JPS61113759A - Target for sputtering - Google Patents

Target for sputtering

Info

Publication number
JPS61113759A
JPS61113759A JP23613784A JP23613784A JPS61113759A JP S61113759 A JPS61113759 A JP S61113759A JP 23613784 A JP23613784 A JP 23613784A JP 23613784 A JP23613784 A JP 23613784A JP S61113759 A JPS61113759 A JP S61113759A
Authority
JP
Japan
Prior art keywords
target
magnetic flux
plate
flux density
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23613784A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nakayama
中山 靖彦
Kunyu Sumita
住田 勲勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23613784A priority Critical patent/JPS61113759A/en
Publication of JPS61113759A publication Critical patent/JPS61113759A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce the effective permeability of a plate having high permeability and high magnetic flux density by subjecting the plate to cold working such as cold rolling, surface machining or rough grinding so as to increase the coercive force or anisotropy. CONSTITUTION:Fe, Co or Ni having high permeability and high magnetic flux density is used as the material of a target for a prescribed magnetron sputtering gun. An alloy consisting of two or more among Fe, Co and Ni or an alloy contg. one or more among them may be used. A plate of the metal or alloy is subjected to cold working such as cold rolling, surface machining or rough grinding to deteriorate the soft magnetism of the plate and to prevent the transfer of the magnetic wall.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録媒体や磁気計測機のシールドなど、
電子機器分野で使用する高透磁率磁性体である薄膜をス
パッタリング法により作成する場合に用いるスパッタリ
ング用ターゲットに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is applicable to magnetic recording media, shields for magnetic measuring instruments, etc.
The present invention relates to a sputtering target used when creating a thin film of a high magnetic permeability magnetic material used in the field of electronic equipment by a sputtering method.

従来の技術 従来、高透磁率、高飽和磁束密度をもつ磁性体、例えば
パーマロイ(NiFe合金)センダスト(Fe Si 
A1合金)純鉄、パーメンジュール(FeC0合金)な
どの薄膜をスパッタリング法で形成する場合、一般のD
C(=RF2極スパッタでは成膜速度が遅く、実用に適
さなかった。この解決法としてマグネトロン型スパッタ
リング法が開発され、従来の成膜速度を約−桁上弁でき
るようになった。
Conventional technology Conventionally, magnetic materials with high magnetic permeability and high saturation magnetic flux density, such as permalloy (NiFe alloy) and sendust (Fe Si
A1 alloy) When forming thin films of pure iron, permendur (FeC0 alloy), etc. by sputtering method, general D
C(=RF bipolar sputtering had a slow film formation rate and was not suitable for practical use. As a solution to this problem, a magnetron sputtering method was developed, and it became possible to increase the film formation rate by about an order of magnitude compared to the conventional method.

発明が解決しようとする間頂点 しかし、マグネトロン型スパッタリング法は図に示すよ
うにターゲット1の下方に磁石2全置き、その磁束3に
集中するプラズマの高密度化によって成膜速度を上げて
いる。このためターゲット1が強磁性体、特に高磁束密
度(B、A) ’に持ち、高透磁率(μ)で板厚が大き
いと磁束3がターゲット1上に飛出すことができなくな
り、スパッタリングを行うことができない。従ってター
ゲット1の高磁束密度BS や高透磁率μ?制限したり
、板厚全極端に薄くして使用しなければならなかった。
However, in the magnetron sputtering method, as shown in the figure, the entire magnet 2 is placed below the target 1, and the film forming rate is increased by increasing the density of the plasma concentrated in the magnetic flux 3. For this reason, if the target 1 is made of a ferromagnetic material, especially a high magnetic flux density (B, A)', has a high magnetic permeability (μ) and a large plate thickness, the magnetic flux 3 will not be able to jump out onto the target 1, which will prevent sputtering. can't do it. Therefore, the high magnetic flux density BS and high magnetic permeability μ of target 1? Therefore, it was necessary to limit the thickness of the plate or reduce the total thickness of the plate to an extremely thin level.

ターゲット1の板厚を薄くしてスパッタ放電を可能とし
でも、これが高透磁率材で形成されている場合には磁石
2の磁束3が一部分に集中し、このプラズマ雲4により
ターゲット1の一部が5で示すように急激に侵食され、
ターゲット1の寿命は侵食5が裏面に達して孔が形成さ
汎だ時点で尽き、結果的にターゲット1の使用率が低く
、また生産効率?悪くする問題を有していた。
Even if sputter discharge is possible by reducing the thickness of the target 1, if it is made of a material with high magnetic permeability, the magnetic flux 3 of the magnet 2 will be concentrated in one part, and this plasma cloud 4 will cause a part of the target 1 to be is rapidly eroded as shown in 5,
The life of target 1 ends when the erosion 5 reaches the back surface and holes are formed, resulting in a low utilization rate of target 1 and low production efficiency. It had problems that made it worse.

そこで、本発明は、高磁束密度、高透磁率材からなるス
パッタリング用ターゲットの実効透磁率を低下させ、こ
れにより侵食深さの進行速度を遅らせ、有効利用率を向
上させ、また生産性の向上を図ることができるようにし
た高透磁率磁性体のスパッタリング用ターゲットを提供
しようとするものである。
Therefore, the present invention reduces the effective magnetic permeability of a sputtering target made of a material with high magnetic flux density and high magnetic permeability, thereby slowing down the progress speed of the erosion depth, improving the effective utilization rate, and improving productivity. It is an object of the present invention to provide a sputtering target of a high permeability magnetic material that can achieve the following.

間咀点を解決するだめの手段 1       上記問題点を解決するための本発明の
技術的な手段は、鉄、コバルト、ニッケル、若しくはこ
れら金属同志の合金、若しくはこれら金属ケ含む合金な
どの透磁率及び磁束密度が大きい板材に冷間圧延1表面
切削、荒研摩などの冷間加工処理を施したものである。
Means for Solving the Interstitial Point 1 The technical means of the present invention for solving the above problems is to improve the magnetic permeability of iron, cobalt, nickel, alloys of these metals, or alloys containing these metals. A sheet material having a high magnetic flux density is subjected to cold processing such as cold rolling, surface cutting, and rough polishing.

作  用 本発明は、上記の構成によりその板材の軟磁性全劣化さ
せ、磁壁移動を妨害するなどの結果、抗磁力増大、異方
性増大などによって実効透磁率を低下させることができ
る。一方、ターゲットは、下部の磁石2の能力に応じて M8・μ・t=一定        ・・・・・・(1
)の関係が成立するように限界厚が決っている。
Effects The present invention can completely degrade the soft magnetism of the plate material with the above-mentioned configuration and obstruct domain wall movement, thereby reducing effective magnetic permeability by increasing coercive force, increasing anisotropy, and the like. On the other hand, the target is M8・μ・t=constant according to the ability of the lower magnet 2 (1
) The critical thickness is determined so that the following relationship holds true.

(但し、MB:飽和磁束密度、μ:比透磁率、t:板厚
)従って磁束密度Ms が同じ材料であ扛ば、透磁率μ
が小さい程、大きい板厚tのものを使用することができ
ることになる。また透磁率μの大小は、磁束の広がりに
応じたプラズマ雲の広がりにも関係し、透磁率μが小さ
くなると、プラズマ8空間的広”!″“増1・16’−
yt″0侵食部″     島形状も広がっていく。そ
の結果、侵食部の深さは透磁率μが低下する程、単位電
力(時間を含む)当り浅くなる。従って前記の如くター
ゲットの実効透磁率全低下させることによりその侵食を
浅くすることができる。
(However, MB: saturation magnetic flux density, μ: relative magnetic permeability, t: plate thickness) Therefore, if the magnetic flux density Ms is the same material, the magnetic permeability μ
The smaller t is, the larger the plate thickness t can be used. The magnitude of the magnetic permeability μ is also related to the spread of the plasma cloud in accordance with the spread of the magnetic flux, and as the magnetic permeability μ becomes smaller, the spatial spread of the plasma increases by 1.16'-
yt ``0 Erosion Area'' The island shape is also expanding. As a result, the depth of the eroded portion becomes shallower per unit power (including time) as the magnetic permeability μ decreases. Therefore, by completely reducing the effective magnetic permeability of the target as described above, the erosion can be made shallower.

実施例 以下、本発明の実施例全図面に基いて詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to all the drawings.

所定のマグネトロンスパッタリングガンに対しターゲッ
ト1の材料として78%Ni −Feパーマロイ全便用
した。この材料を標準フライスで平板切削音節し、ター
ゲット1を製作した。
78% Ni-Fe permalloy was used as the target 1 material for a given magnetron sputtering gun. Target 1 was produced by cutting this material into a flat plate using a standard milling cutter.

この実施例のターゲット1と従来のように上記材料を熱
間圧延で徐冷して得たターゲットと全比較すると、従来
のターゲット1は飽和磁束密度約7600ガウス、透磁
率3000であり、4Wnの板厚が限界であるのに対し
、本実施例のターゲットは透磁率が760に落ち(抗磁
力は10エルステッド以上に増加)、使用板厚限界は6
.5mm以上となった。その結果、両ターゲット1の使
用寿命までの利用率7重量比で見ると、従来のターゲッ
ト1が24%であるのに対し、本実施例のターゲットは
36%と増加した。
Comparing target 1 of this example with a conventional target obtained by hot rolling and slowly cooling the above material, the conventional target 1 has a saturation magnetic flux density of about 7600 Gauss, a magnetic permeability of 3000, and a 4Wn Whereas the plate thickness is the limit, the magnetic permeability of the target in this example drops to 760 (the coercive force increases to more than 10 Oe), and the plate thickness limit for use is 6.
.. It became 5 mm or more. As a result, when looking at the utilization rate 7 weight ratio until the service life of both targets 1, the conventional target 1 was 24%, while the target of this example increased to 36%.

本発明の他の実施例として78%Ni −Fe /: 
−マロイをバーナーにて約600℃に加熱し、水中に投
入して急冷した。そして少し撓みが生じたのでハンマー
で平板に圧延し直した。この実施例と従来のターゲソl
−に同じ4M板厚で形成して使用した結果、本実施例の
ターゲット1は従来のターゲット1に比較して使用効率
が24%から33%に上昇した。
As another example of the present invention, 78%Ni-Fe/:
- Malloy was heated to about 600°C with a burner, and then put into water and rapidly cooled. Then, since it was slightly warped, it was rolled again into a flat plate using a hammer. This embodiment and conventional target
As a result of using the target 1 formed with the same 4M plate thickness as the target 1, the usage efficiency of the target 1 of this example increased from 24% to 33% compared to the conventional target 1.

また上記本発明の各実施例はいずれも使用後のターゲッ
ト1の侵食幅が処理前に比べて広がり、侵食深さが浅く
なっており、有効利用率が上昇していることが分った。
Further, in each of the above-mentioned Examples of the present invention, it was found that the erosion width of the target 1 after use was wider and the erosion depth was shallower than before treatment, and the effective utilization rate was increased.

なお本発明のターゲツト材としては、鉄、コバルト、ニ
ンケル、若しくはこnら金属同志の合金。
The target material of the present invention is iron, cobalt, nickel, or an alloy of these metals.

若しくはこ汎ら金属を少なくとも1種含む合金などの透
磁率及び磁束密度が大きいものが好適である。
Alternatively, materials with high magnetic permeability and magnetic flux density, such as alloys containing at least one kind of metal, are suitable.

またターゲツト材の表面加工としては、表面切削、冷間
圧延、荒研摩等の冷間加工処理が適用できる。
Further, as the surface treatment of the target material, cold working treatments such as surface cutting, cold rolling, and rough polishing can be applied.

発明の効果 以上の説明より明らかなように本発明によれば、高磁束
密度及び高透磁率の板材に冷間加工処理音節し、所謂軟
磁性全劣化させ、磁壁移動を妨害するなどの結果、抗磁
力増大、異方性増大などによって透磁率を劣化させてい
る。これによりマグネトロンターゲットとして使用する
際、磁束の集中部分全分散させることができ、従ってタ
ーゲットの侵食部分を広げて侵食深さ?浅くすることが
でき、ターゲット全体の利用効率を向上させることがで
きる。このようにターゲットの使用時間が長くなると、
真空チャンバー全開ける回数の低減にもなり、磁性体の
生産性向上に寄与することができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, a plate material with high magnetic flux density and high magnetic permeability is subjected to cold processing, resulting in total deterioration of so-called soft magnetism and interference with domain wall movement. Magnetic permeability deteriorates due to increased coercive force, increased anisotropy, etc. As a result, when used as a magnetron target, it is possible to completely disperse the concentrated part of the magnetic flux, thus expanding the eroded part of the target to increase the erosion depth. It can be made shallower, and the efficiency of using the entire target can be improved. As the target usage time increases in this way,
This also reduces the number of times the vacuum chamber is fully opened, contributing to improved productivity of magnetic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図はマグネトロ/スパッタリングガンの平面図1   
   である。 1・・・・・・スパッタリング用ターゲット、2・・・
・・・磁石、3・・・・・・磁束、4・・・・・・プラ
ズマ雲、6・・・・・・侵食部。
The figure is a top view of the magnetro/sputtering gun.
It is. 1... sputtering target, 2...
... Magnet, 3 ... Magnetic flux, 4 ... Plasma cloud, 6 ... Erosion part.

Claims (2)

【特許請求の範囲】[Claims] (1)高透磁率及び高磁束密度の板材に冷間圧延、表面
切削、荒研摩などの冷間加工処理を施したことを特徴と
するスパッタリング用ターゲット。
(1) A sputtering target characterized by having undergone cold processing such as cold rolling, surface cutting, and rough polishing on a plate material with high magnetic permeability and high magnetic flux density.
(2)高透磁率及び高磁束密度の板材が、鉄、コバルト
、ニッケル、若しくはこれらの金属同志の合金、若しく
はこれら金属を含む合金であることを特徴とする特許請
求の範囲第1項記載のスパッタリング用ターゲット。
(2) The plate material having high magnetic permeability and high magnetic flux density is iron, cobalt, nickel, an alloy of these metals, or an alloy containing these metals. Target for sputtering.
JP23613784A 1984-11-09 1984-11-09 Target for sputtering Pending JPS61113759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23613784A JPS61113759A (en) 1984-11-09 1984-11-09 Target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23613784A JPS61113759A (en) 1984-11-09 1984-11-09 Target for sputtering

Publications (1)

Publication Number Publication Date
JPS61113759A true JPS61113759A (en) 1986-05-31

Family

ID=16996304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23613784A Pending JPS61113759A (en) 1984-11-09 1984-11-09 Target for sputtering

Country Status (1)

Country Link
JP (1) JPS61113759A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257473A (en) * 1985-05-08 1986-11-14 Sumitomo Special Metals Co Ltd Target material for sputtering
JPS6314864A (en) * 1986-07-08 1988-01-22 Ulvac Corp Co alloy sputtering target and its production
JPS6363109A (en) * 1986-08-26 1988-03-19 グルンデヒ・エ−・エム・ファウ・エレクトロ−メカニッシエ・フエルズフスアンスタルト・マックス・グルンデヒ・ホ−レンド・シュテイフトウング・ウント・コンパニ−・カ−ゲ− Manufacture of magnetic head
US4941920A (en) * 1987-11-25 1990-07-17 Hitachi Metals, Ltd. Sintered target member and method of producing same
EP1467000A1 (en) * 2002-01-18 2004-10-13 Nikko Materials Company, Limited Target of high-purity nickel or nickel alloy and its producing method
EP1746173A2 (en) * 2005-07-22 2007-01-24 Heraeus, Inc. Enhanced sputter target manufacturing method
CN108203806A (en) * 2016-12-20 2018-06-26 宁波江丰电子材料股份有限公司 Nickel target production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257473A (en) * 1985-05-08 1986-11-14 Sumitomo Special Metals Co Ltd Target material for sputtering
JPS6314864A (en) * 1986-07-08 1988-01-22 Ulvac Corp Co alloy sputtering target and its production
JPH0249384B2 (en) * 1986-07-08 1990-10-30 Ulvac Corp
JPS6363109A (en) * 1986-08-26 1988-03-19 グルンデヒ・エ−・エム・ファウ・エレクトロ−メカニッシエ・フエルズフスアンスタルト・マックス・グルンデヒ・ホ−レンド・シュテイフトウング・ウント・コンパニ−・カ−ゲ− Manufacture of magnetic head
US4941920A (en) * 1987-11-25 1990-07-17 Hitachi Metals, Ltd. Sintered target member and method of producing same
EP1467000A1 (en) * 2002-01-18 2004-10-13 Nikko Materials Company, Limited Target of high-purity nickel or nickel alloy and its producing method
EP1467000A4 (en) * 2002-01-18 2008-05-21 Nippon Mining Co Target of high-purity nickel or nickel alloy and its producing method
EP1746173A2 (en) * 2005-07-22 2007-01-24 Heraeus, Inc. Enhanced sputter target manufacturing method
EP1746173A3 (en) * 2005-07-22 2007-05-09 Heraeus, Inc. Enhanced sputter target manufacturing method
CN108203806A (en) * 2016-12-20 2018-06-26 宁波江丰电子材料股份有限公司 Nickel target production method
CN108203806B (en) * 2016-12-20 2020-04-28 宁波江丰电子材料股份有限公司 Method for manufacturing nickel target material

Similar Documents

Publication Publication Date Title
US6190516B1 (en) High magnetic flux sputter targets with varied magnetic permeability in selected regions
US5366607A (en) Sputtering target and assembly
JPS61113759A (en) Target for sputtering
JPS6134723A (en) Magnetic recording medium and its manufacture
Ikeda et al. Write heads with pole tip consisting of high-Bs FeCoAlO films
JPH05295537A (en) Target material for sputtering cobalt alloy
JPH0227806B2 (en) KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO
JP4698779B2 (en) Magnetic sputtering target and manufacturing method thereof
JPH03115562A (en) Production of sputtering target material
Shieh et al. Microstructure and stability of rf‐diode sputtered GdTbFeCo thin films
JPH031810B2 (en)
JP2624727B2 (en) Method for producing Co-Ni-Cr alloy target material
US3979233A (en) Magnetic Ni-Cr-Mn-Ge-Fe alloy
JPS57201004A (en) Magnetic recording medium
JPS61257473A (en) Target material for sputtering
JPH0397210A (en) Film forming equipment and magnetic film using the same
US4061509A (en) High permeability, long wearing magnetic head alloy
Jahnes et al. Ion beam sputter deposited Permalloy thin films
KR970003334B1 (en) Soft magnetic alloy material
Araghi et al. Effects of plasma and bias power on magnetic properties of sendust films
CA1045423A (en) Nickel base magnetic alloy
JPS63244727A (en) Manufacture of target for sputtering
JPH0445267A (en) Sputtering system
JPS63244728A (en) Target for sputtering
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium