効果がある。
As explained above, according to the present invention, metal silicide thermocouples with high thermoelectromotive potential are formed by a thick gold film manufacturing process, and these thermocouples are heated while floating in the air. Since the structure is designed to achieve thermal separation, a large thermoelectromotive force can be obtained due to the use of metal silicides.
In addition, the thick film structure allows the heat capacity of the thermocouple to be reduced, and since the thermocouple is floated above the board, thermal isolation is possible, resulting in faster response and immediate safety against misfires. This has the effect of providing a highly accurate flame sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図は本発明の一実施例による火炎センサの構造
図、第1−2図は本発明の金属けい化物の熱電対の片方
の接合部群の断面図、第2−1図は本発明の他の実施例
である火炎センサの構造図、第2−2図は第2−1図の
断面図、第3−1図は本発明をパッケージ化した場合の
一実施例金示す構造図、第8−2図は第8−1図の断面
図である。 1・・・セラミック基板、2・・・P臘金属けい化物、
6・・・n型金属けい化物、4・・・電極、6・・・接
合部群、7・・・ポリビニルアルコール。 特許出願人   山武ハネウェル株式会社1(セ、ラミ
ッ2蚤尤序2 第2−1図 8(長上Q 第2−2図 I Q己うミ、y7苺不久〕
Fig. 1-1 is a structural diagram of a flame sensor according to an embodiment of the present invention, Fig. 1-2 is a sectional view of one joint group of a metal silicide thermocouple of the present invention, and Fig. 2-1 is a structural diagram of a flame sensor according to an embodiment of the present invention. A structural diagram of a flame sensor that is another embodiment of the present invention, Fig. 2-2 is a cross-sectional view of Fig. 2-1, and Fig. 3-1 is a structure shown in Fig. 3 of one embodiment of the present invention packaged. 8-2 is a sectional view of FIG. 8-1. DESCRIPTION OF SYMBOLS 1...Ceramic substrate, 2...P-metal silicide,
6...n-type metal silicide, 4...electrode, 6...junction group, 7...polyvinyl alcohol. Patent applicant: Yamatake Honeywell Co., Ltd. 1 (Se, Ramit 2, Flea order 2, Figure 2-1, Figure 8 (Nagami Q, Figure 2-2, I, Q Mi, y7, Ichigo Fuku)

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック基板上に互いに隣接して配設された複
数のP型金属けい化物とn型金属けい化物から構成され
る熱電対を直列接続し、火炎光の入射により上記各熱電
対に発生する熱起電力を直列に取り出すことにより上記
火炎の有無を検出するようにした火炎センサにおいて、
上記熱電対を構成する上記金属けい化物を上記セラミッ
ク基板上に厚膜の平面パターンで形成するとともに、上
記火炎光を検出する側の上記熱電対の接合部群と上記セ
ラミック基板とをスペーサにより分離したことを特徴と
する火炎センサ。
(1) Thermocouples composed of a plurality of P-type metal silicides and N-type metal silicides arranged adjacent to each other on a ceramic substrate are connected in series, and when flame light is incident, generation occurs in each of the thermocouples. In the flame sensor which detects the presence or absence of the flame by taking out the thermoelectromotive force in series,
The metal silicide constituting the thermocouple is formed in a thick planar pattern on the ceramic substrate, and the group of joints of the thermocouple on the side that detects the flame light is separated from the ceramic substrate by a spacer. A flame sensor characterized by:
(2)上記スペーサがポリビニルアルコールであること
を特徴とする特許請求の範囲第(1)項記載の火炎セン
サ。
(2) The flame sensor according to claim (1), wherein the spacer is made of polyvinyl alcohol.
JP59236666A 1984-11-12 1984-11-12 Flame sensor Granted JPS61116626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236666A JPS61116626A (en) 1984-11-12 1984-11-12 Flame sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236666A JPS61116626A (en) 1984-11-12 1984-11-12 Flame sensor

Publications (2)

Publication Number Publication Date
JPS61116626A true JPS61116626A (en) 1986-06-04
JPH0519646B2 JPH0519646B2 (en) 1993-03-17

Family

ID=17003987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236666A Granted JPS61116626A (en) 1984-11-12 1984-11-12 Flame sensor

Country Status (1)

Country Link
JP (1) JPS61116626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646791A2 (en) * 1993-09-30 1995-04-05 Nittan Company, Limited Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646791A2 (en) * 1993-09-30 1995-04-05 Nittan Company, Limited Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein
EP0646791A3 (en) * 1993-09-30 1996-12-18 Nittan Co Ltd Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein.
US5830412A (en) * 1993-09-30 1998-11-03 Nittan Company Limited Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein

Also Published As

Publication number Publication date
JPH0519646B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
CN101575083B (en) Micromachined thermopile infrared detector
JP3937191B2 (en) Semiconductor chemical sensor element and method for forming thermocouple for semiconductor chemical sensor element
JPS6129648B2 (en)
CN104412082A (en) IR thermopile detector
KR900700862A (en) Silicon base mass airflow sensor and assembly method
JPS6323500B2 (en)
US20070227575A1 (en) Thermopile element and infrared sensor by using the same
US6720559B2 (en) Infrared sensor
WO1997049998B1 (en) Accelerometer without proof mass
JP3580126B2 (en) Infrared sensor
JPS61116626A (en) Flame sensor
JPS637611B2 (en)
JPH0249124A (en) Thermopile
JPS60133329A (en) Non-contact temperature detection control apparatus
JPH02260581A (en) Thick film thermoelectric device
CN107356342A (en) A kind of pyroelectricity non-brake method of dual-layer stereo structure is from frequency-selecting infrared detector
JPH08297052A (en) Bolometer type infrared sensor and image sensor
JPS61259580A (en) Thermopile
JPS5616876A (en) Effective value detecting element
JPH0750679Y2 (en) Thermopile type infrared sensor
JP2594474B2 (en) UV sensor
JP3435997B2 (en) Infrared detector
JPS568537A (en) Flammable gas detecting element
JPH02206733A (en) Infrared ray sensor
JP2561671Y2 (en) Thermopile for infrared detection