JPH0397210A - Film forming equipment and magnetic film using the same - Google Patents

Film forming equipment and magnetic film using the same

Info

Publication number
JPH0397210A
JPH0397210A JP23280289A JP23280289A JPH0397210A JP H0397210 A JPH0397210 A JP H0397210A JP 23280289 A JP23280289 A JP 23280289A JP 23280289 A JP23280289 A JP 23280289A JP H0397210 A JPH0397210 A JP H0397210A
Authority
JP
Japan
Prior art keywords
film
magnetic
substrate
ion beam
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23280289A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Ryoichi Nakatani
亮一 中谷
Hitoshi Nakamura
斉 中村
Takayuki Kumasaka
登行 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23280289A priority Critical patent/JPH0397210A/en
Publication of JPH0397210A publication Critical patent/JPH0397210A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a film of high purity, high density, and low inner stress, by equipping the same vacuum vessel with an ion beam sputtering mechanism and an ECR plasma irradiating mechanism. CONSTITUTION:The title equipment is equipped with an ion gun 4, and performs the sputtering of a target 7 on a target holder 6, thereby sticking sputtered particle on a substrate on a substrate holder 10. An irradiating mechanism constituted of an ECR plasma generating part 5 and a gas introducing part 9 is installed so as to face the substrate, and performs the cleaning of the substrate, the plasma irradiation at the time of forming a film, etc. Ion beam sputtering method can obtain a film whose purity is high as compared with the case of high frequency sputtering method. A film formed by ECR plasma irradiation has little defect because of kinetic energy, and a film having high filling density can be obtained, so that a magnetic film of high purity, high density, and low inner stress can be produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野】 本発明は膜形成装置に係り、特に内部応力の少ない磁性
膜を作製する膜形成装置に関する。
[Field of Industrial Application] The present invention relates to a film forming apparatus, and more particularly to a film forming apparatus for producing a magnetic film with low internal stress.

【従来の技術】[Conventional technology]

近年、磁気記録技術の発展は著しく、記録密度の向上が
進められている。記録密度を高くするためには高保磁力
の記録媒体を使用する必要があり、また高保磁力の記録
媒体を磁化するためには、高飽和磁束密度を有する磁極
材料が必要となる。このため,記録媒体では磁性粒子を
塗布した塗布媒体からCO系の薄膜媒体に替わりつつあ
る。また、磁気ヘッドでは、従来のフエライトなどのバ
ルク材料に代ってNi−Fe合金(パーマロイ)やCO
系非晶質合金薄膜が磁極材料として使われ始めている。 さらに、光磁気記録媒体も薄膜で形成されている。 例えば、磁気ヘッド材料は高飽和磁束密度であるほかに
、記録再生効率の向上の点から高透磁率を有することが
必要とされる。また、磁気ヘッドを形成する工程におけ
る剥離等を防止し、高透磁率を保持するため、磁性膜中
に存在する内部応力は少ないことが要求される。 このような磁性材料としては特開昭62−210607
6および電子通信情報学会MR88−55(平或元年3
月22日)に示されているように、Fe,Go,Ni,
Mnより選ばれる金属にNb,Zr,Ti,Ta,Hf
,Cr,W,Moと窒素を同時に添加した材料が報告さ
れている。 また、この材料の作成方法は所定の組威を有する金属タ
ーゲットをアルゴンと窒素の混合ガスをスパッタリング
ガスとして用いて高周波スパッタノングする方法である
。この報告によればスパッタリングガス中の窒素濃度を
変調して窒化層と非窒化層を交互に積層することにより
、飽和磁束密度1.5T、保磁力1 0e以下の特性を
持つ膜が得られている。 また,さらに高い飽和磁束密度を有する磁性膜としては
飽和磁束密度2.0T前後のFe,Fe−C,Fe−N
等の材料があり、これらはおもにイオンビームスパッタ
リング法によって形威されている.
In recent years, magnetic recording technology has made remarkable progress, and recording density is being improved. In order to increase the recording density, it is necessary to use a recording medium with a high coercive force, and in order to magnetize a recording medium with a high coercive force, a magnetic pole material having a high saturation magnetic flux density is required. For this reason, in recording media, coated media coated with magnetic particles are being replaced by CO-based thin film media. In addition, in magnetic heads, Ni-Fe alloy (permalloy) and CO are used instead of conventional bulk materials such as ferrite.
Amorphous alloy thin films are beginning to be used as magnetic pole materials. Furthermore, magneto-optical recording media are also formed of thin films. For example, in addition to having a high saturation magnetic flux density, the magnetic head material is required to have high magnetic permeability in order to improve recording and reproducing efficiency. Furthermore, in order to prevent peeling and the like during the process of forming the magnetic head and maintain high magnetic permeability, it is required that the internal stress present in the magnetic film be small. As such a magnetic material, Japanese Patent Application Laid-Open No. 62-210607
6 and Institute of Electronics, Communication and Information Engineers MR88-55 (3
February 22nd), Fe, Go, Ni,
Metals selected from Mn include Nb, Zr, Ti, Ta, and Hf.
, Cr, W, Mo and nitrogen have been reported. The method for producing this material is to subject a metal target having a predetermined strength to high frequency sputtering using a mixed gas of argon and nitrogen as a sputtering gas. According to this report, by modulating the nitrogen concentration in the sputtering gas and alternately stacking nitrided and non-nitrided layers, a film with saturation magnetic flux density of 1.5T and coercive force of 10e or less can be obtained. There is. In addition, magnetic films with even higher saturation magnetic flux density include Fe, Fe-C, and Fe-N with a saturation magnetic flux density of around 2.0T.
There are materials such as, and these materials are mainly formed by ion beam sputtering method.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明者らはFe−Nb系材料をアルゴンと窒素の混合
ガス中でスパッタリングし、上述した報告の追試実験を
おこなった。この結果、保磁力は報告の通り、得られた
膜を400から600℃で熱処理することにより、1 
00以下の低い値を示すことが確認された。しかし、本
発明者らはこの実験の中で、得られた磁性膜の耐食性が
必ずしも十分とは言えず、この原因が磁性膜に混入した
不純物にあることを見出した。 また、不純物が混入する原因は膜形成時の真空度が低く
、残留ガスの存在下で膜が形成されたことと、プラズマ
が膜形成容器内に発生することにより、容器内壁をスパ
ッタしたことによるものと推察された。また、この実験
ではスパッタリング中に間歇的に窒素ガスを導入しなれ
ればならなかったが、一定のスパッタリングガス圧力を
保ちながら間歇的に窒素ガスを導入する作業は煩雑であ
った. 一方、イオンビームスパッタリング法で形成した磁性膜
には大きな圧縮応力が加わっていることがwt察され、
磁気ヘッドを形成するプロセス中に膜がしばしば剥離す
ることがあった。この原因はイオンビームスパッタリン
グ法により膜を形成する際にスパッタリングガスが膜中
にイオン打ち込みされることによって生ずることが予想
された。 また、このスパッタリングガスの混入量が増加した場合
は膜の充填密度が減少するため、磁性膜の飽和磁束密度
が減少することが確認された。 したがって、本発明の目的は、上述の従来技術の欠点を
解消する新規な膜形成装置、特に高純度、高密度、低内
部応力の膜を作製することができる膜形成装置を提供す
ることにある。さらに、この装置を用いて作製した高純
度、高密度、低内部応力の磁性膜を提供することにある
。 [課題を解決するための手段】 本発明者らは上述の問題点を解決するために、鋭意研究
を続けてきたが、イオンビームスパッタリング機構とE
CRプラズマ照射機構を備えた膜形成装置を用いて磁性
膜を作製することにより,高純度、高密度、低内部応力
の磁性膜が作製できることを見出した。 さらに詳しくは、ECRプラズマ照射機構がイオンビー
ムスパッタリング機構により膜を被着形成する基板ホル
ダー部の方向に向けられていることが望ましい。 また、この方法で作製した磁性膜が磁気記録用磁気ヘッ
ド材料、磁気記録用記録媒体、光磁気用記録媒体として
有効なことが明らかになった。 本発明の膜形成装置は膜形成中にECRプラズマ照射機
構によってプラズマを基板に照射しながら膜を形戒する
ことができるほか、膜形成直前に基板をプラズマクリー
ニングすることもできる。 また,スバッタターゲットとして数種類の原料を装填す
ることにより数種類の原料を同時にスパッタリングする
ことができるほか、2種類以上の原料を交互にスパッタ
リングを繰り返して積層膜を形成することもできる。 [作用l 上述のように、イオンビームスパッタリング機構とEC
Rプラズマ照射機構を備えたことを特徴とする膜形成装
置を用いて磁性膜を作製することにより、高純度、高密
度、低内部応力の磁性膜が作製できることを見出した。 本発明者らが検討した結果によれば、イオンビームスパ
ッタリング法によって形威した膜は従来の膜形成法であ
る高周波スパッタリング法に比べて純度の高い膜が得ら
れ、この結果磁性膜の耐食性が向上することが明らかに
なった。従来法では膜形成時の真空度が低く、残留ガス
の存在下で膜が形成されたことと、プラズマが膜形成容
器内に発生することにより容器内壁をスパッタしたこと
により不純物が混入するものと推察された。 これに対し、イオンビームスパッタリングでは真空度が
従来法に比べて約2桁高いことから残留ガスの影響は少
なく、さらに容器内のプラズマ発生もないことから不純
物の混入が少ないことが確認された。ECRプラズマ照
射を行って膜形成を行う場合は容器内にプラズマが照射
されるが,これによる真空度の低下はほとんど認められ
なかった。また、照射されるプラズマは基板の方向を向
いているため、容器内壁をスパッタすることによる不純
物の混入も存在しなかった。 一方、ECRプラズマ照射を行って形成した膜はスパッ
タされた蒸着粒子に熱エネルギーに代わる運動エネルギ
ーを与えるため,形成される膜中に生ずる内部応力を軽
減する効果をもつことが明らかになった。特に、イオン
ビームスパッタリング法で形威した膜には大きな圧縮応
力が加わり易いが、ECRプラズマ照射を行って形成し
た膜の内部応力は小さいことが確認された。 さらに、ECRプラズマ照射を行って形成した膜は運動
エネルギーのために膜中の欠陥が少なく、この結果,充
填密度の高い膜が得られることが明らかになった。従っ
て、磁性膜においては飽和磁束密度の高い膜が得られる
ことが特徴である。 また、ECRプラズマ照射するプラズマガスはイオンビ
ームスパッタリングのガスと異なるものでも良く、従っ
て、酸素、窒素、炭素,硼素等を
The present inventors sputtered Fe--Nb-based material in a mixed gas of argon and nitrogen, and conducted a follow-up experiment to the above-mentioned report. As a result, as reported, the coercive force can be increased to 1 by heat-treating the obtained film at 400 to 600°C.
It was confirmed that the value was as low as 00 or less. However, in this experiment, the present inventors found that the corrosion resistance of the obtained magnetic film was not necessarily sufficient, and that this was caused by impurities mixed into the magnetic film. In addition, the reason for the contamination of impurities is that the degree of vacuum during film formation was low and the film was formed in the presence of residual gas, and that plasma was generated in the film forming container and sputtered the inner wall of the container. It was assumed that. Additionally, in this experiment, it was necessary to introduce nitrogen gas intermittently during sputtering, but it was complicated to introduce nitrogen gas intermittently while maintaining a constant sputtering gas pressure. On the other hand, it was observed that a large compressive stress was applied to the magnetic film formed by ion beam sputtering.
The film often peeled off during the process of forming the magnetic head. This was expected to be caused by ions being implanted into the film by sputtering gas when the film was formed by ion beam sputtering. Furthermore, it has been confirmed that when the amount of sputtering gas mixed in increases, the filling density of the film decreases, and therefore the saturation magnetic flux density of the magnetic film decreases. Therefore, it is an object of the present invention to provide a novel film forming apparatus that eliminates the drawbacks of the above-mentioned conventional techniques, and in particular, to provide a film forming apparatus that can produce films of high purity, high density, and low internal stress. . Another object of the present invention is to provide a magnetic film of high purity, high density, and low internal stress produced using this apparatus. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have continued intensive research, but the ion beam sputtering mechanism and E
We have discovered that a magnetic film with high purity, high density, and low internal stress can be produced by producing a magnetic film using a film forming apparatus equipped with a CR plasma irradiation mechanism. More specifically, it is preferable that the ECR plasma irradiation mechanism is directed toward the substrate holder part on which the film is deposited by the ion beam sputtering mechanism. It has also been revealed that the magnetic film produced by this method is effective as a magnetic head material for magnetic recording, a recording medium for magnetic recording, and a recording medium for magneto-optical. The film forming apparatus of the present invention can not only irradiate the substrate with plasma using the ECR plasma irradiation mechanism during film formation to clean the film, but also plasma clean the substrate immediately before film formation. Furthermore, by loading several types of raw materials as a sputtering target, several types of raw materials can be sputtered simultaneously, and a laminated film can also be formed by repeating sputtering of two or more types of raw materials alternately. [Effect l As mentioned above, the ion beam sputtering mechanism and EC
It has been found that a magnetic film with high purity, high density, and low internal stress can be produced by producing a magnetic film using a film forming apparatus characterized by being equipped with an R plasma irradiation mechanism. According to the results of studies conducted by the present inventors, films formed by ion beam sputtering have higher purity than those produced by high-frequency sputtering, which is a conventional film formation method, and as a result, the corrosion resistance of the magnetic film is improved. It was clear that it would improve. In the conventional method, the degree of vacuum during film formation was low, and the film was formed in the presence of residual gas, and impurities were mixed in due to plasma generated inside the film forming container and sputtering the inner wall of the container. It was inferred. On the other hand, in ion beam sputtering, the degree of vacuum is about two orders of magnitude higher than in conventional methods, so the influence of residual gas is small, and since there is no plasma generation inside the container, it has been confirmed that there is little contamination of impurities. When ECR plasma irradiation is performed to form a film, the plasma is irradiated into the container, but almost no decrease in the degree of vacuum was observed due to this. Furthermore, since the irradiated plasma was directed toward the substrate, there was no contamination of impurities due to sputtering on the inner wall of the container. On the other hand, it has been revealed that a film formed by ECR plasma irradiation provides kinetic energy in place of thermal energy to the sputtered deposition particles, and thus has the effect of reducing internal stress generated in the formed film. In particular, it was confirmed that large compressive stress is likely to be applied to a film formed by ion beam sputtering, but the internal stress of a film formed by ECR plasma irradiation is small. Furthermore, it has been revealed that the film formed by ECR plasma irradiation has fewer defects in the film due to kinetic energy, and as a result, a film with high packing density can be obtained. Therefore, a feature of the magnetic film is that a film with a high saturation magnetic flux density can be obtained. In addition, the plasma gas for ECR plasma irradiation may be different from the gas for ion beam sputtering, so oxygen, nitrogen, carbon, boron, etc.

【実施例1 以下に本発明の実施例を挙げ、図表を参照しながらさら
に具体的に説明する。 [実施例1] Fe,Co,Niを主或分とする強磁性膜の形成を本発
明の膜形成装置を用いてガラス基板上に行った。第1図
に本実施例で使用した装置の概要を示す。本実施例の装
置は,イオンガン4が1台設備されており、ターゲット
ホルダ6上のターゲット7のスパッタリングを行い、ス
パッタ粒子を基板ホルダ10上の基板(図示酩)に被着
させることができる。また、基板に向けてECRプラズ
マ発生部5とガス導入部9からなる照射機構が設備され
ており、基板のクリーニングおよび膜形成時のプラズマ
照射等を行うことができる。この装置のターゲットホル
ダーは回転式であり、最大4種類のターゲットを装填で
き、このうち任意のターゲットを選択してスパッタリン
グすることができる。したがって、これらのターゲット
材料から構威される任意の単層膜および積層膜を形成す
ることができる.この方法でFa,Co,Niを主或分
とする強磁性膜とその酸化物、窒化物、炭化物もしくは
硼化物の膜を作製した。イオンビームスパッタリングは
以下の条件で行った。 イオン化ガス・・・・・・Ar 装置内Arガス圧力・・・・・・2−5X10+2Pa
イオンガン加速電圧・・・・・・1200Vイオンガン
イオン電流・・・・・・120mAターゲット基板間距
離・・・・・・130mm基板温度・・・・・・50〜
100℃ 基板に向けたECRプラズマの照射は以下の条件で行っ
た。プラズマ照射ガスはArとした。 マイクロ波周波数・・・・・・2.45GHzマイクロ
波印加磁界・・・・・・875Gマイクロ波入力・・・
・・・100〜20OW本実施例では膜厚0.5〜2μ
mの強磁性金属膜および酸素、窒素,炭素、硼素が添加
された強磁性膜を作製した。 得られた膜は300℃から500℃の範囲でA特性評価
,X線回折による結晶学的評価、分析による不純物の評
価、内部応力の測定、塩水噴霧試験による耐食性の評価
を行った。 第1表にこの結果を示す。なお、内部応力は膜を形成し
たことによって生じたガラス基板の変形を表面粗さ計を
用いて測定し,これから算出した。 塩水噴震試験は0.5%NaCl水溶液を間歇的に噴舞
しながら30℃に保持し、腐食による磁性膜の飽和磁化
の減少量を測定し、減少量が10%に達した時を耐食日
数とした。表中、磁性膜中のCおよびNはターゲットに
炭化物、窒化物を用いて添加した。磁性膜の組戊は膜形
成時のターゲットの組或を示す. 第1表からわかるように、得られた膜の飽和磁束密度は
Niの0.5TからFeの2.1Tまで各々のバルク材
料のもつ飽和磁束密度に極めて近い値を示した.また,
内部応力は−2.4X10l N / m 2から7.
2X10”N/m”の圧縮応力を示し、耐食日数は30
日から86日であった.なお、従来法である高周波スパ
ッタリング装置およびデュアルイオンビームスパッタリ
ング装置で形成した膜も同様に評価した。 この結果,高周波スパッタリング装置で形成したFe,
Go,Niは−2 〜3 X 1 0”N/m”の内部
応力を示し.本発明の装置で形威した磁性膜とほぼ同様
の内部応力であった。 しかし,耐食性を調べてみると耐食日数は10〜20日
であり、本発明の装置で形成した磁性膜に比較して大幅
に劣ることが明らかになった.また、デュアルイオンビ
ームスパッタリング装置で形成したFe,Go,Niは
基板を照射するイオンガンの加速電圧を500Vとして
膜を形成した結果、飽和磁束密度はFeが1.9T.C
oが1.45T.Niが0.45Tの値を示し、第1表
に示した本発明の装置で形成した磁性膜の飽和磁束密度
より低い値であった。 また,この膜の内部応力は−3〜4X10’N/m t
の大きな圧縮応力を示し、本発明の装置で形成した磁性
膜の値より1桁増加した。但し、デュアルイオンビーム
スパッタリング装置で形戊した各種磁性膜の耐食日数は
40日から90日と本発明の装置で形成した磁性膜とほ
ぼ同様な耐食性を示すことが確認された。 以上示したように、本発明の装置で形威した磁性膜は従
来法である高周波スパッタリング装置およびデュアルイ
オンビームスパッタリング装置で形成した膜に比べて、
飽和磁束密度、内部応力、耐食性の総合的評価において
優れていることが明らかになった。 ここで、高周波スパッタリング装置で形成した磁性膜の
耐食性が劣る理由は膜中の不純物濃度が高いことによる
ものと推察される。また、デュアルイオンビームスパッ
タリング装置で形威した膜の飽和磁束密度が低く、内部
応力が大きい理由は高エネルギーで加速されたArイオ
ンがターゲットで反射されて膜中に打ち込まれることと
、基板をイオン照射するArイオンが直接膜中に打ち込
まれることにより、膜に欠陥および圧縮応力が生ずるこ
とによるものと考えられる。欠陥が発生すると、膜の充
填密度が減少するため、飽和磁束密度も減少することに
なる。 本発明の装置はこれらの従来法で形成した磁性膜のもつ
欠点を解消して総合的に優れた磁性膜を作製することが
可能である。 [実施例2コ 実施例1において磁性膜中の炭素,硼素,窒素をそれぞ
れ炭化物、硼化物、窒化物ターゲットを用いて添加する
のではなく、ECRプラズマ照射用ガス種を純Arから
それぞれCH4. B2H,、N2を混合したArに替
えることによって添加した。また、Arに02を添加し
た混合ガスを用いて膜中に酸素も添加した.第2表に示
す磁性膜の組或は膜形成後にEPMA(エレクトロン 
マイクロ プローブ アナリシス:ElectronP
robe  Micro  Analysis)法によ
って測定した値である.炭素、硼素、窒素の添加量はそ
れぞれ第2表に示すように実施例1に比べて増加させた
。このとき、膜の形戊速度は炭化物、硼化物、窒化物タ
ーゲットを用いて膜形成を行った場合に比べて増加した
。これは炭化物、硼化物,窒化物ターゲットのスバッタ
レートより金属ターゲットのスパッタレートの方が速い
ことによるものと考えられる。他の膜形成条件は実施例
1と同様にした。 得られた膜は300℃から500℃の範囲でArガス中
で1時間の熱処理をし、各々の膜の磁気特性評価,Xl
iA回折による結晶学的評価,分析による不純物の評価
、内部応力の測定、塩水噴霧試験による耐食性の評価を
行った。 第2表からも明らかなように、得られた磁性膜の飽和磁
束密度は実施例1で示したと同様に高い値を示した。ま
た,その内部応力は2.8〜6.2X10”N/m”と
低い値を示した。さらに、耐食日数は33日から80日
の値を示し、耐食性にも優れていることを示した。 以上示したように、炭素、硼素、窒素、酸素の添加をE
CRプラズマ照射によって行った結果,膜形成速度が速
くなり、得られた膜も総合的に優れたものであることが
確認された。 [実施例3] 実施例1において磁性膜を第3表に示す強磁性膜と中間
層からなる積MJIIに替え、強磁性膜の結晶粒の微細
化を行い,その軟磁気特性の向上を図った・ 積層膜の形成はターゲットホルダーに固定した2種類の
ターゲットを交互にスパッタすることによって行なった
.また、他の方法は1種類のターゲットだけを使用して
、ECRプラズマのガス種を間歇的に変えて多層化を図
った。例えば,FeとFe,。C1。からなる積層膜は
Feターゲットを連続してスパッタしている最中にEC
RプラズマのArガスにCH4を間歇的に混合すること
によって形威した. 得られた結果を第3表に示す。保磁力、結晶粒径は50
0℃で1時間の熱処理を行ったのちに測定した値である
6なお,結晶粒径はXgAで測定した回折線の半値幅か
ら求めた。この結果、本発明の装置によって作製した積
層膜は保磁力1.10e以下の優れた軟磁気特性を持つ
強磁性膜になることが明らかになった.また、このとき
の結晶粒径は200λ以下に保たれていることが確認さ
れた。 500℃で熱処理を行った積層膜の断面構造を電子顕微
鏡によってw4察した結果、熱処理後も積層構造は保た
れており、積層構造が強磁性金属膜の結晶粒の成長を抑
制していることが確認された.さらに、本発明者らはこ
れらの強磁性金属積層膜を高分解能EPMA法によって
分析した結果、添加した炭素もしくは硼素の場所には強
磁性膜に添加した金属も集まってきており、炭化物や硼
化物が形成されていることが推察された。この炭化物や
硼化物の形成は磁性膜の耐熱性を向上させているものと
推察される。 [実施例4] 実施例1から3で得られた強磁性膜を用いてメタルイン
ギャップ型ヘッドの磁極を作製し、高密度磁気記録装置
のヘッドとして評価した。基板はM n − Z nフ
ェライト、磁性膜膜厚は5μm、ギャップは0.3μm
である。ヘッド形成時のガラスボンディング温度は52
0’Cである。使用した媒体は保磁力が1500  0
sであった。この結果、Fe系強磁性膜をヘッドの磁極
に用いたヘッドの記録特性は従来のセンダストヘッドに
比べて4.6dB向上し,再生出力は約3  dB高か
った。また、Fs系強磁性膜をヘッドの磁極に用いた場
合は100kBPI以上の記録密度を得ることができた
。これはFe系強磁性膜の飽和磁束密度が他の材料に比
べて高いことによるものである。 [発明の効果】 以上詳細に説明したごとく、本発明による膜形成装置は
イオンビームスパッタリング機構とECRプラズマ照射
機構を備えたことにより、従来技術の欠点を解消し、特
に高純度,高密度、低内部応力の膜を作製することがで
きる。さらに、この装置を用いて作製した高純度、高密
度、低内部応力の磁性膜は高飽和磁束密度、高耐熱性を
示す6また、この方法で作製した磁性膜が磁気記録用磁
気ヘッド材料、磁気記録用記録媒体、光磁気用記録媒体
として有効なことが明らかになった。 本発明の膜形成装置は膜形成中にECRプラズマ照射機
構によってプラズマを基板に照射しながら膜を形成する
ことができるほか、膜形成直前に基板をプラズマクリー
ニングすることもできる。 また、スパッタターゲットとして数種類の原料を装填す
ることにより数種類の原料を同時にスパッタリングする
ことができるほか、2種類以上の原料を交互にスパッタ
リングを繰り返して積層膜を形成することもできる。さ
らに.ECRプラズマ照射機構のプラズマガスを間歇的
に異なるガス種に変えることによっても積層膜を形成す
ることができる。この結果、積層することにより、さら
に軟磁気特性の優れた膜を得ることができ、磁気ヘッド
の記録再生特性および記録密度を向上させることができ
る。 一方、この高飽和磁束密度膜を磁気記録装置の磁気ヘッ
ドに用いた場合、とくにFe系強磁性膜をヘッドの磁極
に用いた場合は100kBPI以上の記録密度を得るこ
とができた。
[Example 1] Examples of the present invention will be listed below and will be explained in more detail with reference to figures and tables. [Example 1] A ferromagnetic film mainly containing Fe, Co, and Ni was formed on a glass substrate using the film forming apparatus of the present invention. FIG. 1 shows an outline of the apparatus used in this example. The apparatus of this embodiment is equipped with one ion gun 4, and can perform sputtering on a target 7 on a target holder 6, and deposit sputtered particles on a substrate (not shown) on a substrate holder 10. Further, an irradiation mechanism consisting of an ECR plasma generation section 5 and a gas introduction section 9 is provided toward the substrate, and can perform plasma irradiation during cleaning of the substrate and film formation. The target holder of this device is rotary and can be loaded with up to four types of targets, and any target can be selected for sputtering. Therefore, arbitrary single-layer films and laminated films can be formed from these target materials. By this method, ferromagnetic films mainly containing Fa, Co, and Ni, and films of their oxides, nitrides, carbides, or borides were fabricated. Ion beam sputtering was performed under the following conditions. Ionized gas...Ar Ar gas pressure in the device...2-5X10+2Pa
Ion gun acceleration voltage: 1200V Ion gun ion current: 120mA Distance between target substrates: 130mm Substrate temperature: 50~
ECR plasma irradiation toward the 100° C. substrate was performed under the following conditions. The plasma irradiation gas was Ar. Microwave frequency...2.45GHz Microwave applied magnetic field...875G microwave input...
...100~20OW In this example, the film thickness is 0.5~2μ
A ferromagnetic metal film of m and a ferromagnetic film doped with oxygen, nitrogen, carbon, and boron were fabricated. The obtained film was subjected to A-characteristic evaluation, crystallographic evaluation by X-ray diffraction, impurity evaluation by analysis, measurement of internal stress, and corrosion resistance evaluation by salt spray test in the range of 300° C. to 500° C. Table 1 shows the results. Note that the internal stress was calculated by measuring the deformation of the glass substrate caused by forming the film using a surface roughness meter. In the salt water jet test, a 0.5% NaCl aqueous solution is intermittently sprayed while maintaining the temperature at 30°C, and the amount of decrease in the saturation magnetization of the magnetic film due to corrosion is measured. When the amount of decrease reaches 10%, the corrosion resistance is determined. The number of days. In the table, C and N in the magnetic film were added to the target using carbides and nitrides. The composition of the magnetic film indicates the composition of the target during film formation. As can be seen from Table 1, the saturation magnetic flux density of the obtained films was extremely close to the saturation magnetic flux density of each bulk material, from 0.5T for Ni to 2.1T for Fe. Also,
The internal stress is from -2.4X10l N/m2 to 7.
It shows a compressive stress of 2X10"N/m" and has a corrosion resistance of 30 days.
It was 86 days since the day. Note that films formed using conventional methods such as a high-frequency sputtering device and a dual ion beam sputtering device were also evaluated in the same manner. As a result, Fe formed using high frequency sputtering equipment,
Go and Ni exhibit an internal stress of -2 to 3 x 10"N/m". The internal stress was almost the same as that of the magnetic film formed in the device of the present invention. However, when examining the corrosion resistance, it was found that the corrosion resistance was 10 to 20 days, which was significantly inferior to the magnetic film formed using the apparatus of the present invention. In addition, Fe, Go, and Ni films formed using a dual ion beam sputtering device were formed by setting the acceleration voltage of the ion gun that irradiates the substrate to 500V, and as a result, the saturation magnetic flux density of Fe was 1.9T. C
o is 1.45T. Ni showed a value of 0.45T, which was lower than the saturation magnetic flux density of the magnetic film formed by the apparatus of the present invention shown in Table 1. Also, the internal stress of this film is -3~4X10'N/m t
It showed a large compressive stress of , which was one order of magnitude higher than that of the magnetic film formed by the apparatus of the present invention. However, it was confirmed that the corrosion resistance of various magnetic films formed using the dual ion beam sputtering apparatus was 40 to 90 days, which is almost the same as the corrosion resistance of the magnetic films formed using the apparatus of the present invention. As shown above, the magnetic film formed using the apparatus of the present invention has a higher
It was revealed that the material was excellent in comprehensive evaluation of saturation magnetic flux density, internal stress, and corrosion resistance. Here, the reason why the corrosion resistance of the magnetic film formed using a high-frequency sputtering apparatus is poor is presumed to be due to the high impurity concentration in the film. In addition, the reason why the saturation magnetic flux density and internal stress of the film formed using dual ion beam sputtering equipment is low and the internal stress is large is that Ar ions accelerated with high energy are reflected by the target and implanted into the film, and the substrate is ionized. This is thought to be due to the fact that the irradiated Ar ions are directly implanted into the film, causing defects and compressive stress in the film. When defects occur, the packing density of the film decreases, and therefore the saturation magnetic flux density also decreases. The apparatus of the present invention can eliminate the drawbacks of magnetic films formed by these conventional methods and produce a magnetic film that is excellent overall. [Example 2] Instead of adding carbon, boron, and nitrogen in the magnetic film in Example 1 using carbide, boride, and nitride targets, respectively, the gas species for ECR plasma irradiation was changed from pure Ar to CH4. B2H,, was added by replacing N2 with mixed Ar. Oxygen was also added into the film using a mixed gas of Ar and 02 added. EPMA (electron electron
Micro probe analysis: ElectronP
This is a value measured by the Robe Micro Analysis) method. The amounts of carbon, boron, and nitrogen added were increased compared to Example 1, as shown in Table 2. At this time, the film formation rate increased compared to when film formation was performed using carbide, boride, or nitride targets. This is considered to be because the sputter rate of the metal target is faster than the sputter rate of the carbide, boride, and nitride targets. Other film forming conditions were the same as in Example 1. The obtained films were heat-treated in Ar gas at a temperature of 300°C to 500°C for 1 hour, and the magnetic properties of each film were evaluated.
Crystallographic evaluation by iA diffraction, impurity evaluation by analysis, measurement of internal stress, and corrosion resistance evaluation by salt spray test were performed. As is clear from Table 2, the saturation magnetic flux density of the obtained magnetic film showed a high value similar to that shown in Example 1. Moreover, the internal stress showed a low value of 2.8 to 6.2 x 10"N/m". Furthermore, the number of days of corrosion resistance was 33 to 80 days, indicating excellent corrosion resistance. As shown above, the addition of carbon, boron, nitrogen, and oxygen
As a result of using CR plasma irradiation, it was confirmed that the film formation rate was increased and the obtained film was also excellent overall. [Example 3] In Example 1, the magnetic film was replaced with a product MJII consisting of a ferromagnetic film and an intermediate layer shown in Table 3, and the crystal grains of the ferromagnetic film were made finer to improve its soft magnetic properties. - The laminated film was formed by alternately sputtering two types of targets fixed on a target holder. In other methods, only one type of target is used and the type of gas in the ECR plasma is changed intermittently to achieve multilayer formation. For example, Fe and Fe. C1. The laminated film consisting of
This was achieved by intermittently mixing CH4 into the Ar gas of the R plasma. The results obtained are shown in Table 3. Coercive force and grain size are 50
This is the value measured after heat treatment at 0° C. for 1 hour.6 The crystal grain size was determined from the half width of the diffraction line measured with XgA. The results revealed that the laminated film produced by the apparatus of the present invention is a ferromagnetic film with excellent soft magnetic properties with a coercive force of 1.10e or less. Further, it was confirmed that the crystal grain size at this time was maintained at 200λ or less. As a result of observing the cross-sectional structure of the laminated film heat-treated at 500°C using an electron microscope, the laminated structure was maintained even after the heat treatment, and the laminated structure suppressed the growth of crystal grains in the ferromagnetic metal film. was confirmed. Furthermore, as a result of analyzing these ferromagnetic metal laminated films by high-resolution EPMA method, the present inventors found that the metal added to the ferromagnetic film also gathered in the places where carbon or boron was added, and carbides and borides It was inferred that a was formed. It is presumed that the formation of carbides and borides improves the heat resistance of the magnetic film. [Example 4] A magnetic pole of a metal-in-gap head was produced using the ferromagnetic films obtained in Examples 1 to 3, and evaluated as a head for a high-density magnetic recording device. The substrate is Mn-Zn ferrite, the magnetic film thickness is 5μm, and the gap is 0.3μm.
It is. Glass bonding temperature during head formation is 52
It is 0'C. The medium used has a coercive force of 1500 0
It was s. As a result, the recording characteristics of the head using the Fe-based ferromagnetic film for the magnetic pole of the head were improved by 4.6 dB compared to the conventional Sendust head, and the reproduction output was approximately 3 dB higher. Furthermore, when an Fs-based ferromagnetic film was used for the magnetic pole of the head, a recording density of 100 kBPI or more could be obtained. This is because the saturation magnetic flux density of the Fe-based ferromagnetic film is higher than that of other materials. [Effects of the Invention] As explained in detail above, the film forming apparatus according to the present invention is equipped with an ion beam sputtering mechanism and an ECR plasma irradiation mechanism, thereby eliminating the drawbacks of the conventional technology and achieving particularly high purity, high density, and low A film with internal stress can be created. Furthermore, the magnetic film of high purity, high density, and low internal stress produced using this apparatus exhibits high saturation magnetic flux density and high heat resistance. It has become clear that this material is effective as a magnetic recording medium and a magneto-optical recording medium. The film forming apparatus of the present invention can not only form a film while irradiating the substrate with plasma using an ECR plasma irradiation mechanism during film formation, but also plasma clean the substrate immediately before film formation. Furthermore, by loading several types of raw materials as a sputter target, it is possible to sputter several types of raw materials simultaneously, and it is also possible to form a laminated film by repeatedly sputtering two or more types of raw materials alternately. moreover. A laminated film can also be formed by intermittently changing the plasma gas of the ECR plasma irradiation mechanism to a different gas type. As a result, by laminating the layers, a film with even better soft magnetic properties can be obtained, and the recording/reproducing characteristics and recording density of the magnetic head can be improved. On the other hand, when this high saturation magnetic flux density film was used in a magnetic head of a magnetic recording device, especially when an Fe-based ferromagnetic film was used for the magnetic pole of the head, a recording density of 100 kBPI or more could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の膜形戒装置の1実施例を示す図である
。 符号の説明
FIG. 1 is a diagram showing one embodiment of the membrane-shaped commandment device of the present invention. Explanation of symbols

Claims (4)

【特許請求の範囲】[Claims] 1.同一の真空容器に少なくとも1台のイオンビームス
パッタリング機構と少なくとも1台のECRプラズマ照
射機構を備えたことを特徴とする膜形成装置。
1. A film forming apparatus comprising at least one ion beam sputtering mechanism and at least one ECR plasma irradiation mechanism in the same vacuum chamber.
2.請求項1記載のECRプラズマ照射機構がイオンビ
ームスパッタリング機構により膜を被着形成する基板ホ
ルダー部の方向に向けられていることを特徴とする膜形
成装置。
2. A film forming apparatus, wherein the ECR plasma irradiation mechanism according to claim 1 is directed toward a substrate holder portion on which a film is deposited and formed by an ion beam sputtering mechanism.
3.請求項1もしくは2記載の膜形成装置を用いて作製
したことを特徴とする高純度、高密度、低内部応力の磁
性膜。
3. A magnetic film of high purity, high density, and low internal stress, produced using the film forming apparatus according to claim 1 or 2.
4.請求項3記載の磁性膜が磁気記録用磁気ヘッド材料
、磁気記録用記録媒体、光磁気用記録媒体であることを
特徴とする磁性膜。
4. 4. A magnetic film according to claim 3, which is used as a magnetic head material for magnetic recording, a recording medium for magnetic recording, or a recording medium for magneto-optical use.
JP23280289A 1989-09-11 1989-09-11 Film forming equipment and magnetic film using the same Pending JPH0397210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23280289A JPH0397210A (en) 1989-09-11 1989-09-11 Film forming equipment and magnetic film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23280289A JPH0397210A (en) 1989-09-11 1989-09-11 Film forming equipment and magnetic film using the same

Publications (1)

Publication Number Publication Date
JPH0397210A true JPH0397210A (en) 1991-04-23

Family

ID=16944994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23280289A Pending JPH0397210A (en) 1989-09-11 1989-09-11 Film forming equipment and magnetic film using the same

Country Status (1)

Country Link
JP (1) JPH0397210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413380B1 (en) 2000-08-14 2002-07-02 International Business Machines Corporation Method and apparatus for providing deposited layer structures and articles so produced
JP2006260709A (en) * 2005-03-18 2006-09-28 Tokai Univ Manufacturing method for magnetic material thin film
JP2010010529A (en) * 2008-06-30 2010-01-14 Mitsui Chemicals Inc Magnetic core and method of manufacturing the same
JP2013232273A (en) * 2012-04-30 2013-11-14 Seagate Technology Llc Data storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413380B1 (en) 2000-08-14 2002-07-02 International Business Machines Corporation Method and apparatus for providing deposited layer structures and articles so produced
JP2006260709A (en) * 2005-03-18 2006-09-28 Tokai Univ Manufacturing method for magnetic material thin film
JP2010010529A (en) * 2008-06-30 2010-01-14 Mitsui Chemicals Inc Magnetic core and method of manufacturing the same
JP2013232273A (en) * 2012-04-30 2013-11-14 Seagate Technology Llc Data storage device

Similar Documents

Publication Publication Date Title
US6677061B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US4554217A (en) Process for creating wear and corrosion resistant film for magnetic recording media
JPH08311642A (en) Magnetron sputtering method and sputtering target
US5403457A (en) Method for making soft magnetic film
US5302469A (en) Soft magnetic thin film
JPH0397210A (en) Film forming equipment and magnetic film using the same
US5777828A (en) Magnetic alloy and magnetic head having at least a part made of the magnetic alloy
US5663006A (en) Corrosion-resistant magnetic film and magnetic head using the same
JP2996553B2 (en) Soft magnetic alloy thin film
Kim et al. Magnetic properties and texture of sputtered Fe/Fe/sub 3/O/sub 4/multilayer films
JPH02123705A (en) Heat resistant iron based magnetic film and magnetic head using same
JPH0316203A (en) Heat-resistant high saturation magnetic flux density film
JPH03101202A (en) Soft magnetic thin film and manufacture thereof
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JPH02152209A (en) Soft magnetic film
JPH11339261A (en) Production of magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPS6235605A (en) Magnetically soft thin film
JPH0423413A (en) Magnetic thin film and manufacture thereof and magnetic head
JP3639333B2 (en) MIG head
JPH04144210A (en) Soft magnetic film with high saturation magnetic flux density
Hirata et al. Corrosion resistive Fe‐Si‐B films with low H c and λ s by reducing the high energy of γ electrons in tetrode sputtering
JPH0315246B2 (en)
JPH04356728A (en) Production of magnetic recording medium