JPS61116626A - Flame sensor - Google Patents
Flame sensorInfo
- Publication number
- JPS61116626A JPS61116626A JP59236666A JP23666684A JPS61116626A JP S61116626 A JPS61116626 A JP S61116626A JP 59236666 A JP59236666 A JP 59236666A JP 23666684 A JP23666684 A JP 23666684A JP S61116626 A JPS61116626 A JP S61116626A
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- thick film
- ceramic substrate
- metal silicide
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 23
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000919 ceramic Substances 0.000 claims abstract description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 7
- 125000006850 spacer group Chemical group 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000006693 Cassia laevigata Nutrition 0.000 description 1
- -1 Fe5it Chemical compound 0.000 description 1
- 241000735631 Senna pendula Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229940124513 senna glycoside Drugs 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
- H10N10/817—Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は火炎センナに係り、特に、熱起電症の大きな金
属けい化物の熱電素子金、基板と熱的に分離した厚膜で
形成した火炎センナに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flame sensor, and particularly to a thermoelectric element made of metal silicide, which is highly thermoelectrogenic, and is made of a thick film thermally isolated from the substrate. Regarding flame senna.
燃焼制御装置における燃焼の有無を非接触で検出する火
炎センナとしては、サーモパイルがよく知られている。A thermopile is well known as a flame sensor that non-contact detects the presence or absence of combustion in a combustion control device.
このサーモパイルは、セラミック基板上に多数の熱電対
t−厘副列接続隣接して配置し、火炎の光の入射により
各熱電対に発生する熱起電力を直列で取り出すことで、
火炎の有無音検出するものである。この従来技術の欠点
は、サーモパイルの熱電対の熱起電力が小さいために、
感温部である熱電対の接合部の数を増やさねばならない
ことから、熱電対のパターンが複雑となり製品コストが
高くなるという問題点があった。更にこの従来技術では
、サーモパイルをセラミック基板上に形成するため、基
板と熱的に分離されておらず、従って感度と応答性が落
ちるという問題点があった。This thermopile is constructed by arranging a large number of thermocouples adjacent to each other on a ceramic substrate, and extracting the thermoelectromotive force generated in each thermocouple by the incidence of flame light in series.
It detects the presence or absence of flame. The disadvantage of this conventional technology is that the thermoelectromotive force of the thermopile thermocouple is small;
Since the number of junctions of the thermocouple, which is the temperature-sensing part, has to be increased, the pattern of the thermocouple becomes complicated and the product cost increases. Furthermore, in this conventional technique, since the thermopile is formed on the ceramic substrate, it is not thermally isolated from the substrate, and therefore there is a problem in that sensitivity and responsiveness are reduced.
本発明はかかる問題点に鑑みてなされたものであって、
熱起電能の大きな金属けい化物の熱電対のパターンを厚
膜の製造プロセスで形成するとともに、これらの熱電対
を基板から浮かせて熱的分離を図ることで熱電対の熱容
量を小さくなるように構成し、単純な熱電対パターンで
高い感度と速い応答性を有するサーモバイルの火炎セン
サラ提供することを目的とする。The present invention has been made in view of such problems, and includes:
Thermocouple patterns made of metal silicide with high thermoelectromotive potential are formed using a thick film manufacturing process, and these thermocouples are floated from the substrate to achieve thermal isolation, thereby reducing the heat capacity of the thermocouples. The purpose of this invention is to provide a thermomobile flame sensor with high sensitivity and fast response using a simple thermocouple pattern.
以下に、まず発明の詳細な説明し、その後に本発明の実
施例について説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, the invention will first be described in detail, and then embodiments of the invention will be described.
金属けい化物の熱電対が大きな熱起電能を示すことから
、従来からも、この熱電対を火炎中に配置することで火
炎センナとなすことが用いられている。例えば、金属け
い化物であるFe5itで庵等により不純物制御された
P型と、 Co等によシネ鈍物制御されたn型とからな
る熱電対は、600℃の温度差で約800〜asomv
と極めて大きな熱起電力を発生する。この金属けい化物
の熱電対は、ホットプレスあるいはコールドプレスと焼
結処理の組合わせ等で製造されている。もち論、これら
の従来技術では、熱電対自身の形状が極めて大きくなり
、従って熱容量が大きくなることから、非接触の火炎セ
ンサには適用できない。Since thermocouples made of metal silicides exhibit large thermoelectricity, it has been conventionally used to form a flame sensor by placing these thermocouples in a flame. For example, a thermocouple consisting of a P-type whose impurities are controlled by a metal silicide such as Fe5it, and an N-type whose impurities are controlled by a cine dulling material such as Co, has a temperature difference of about 800 to asomv with a temperature difference of 600°C.
This generates an extremely large thermoelectromotive force. This metal silicide thermocouple is manufactured by a combination of hot pressing or cold pressing and sintering. Of course, these conventional techniques cannot be applied to non-contact flame sensors because the shape of the thermocouple itself is extremely large and therefore has a large heat capacity.
一方、本発明における発明者が共同発明者である特公昭
54−41816号に開示されているように、金属けい
化物を厚膜の製造プロセスで、平面パターンの厚膜に形
成することが可能である。On the other hand, as disclosed in Japanese Patent Publication No. 54-41816 of which the inventor of the present invention is a co-inventor, it is possible to form a metal silicide into a thick film with a planar pattern using a thick film manufacturing process. be.
本発明は、ここで開示された金属けい化物の厚膜の製造
プロセスを使い、金属けい化物の厚膜によるサーモノ(
イルを提案するものである。The present invention utilizes the metal silicide thick film manufacturing process disclosed herein to produce thermoplastics (
This is a proposal for an illumination.
第1−1図に、本発明に係る火炎センナの一実施例を示
す。図において、1はセラミック基板であり、2は該セ
ラミック基板1上に形成されるP型の金属けい化物の厚
膜パターン、3は該厚膜ノくターン2と熱電対を構成す
るn型の金属けい化物の厚膜パターンである。4は電極
であり、各々の上記した厚膜パターン2,3の終端に設
けられ、熱起電力1−*り出すためのリード線が接続さ
れる。FIG. 1-1 shows an embodiment of a flame sensor according to the present invention. In the figure, 1 is a ceramic substrate, 2 is a P-type metal silicide thick film pattern formed on the ceramic substrate 1, and 3 is an N-type metal silicide film pattern forming a thermocouple with the thick film notch 2. It is a thick film pattern of metal silicide. Reference numeral 4 denotes an electrode, which is provided at the end of each of the thick film patterns 2 and 3 described above, and is connected to a lead wire for extracting the thermoelectromotive force 1-*.
上記した厚膜パターン2,6の形成は、特公昭54−4
1316号公報で開示したように、不純物制御によりP
型化及びn型化された金属けい化物の粉末を粘結剤水溶
液に混合分散させ、この水溶液全通常の厚膜製造プロセ
スと同様に型紙等を使ってハケで塗布することで実現で
きる。ここで、この金属けい化物の熱電対の片方の接合
部群6は、Ml−2図に示すように、セラミック基板1
との間にポリビニルアルコール7をはさんでセラミック
基板1と密着しないように形成される。厚膜パターンを
このように塗布した後、乾燥し焼結して熱電対を形成す
るものであるが、ポリビニルアルコール7は焼結時にカ
ーボン化し蒸発するので、熱電対の接合部群6idセラ
ミック基板1から浮き上がって構成されることになる。The above-mentioned thick film patterns 2 and 6 were formed in
As disclosed in Publication No. 1316, P by controlling impurities
This can be achieved by mixing and dispersing the molded and n-type metal silicide powder in an aqueous binder solution, and applying this aqueous solution with a brush using a paper pattern, etc., in the same manner as in the usual thick film manufacturing process. Here, one joint group 6 of this metal silicide thermocouple is connected to the ceramic substrate 1 as shown in Fig. Ml-2.
The polyvinyl alcohol 7 is sandwiched between the ceramic substrate 1 and the ceramic substrate 1 so as not to be in close contact with the ceramic substrate 1. After the thick film pattern is applied in this way, it is dried and sintered to form a thermocouple, but since the polyvinyl alcohol 7 turns into carbon and evaporates during sintering, the thermocouple joint group 6id ceramic substrate 1 It will be constructed by rising from the surface.
従って、熱的に分離された熱容量の小さな金槁けい化物
の熱電対が得られる。ここで、仮のスペーサとなる上記
したポリビニルアルコール7は、特公昭54−4181
6号公報に開示される粘結剤であってもよい。Therefore, a thermally isolated gold silicide thermocouple with a small heat capacity is obtained. Here, the above-mentioned polyvinyl alcohol 7, which will serve as a temporary spacer, is
The binder disclosed in Japanese Patent No. 6 may also be used.
このように構成される金属けい化物の熱電対の接合部群
6に、図示しないレンズを介して火炎光が照射されると
、接合部群6の温度が上昇し火炎の有無を検出すること
ができることになる。前述したように、この厚膜の接合
部群6は、セラミック基板1と熱的に分離されているこ
とと、金属けい化物の熱電対の熱起電力が極めて大きい
ことから、この火炎の有無の検出は確実なものとなシ、
極めて応答性の速いものとなる。When the joint group 6 of the metal silicide thermocouple constructed in this manner is irradiated with flame light through a lens (not shown), the temperature of the joint group 6 rises, making it possible to detect the presence or absence of flame. It will be possible. As mentioned above, the thick film joint group 6 is thermally isolated from the ceramic substrate 1 and the thermoelectromotive force of the metal silicide thermocouple is extremely large, so it is difficult to determine whether this flame is present or not. Detection must be reliable.
The response is extremely fast.
第2.−1図に、本発明の他の実施例金示す。この実施
例では、第2−2図に示すように、セラミック基板1に
長孔8t−設け、厚膜パターンの塗布時には、この長孔
8にポリビニルアルコール7t−詰めておくことで接合
部群6t−空気中に浮かせる構成としている。なお、こ
の長孔8は貫通しているものに限られることなく、凹部
状態であってもよい。Second. Figure 1 shows another embodiment of the present invention. In this embodiment, as shown in FIG. 2-2, a long hole 8t is provided in the ceramic substrate 1, and when a thick film pattern is applied, the long hole 8 is filled with 7t of polyvinyl alcohol to form a joint group 6t. -It is designed to float in the air. Note that the elongated hole 8 is not limited to a penetrating hole, and may be a recessed hole.
、第8−1図に、パッケージ化した本発明の他の実施例
を示す。この実施例では、接合部群6は、円形のセラミ
ック基板1の中心に集中されるように配置され、かつ第
8−2図に示すように、中心孔9により第2−1図の実
施例と同様な方法で空気中に浮かせられている。ここで
、火炎の光は、ガラス10全介して接合部群6に照射さ
れるが、ガラス10を固定する金属カッ<−11がセラ
ミック基板1の周辺に配置されるもう一方の熱電対の接
合部群に光が照射されないようにすることで、熱起電力
を発生させる構成としている。, FIG. 8-1 shows another embodiment of the present invention packaged. In this embodiment, the joint group 6 is arranged so as to be concentrated at the center of the circular ceramic substrate 1, and as shown in FIG. suspended in the air in a similar manner. Here, the flame light is irradiated to the joint group 6 through the entire glass 10, but the metal cup <-11 that fixes the glass 10 is connected to the joint of the other thermocouple arranged around the ceramic substrate 1. The structure is such that thermoelectromotive force is generated by preventing light from being irradiated onto the parts.
以上説明したように本発明によれば、熱起電能の大きな
金属けい化物の熱電対のノくターン金厚膜の製造プロセ
スで形成するとともに、これらの熱電対全空気中に浮か
せた状態で熱的分離を図る構成としたので、金属けい化
物を採用したことから熱起電力の大きなものが得られ、
また厚膜構成とじたので熱電対の熱容量を小さくするこ
とができ、さらに熱電対を基板上から浮かせるようにし
たので、熱的分離が可能となり応答性が速くなって失火
に対して直ちに安全サイドに動作でき、精度の高い火炎
センサを得られる効果がある。As explained above, according to the present invention, metal silicide thermocouples with high thermoelectromotive potential are formed by a thick gold film manufacturing process, and these thermocouples are heated while floating in the air. Since the structure is designed to achieve thermal separation, a large thermoelectromotive force can be obtained due to the use of metal silicides.
In addition, the thick film structure allows the heat capacity of the thermocouple to be reduced, and since the thermocouple is floated above the board, thermal isolation is possible, resulting in faster response and immediate safety against misfires. This has the effect of providing a highly accurate flame sensor.
第1−1図は本発明の一実施例による火炎センサの構造
図、第1−2図は本発明の金属けい化物の熱電対の片方
の接合部群の断面図、第2−1図は本発明の他の実施例
である火炎センサの構造図、第2−2図は第2−1図の
断面図、第3−1図は本発明をパッケージ化した場合の
一実施例金示す構造図、第8−2図は第8−1図の断面
図である。
1・・・セラミック基板、2・・・P臘金属けい化物、
6・・・n型金属けい化物、4・・・電極、6・・・接
合部群、7・・・ポリビニルアルコール。
特許出願人 山武ハネウェル株式会社1(セ、ラミ
ッ2蚤尤序2
第2−1図
8(長上Q
第2−2図
I Q己うミ、y7苺不久〕Fig. 1-1 is a structural diagram of a flame sensor according to an embodiment of the present invention, Fig. 1-2 is a sectional view of one joint group of a metal silicide thermocouple of the present invention, and Fig. 2-1 is a structural diagram of a flame sensor according to an embodiment of the present invention. A structural diagram of a flame sensor that is another embodiment of the present invention, Fig. 2-2 is a cross-sectional view of Fig. 2-1, and Fig. 3-1 is a structure shown in Fig. 3 of one embodiment of the present invention packaged. 8-2 is a sectional view of FIG. 8-1. DESCRIPTION OF SYMBOLS 1...Ceramic substrate, 2...P-metal silicide,
6...n-type metal silicide, 4...electrode, 6...junction group, 7...polyvinyl alcohol. Patent applicant: Yamatake Honeywell Co., Ltd. 1 (Se, Ramit 2, Flea order 2, Figure 2-1, Figure 8 (Nagami Q, Figure 2-2, I, Q Mi, y7, Ichigo Fuku)
Claims (2)
数のP型金属けい化物とn型金属けい化物から構成され
る熱電対を直列接続し、火炎光の入射により上記各熱電
対に発生する熱起電力を直列に取り出すことにより上記
火炎の有無を検出するようにした火炎センサにおいて、
上記熱電対を構成する上記金属けい化物を上記セラミッ
ク基板上に厚膜の平面パターンで形成するとともに、上
記火炎光を検出する側の上記熱電対の接合部群と上記セ
ラミック基板とをスペーサにより分離したことを特徴と
する火炎センサ。(1) Thermocouples composed of a plurality of P-type metal silicides and N-type metal silicides arranged adjacent to each other on a ceramic substrate are connected in series, and when flame light is incident, generation occurs in each of the thermocouples. In the flame sensor which detects the presence or absence of the flame by taking out the thermoelectromotive force in series,
The metal silicide constituting the thermocouple is formed in a thick planar pattern on the ceramic substrate, and the group of joints of the thermocouple on the side that detects the flame light is separated from the ceramic substrate by a spacer. A flame sensor characterized by:
を特徴とする特許請求の範囲第(1)項記載の火炎セン
サ。(2) The flame sensor according to claim (1), wherein the spacer is made of polyvinyl alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236666A JPS61116626A (en) | 1984-11-12 | 1984-11-12 | Flame sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236666A JPS61116626A (en) | 1984-11-12 | 1984-11-12 | Flame sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61116626A true JPS61116626A (en) | 1986-06-04 |
JPH0519646B2 JPH0519646B2 (en) | 1993-03-17 |
Family
ID=17003987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59236666A Granted JPS61116626A (en) | 1984-11-12 | 1984-11-12 | Flame sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0646791A2 (en) * | 1993-09-30 | 1995-04-05 | Nittan Company, Limited | Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein |
-
1984
- 1984-11-12 JP JP59236666A patent/JPS61116626A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0646791A2 (en) * | 1993-09-30 | 1995-04-05 | Nittan Company, Limited | Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein |
EP0646791A3 (en) * | 1993-09-30 | 1996-12-18 | Nittan Co Ltd | Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein. |
US5830412A (en) * | 1993-09-30 | 1998-11-03 | Nittan Company Limited | Sensor device, and disaster prevention system and electronic equipment each having sensor device incorporated therein |
Also Published As
Publication number | Publication date |
---|---|
JPH0519646B2 (en) | 1993-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101575083B (en) | Micromachined thermopile infrared detector | |
JP3937191B2 (en) | Semiconductor chemical sensor element and method for forming thermocouple for semiconductor chemical sensor element | |
JPS6129648B2 (en) | ||
CN104412082A (en) | IR thermopile detector | |
KR900700862A (en) | Silicon base mass airflow sensor and assembly method | |
JPS6323500B2 (en) | ||
US20070227575A1 (en) | Thermopile element and infrared sensor by using the same | |
US6720559B2 (en) | Infrared sensor | |
WO1997049998B1 (en) | Accelerometer without proof mass | |
JP3580126B2 (en) | Infrared sensor | |
JPS61116626A (en) | Flame sensor | |
JPS637611B2 (en) | ||
JPH0249124A (en) | Thermopile | |
JPS60133329A (en) | Non-contact temperature detection control apparatus | |
JPH02260581A (en) | Thick film thermoelectric device | |
CN107356342A (en) | A kind of pyroelectricity non-brake method of dual-layer stereo structure is from frequency-selecting infrared detector | |
JPH08297052A (en) | Bolometer type infrared sensor and image sensor | |
JPS61259580A (en) | Thermopile | |
JPS5616876A (en) | Effective value detecting element | |
JPH0750679Y2 (en) | Thermopile type infrared sensor | |
JP2594474B2 (en) | UV sensor | |
JP3435997B2 (en) | Infrared detector | |
JPS568537A (en) | Flammable gas detecting element | |
JPH02206733A (en) | Infrared ray sensor | |
JP2561671Y2 (en) | Thermopile for infrared detection |