JPS6111635A - 液体センサ - Google Patents

液体センサ

Info

Publication number
JPS6111635A
JPS6111635A JP59132379A JP13237984A JPS6111635A JP S6111635 A JPS6111635 A JP S6111635A JP 59132379 A JP59132379 A JP 59132379A JP 13237984 A JP13237984 A JP 13237984A JP S6111635 A JPS6111635 A JP S6111635A
Authority
JP
Japan
Prior art keywords
light
face
prism
liquid
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132379A
Other languages
English (en)
Inventor
Motoo Shimizu
清水 基夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59132379A priority Critical patent/JPS6111635A/ja
Publication of JPS6111635A publication Critical patent/JPS6111635A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [技術分野] 本発明は、光学プリズムの反射面に接する液体物質の、
屈折率の差異により全反射角が変化することを利用して
、液体の有無、種類および濃度等を検知・識別する光学
式液体°センサに関する。
[従来技術] 光の全反射を利用して液体の検知または識別を行なうセ
ンサの構成の一例として、実願t3i58−12086
8号がある。この考案の構成を第5図によって説明する
と、光ファイバlから出射した信号光が、レンズ3によ
りは(平行な光束に変換されプリズム5に入射する。プ
リズムが空気中にある場合、信号光は検知反射面aで全
反射するような入射角θを有しており、全反射した信号
光はレンズ4で集光され光ファイバ2に結合される。
つぎに、検知反射面aの外側に屈折率nの液体が接して
いる場合、入射角θを適当な範囲に選べば、入射光は全
反射状態から部分反射状態に変化する。従って、受光側
の光ファイバ2の検知端で、光出力レベルを監視すれば
、検知反射面aの外側に液体が接している場合には、受
光レベルが低下するので液体の有無を検知することがで
きる。
以上の考察を計算により示したものが第2図で、これは
入射角θに対するプリズムの検知反射面での反射損失の
計算値を図表化したものである。図において実線はプリ
ズムの屈折率TLo=1.51光の入射角θ= 82”
の場合で、プリズムの検知反射面aに接する液体が水(
屈折率が1.333)の場合には光はは(全反射し、水
より屈折率の大きい油類(屈折率が1.4〜1.5)の
場合にはセンサの反射損失が大きく増加することを示し
ている。この構成を利用すれば、水には影響されず少量
の油液を検出することが可能であり、換言すれば2種の
液体の識別が可能であることがわかる。このようなセン
サを屈折率の近接した液体の識別、たとえば、水とエチ
ルエーテル(u = 1.354)やエチルアルコール
(n = 1.382)などの識別に用いようとすると
、センサの製造上のバラツキ、液体の屈折率の温度によ
る変化、光源のレベル変動等の各種要因により識別の信
頼性が低下するという問題が生じる。これを回避する方
法として第2図の破線で例示するように、異る入射角θ
(第2図では64゜と66@)をもつセンサを、2個、
3個と並列に使用し、その出力を比較すれば、識別の精
度を向上することができる。しかし、このように構成し
た場合には、光源・光学プリズム・光検出器等を含めた
センサ全体が大形化し、また高価になることは明らかで
あり、その上洛センサが異なる光源・光伝送系を用いる
ために、これら各要素の特性の温度変化や経時変化等の
差異による誤差が発生することが避けられないという欠
点が生じる。
[発明の目的] 本発明の目的は光源と、この光源より発した光束を平行
化する手段と、光学プリズム、と、信号光検出器とから
なる光・挙式液体センサにおいて全く新しい構造の液体
検知用プリズムを用いることにより近接した入射角の複
数の光束を容易に実現して、これら入射角の組合せと、
検出信号チャンネル数とを適切に設定することと、光源
と光束を平行化する手段との間、および光学プリズムと
信号光検出器との間のいずれかもしくは双方を光ファイ
バを用いて結合することにより、屈折率の極めて近接し
た多種類の液体の識別や、成分濃度の異゛なる液体の識
別を可能とするとともに外来雑音等の少ない、低価格で
より高度な光学式液体センサを提供することにある。
[発明の構成] つぎに本発明の構成について述べる第3図は本発明の原
理となる液体検出用のプリズムの断面構造を示す。
このプリズムの特徴は、液体検知用の反射面a(以下a
面と記す。)と、これに対し、わずかな角度φだけ傾い
た第2の反射面b(以下す面と記す。)とを有すること
である。この構造では、第3図に示すように、まずa面
に対し、入射角θlで入射した光は、a面とb面で反射
し、再びa面に対し入射角θ2で入射する。こkで、b
面がa面に対し角φだけ傾いていることを考慮すればθ
=θ□−2φとなる。同様に、θ3−θ2−2φ=θ、
−4φとなるので、これを第2図に当てはめると、θ1
−66″′、φ=゛1°と設定した場合、O=64’ 
、 e =8.2’となる。従って、b面に対し、適当
な処理を施して光束の一部が後方に透過するようにすれ
ば、1個のプリズムで、異なる入射角θ1、θ2、θ3
に対応する光信号S1、S2、S3・・・を得ることが
できる。
[実施例] 以上本発明を実施例により図面を参照して説明する。
第1図において光源11より出射された出射光は、光束
を平行にする手段のレンズ12を経て、プリズム13に
入射する。入射した光束はa面、b面で反射を繰り返え
し、第3図で説明した原理によって、それぞれ入射角の
異なる複数の光束として、その1部がb面より取り出さ
れる。この際、b面の上方に接する補助的プリズム14
を用いて、b面から耽り出される透過光が著しい屈折を
しないような考慮が払われている。これらb面を透過し
た複数の光束は複数の光検出器または複数の検出面をも
つ1組の光検出器15.16.17によってそれぞれ検
出され、増幅器18、!8.20で増幅され、出力信号
■l、■2、■3として、アウトプットされる。ここで
、光検出器の数は、複数の光束に対応する数で2個以上
何個であってもよい。
この場合の液体センサの動作を、第2図の計算に沿って
説明するために、光束のa面に対する最初の入射角θ□
=se″、プリズムのa面とb面のなす角度φ−loと
設定すれば、前記によって02=84’、  θ3=6
2″となる。まず、a面の外側に接する流体を空気とす
れば、a面では、いずれの場合も全反射するので、この
ときvl、vl、v3をそれぞれの初期状態とする。つ
ぎに、a面の外側が、水(u = 1.333)の場合
には、θ1に対応するV□、θ2に対応するV2には変
化なく、θ3に対応する■3のみ2〜3のム低下する。
さらにa面の外側がエチルエーテル(U=1.354)
の場合には、■□は変化せず、vlは極めて微小(約1
de)低下し、■3は約81と大幅に低下する。さらに
液体がエチルアルコール(n−1,362)の場合、V
2は3dll程度、V3は約rid+!近く低下するが
vlは低下しない。さらにベンゼン(n = 1.50
)では、■□、■2、v3とも大幅に低下する。したが
って、このようにして取り出さ。
れた各信号の組合せから、各液体のこれらの入射角にお
ける屈折率の特性をあらかじめ測定しておけば、多種類
の液体の識別を容易に行うことができる。
第4図は、本発明の別の実施例を示したもので、光源1
1と光束を平行にする手段12との間の結合に光ファイ
バ21を、また補助プリズム14から取り出された複数
の光束が、結合用レンズ25.26.27を経て光検出
器15.16.17に入射する間の結合に、光ファイバ
22.23.24が用いられており、これらによって、
センサ部分の小形化、送信側から受信側への妨害信号の
除去、外来電気雑音の軽減等の点で、極めてすぐれた効
果、が期待できる。
以上説明中発明の主旨に関係ないレンズ等の説明は省略
した。
[発明の効果] 本発明により、1組のプリズムで、入射角の近接した複
数の光束を容易に取り出すことができるので、これらの
入射角の組合・せと、検出信号チャンネル数を適当に設
定することにより、それぞれの入射角における各種液体
の屈折率の特性をあらかじめ測定しておけば、屈折率の
極めて近接した多種類の液体の識別や、成分濃度の異な
る液体の識別が可能となる小形で低価格の、しかも外来
雑音の少ない高度な光学式液体センサを提供することが
できる。
【図面の簡単な説明】 第1図は本発明の、1実施例を示す図、第2図は、液体
センサの検知面に対する光束の入射角と反射損失の関係
を示す計算値を図表化した図、第3図は、本発明の原理
となる液体検知用プリズムの断面図、第4図は、本発明
の別の実施例を示す図、第5図は、従来の液体センサの
構造を示す図である。 ■−〜−人射光    2−m−出射光3−−−レンズ
    4−−−レンズ5−一一プリズム   11−
m−光源12−−−レンズ    13−−一光学プリ
ズム14−−−補助プリズム 1.5,16.17−−−光検出器 +8.19.20−m−増幅器 21−シー光ファイバ
22.23.24−シー光ファイバ ’25.28.27一−−結合用レンズa−−−検知面 す−m−反射及び透過面 Sl 、S2、S3−m−信号光 Ol、θ2、θ3−−−人射角 V□、V2.V3−−一出力信号 特許出願人  日本電気株式“会社 第3図

Claims (1)

  1. 【特許請求の範囲】 1)光源と、この光源により発した光束を平行化する手
    段と、光学プリズムと、信号光検出器とからなる光学式
    液体センサにおいて、上記光学プリズムが、液体検知面
    とこれに対してわずかな傾き角を有し、かつ入射光束の
    一部を透過させる第2の反射面を有していることを特徴
    とする光学式液体センサ。 2)光源と、光束を平行化する手段との間、および光学
    プリスムと信号光検出器との間のいずれか、もしくは双
    方が、光ファイバーを用いて結合されていることを特徴
    とする特許請求の範囲第1項記載の液体センサ。
JP59132379A 1984-06-27 1984-06-27 液体センサ Pending JPS6111635A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132379A JPS6111635A (ja) 1984-06-27 1984-06-27 液体センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132379A JPS6111635A (ja) 1984-06-27 1984-06-27 液体センサ

Publications (1)

Publication Number Publication Date
JPS6111635A true JPS6111635A (ja) 1986-01-20

Family

ID=15080003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132379A Pending JPS6111635A (ja) 1984-06-27 1984-06-27 液体センサ

Country Status (1)

Country Link
JP (1) JPS6111635A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234997A (ja) * 1987-03-23 1988-09-30 株式会社 森本製作所 ミシンの糸切断装置
JPS6410650U (ja) * 1987-07-09 1989-01-20
JPH01121835U (ja) * 1988-02-10 1989-08-18
JPH0329693A (ja) * 1989-06-27 1991-02-07 Pegasus Sewing Mach Mfg Co Ltd 多本針ミシンの上飾り糸切断方法及びその装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234997A (ja) * 1987-03-23 1988-09-30 株式会社 森本製作所 ミシンの糸切断装置
JPH0224558B2 (ja) * 1987-03-23 1990-05-29 Morimoto Mfg Co
JPS6410650U (ja) * 1987-07-09 1989-01-20
JPH01121835U (ja) * 1988-02-10 1989-08-18
JPH0329693A (ja) * 1989-06-27 1991-02-07 Pegasus Sewing Mach Mfg Co Ltd 多本針ミシンの上飾り糸切断方法及びその装置

Similar Documents

Publication Publication Date Title
EP0196168B1 (en) Fiber optic doppler anemometer
US6211954B1 (en) Integrated optical luminescence sensor
US5062686A (en) Optical sensors and optical fibre networks for such sensors
US4372165A (en) Apparatus for measuring fluid flow
JPS6111637A (ja) 液体センサ
JPS6111635A (ja) 液体センサ
JPS63132139A (ja) 液体屈折率計
JPS6111636A (ja) 液体識別センサ
US6519392B2 (en) Optical tap collimator using an uncoated GRIN lens
JPS6111633A (ja) 液体センサ
WO2002018919A1 (en) Attenuated total reflectance sensing head
KR200320686Y1 (ko) 유체 검출장치
CN113866132B (zh) 一种多通道spr差分强度调制传感器
CN215448981U (zh) 一种高量程高精度的折光仪
JPH01155228A (ja) 光方向性結合器
JP2011150287A (ja) 1本のpofを用いた光送受信装置および光送受信システム
CN85100867A (zh) 具有反射型光纤传感器的折射率测试系统
JPS62133335A (ja) 漏洩検出装置
US11249018B2 (en) Optical refractometer and real time monitoring analysis device having the same
JPH0635147Y2 (ja) 光検出器
JPH03273138A (ja) 光学式液質測定装置
JPS63273044A (ja) 屈折率検出センサ
JPH02170039A (ja) 屈折率測定センサ
CN115128038A (zh) 基于反射结构的温度不敏感的级联双环检测仪器
JPH08219853A (ja) 液面センサ