JPH0227806B2 - KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO - Google Patents

KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO

Info

Publication number
JPH0227806B2
JPH0227806B2 JP3589582A JP3589582A JPH0227806B2 JP H0227806 B2 JPH0227806 B2 JP H0227806B2 JP 3589582 A JP3589582 A JP 3589582A JP 3589582 A JP3589582 A JP 3589582A JP H0227806 B2 JPH0227806 B2 JP H0227806B2
Authority
JP
Japan
Prior art keywords
magnetic material
pure iron
saturation magnetization
nitrogen
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3589582A
Other languages
Japanese (ja)
Other versions
JPS5945911A (en
Inventor
Hiroyasu Fujimori
Akira Kano
Noriaki Kazama
Minoru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3589582A priority Critical patent/JPH0227806B2/en
Publication of JPS5945911A publication Critical patent/JPS5945911A/en
Publication of JPH0227806B2 publication Critical patent/JPH0227806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この出願の発明は、Fe16N2を多量に含有する
磁性材料およびスパツタリングによる該磁性材料
の製造方法に関する。 磁性材料の分野で純鉄は最も基本的な材料で、
比較的高い透磁率を示し、かつ高い飽和磁化(σs
=218emu/gr、Ms=1717gaues)を有している
ので継電器および電磁石の磁心や接触子または磁
気回路の継鉄などに利用されているが、鉄の窒化
物であるFe16N2は第1表に示すように、上記の
純鉄よりもさらに高い飽和磁化(単位重量当りの
飽和磁化σs=298emu/gr、単位体積当りの飽和
磁化Ms=2200gauss)を持つている。Tcはキユ
リー点を示す。ところが同じ窒化物でもFe4Nは
純鉄の中で不純物として存在し、第1表に示すよ
うに磁性を著しく劣化させるものであつた。
The invention of this application relates to a magnetic material containing a large amount of Fe 16 N 2 and a method for producing the magnetic material by sputtering. Pure iron is the most basic material in the field of magnetic materials.
It exhibits relatively high magnetic permeability and high saturation magnetization (σ s
= 218 emu/gr, M s = 1717 gaues), so it is used for magnetic cores and contacts of relays and electromagnets, and yokes for magnetic circuits, but Fe 16 N 2 , which is an iron nitride, is As shown in Table 1, it has higher saturation magnetization than the pure iron mentioned above (saturation magnetization per unit weight σ s = 298 emu/gr, saturation magnetization per unit volume M s = 2200 gauss). T c indicates the Currie point. However, even with the same nitride, Fe 4 N exists as an impurity in pure iron, and as shown in Table 1, it significantly deteriorates the magnetism.

【表】 窒化鉄の製造の中で、Fe4Nの発生を抑制し、
Fe16N2を多量に生成させる有効な技術は、従来
存在せず、わずかN2雰囲気中で真空蒸着によつ
てFe16N2を製造する試みがなされた程度である。 しかしこの真空蒸着にしてもN2との反応がわ
ずかでかつ蒸着速度も極めておそく、しかも500
Å程度の極薄のものしかできないので工業的に利
用するには到底及ばないものであつた。 本発明は、この点に鑑みてなされたもので、純
鉄をターゲツトとし、窒素含有雰囲気の中での反
応性スパツタリングにより形成した磁性材料にお
いて、該磁性材料は1μm以上の厚さを有し、か
つ純鉄を基とする磁性材料の中に10重量%以上の
Fe16N2窒化鉄を含有することを特徴とする高飽
和磁化磁性材料および基板温度を300℃以下とし、
窒素分圧(PN2)1×10-3Torr以下の窒素とア
ルゴンガス雰囲気中で反応性スパツタリングを行
なうことによりFe16N2窒化鉄を多量に含有する
純鉄基高飽和磁化磁性材料を製造する方法に関す
る。 これにより磁性特性に優れた磁性材料が得ら
れ、また製造速度も著しく速くなつたので、安価
で高性能の磁性材の製造が可能になつた。近年、
高密度記録への要求の高まりと共に、従来の塗布
型の磁気記録媒体に比べ、記録密度の向上が期待
できるという観点から、真空蒸着法、スパツタ
法、メツキ法等を用いて、Co−Ni、Co−Cr等の
強磁性金属薄膜を磁気記録層とする非バインダー
型磁気記録媒体が注目されており、一部実用化も
行われている。さらに記録密度を高めるために
は、飽和磁化、保持力の高い磁性薄膜材料が必要
となるため、Fe系合金、Co系合金、Ni系合金を
中心に研究されている。 本発明の鉄の窒化物であるFe16N2は、第1表
に示すように、純鉄以上の飽和磁化を有してお
り、磁気記録媒体用の材料として有望である。す
なわち、非磁性基板上に鉄窒化物の薄膜を形成す
ることにより、飽和磁化、保磁力ともに、従来材
料よりはるかに高い記録層が得られ、磁気記録密
度を高めることが可能となる。本発明の窒化鉄含
有磁性材料は、磁性媒体材料としても利用しう
る。反応性スパツタリングにより窒化物を製造す
る場合には、アルゴンガスの他に窒素ガスを導入
し、アルゴンガスと窒素の混合ガス雰囲気とする
必要があるが、窒素ガスは少量で、分圧(PN2
1×10-3Torr以下としなければならない。 一般に窒素分圧PN2が高いとそれだけ窒化物の
生成速度が速くなり、したがつてFe16N2が多量
に製造できると考えがちであるが、窒素分圧
(PN2)が1×10-3Torrを越えるとFe4Nなどの発
生が多くなり、Fe16N2の発生はなくなる。本発
明は多くの試みの中で、この点に着目したもので
あるが、このような窒化物の製造において、窒素
分圧PN2を下げ、より低圧側にすることは常識で
は考えられないことである。 PN2のさらに有効な範囲は2〜7×10-4Torrで
あり、2×10-4Torrよりも低いと、純鉄よりも
飽和磁化が低下していく。 さらにまた後述するようにFe16N2は加熱によ
り分解する。 特に250〜300℃を越える温度では磁気特性に劣
るFe4Nに変化していく。 スパツタリング操作中では、フイラメントから
の輻射熱によつて加熱され、また基板温度も上昇
するので、前記Fe16N2からFe4Nへの変化はスパ
ツタリング操作中においても生じる。 したがつてこれを抑制するために基板温度は
300℃以下にする必要がある。この基板温度のよ
り有効な範囲は200℃以下である。 以上のように窒素ガス分圧PN2の調節と基板温
度の臨界的条件の選定により、初めてFe16N2
多量に含有する窒化鉄の製造が可能となつた。後
段の実施例で説明するように水冷鋼板上のガラス
基板にスパツタリングした場合に、約3μmの
Fe16N2含有磁性材料が生成するが、冷却速度を
高めることにより、さらに厚い磁性材料を形成す
ることができ、またスパツタリング速度も高める
ことができる。このような形状を有する磁性材料
は工業的に利用できる。 さらにまた純鉄の飽和磁化を越える良好な性質
を得るためには、Fe16N2を少くとも10重量%以
上がスパツタリングされた磁性材料中に存在する
ことが必要である。Fe16N2以外の磁性材料成分
は純鉄が主であるが、他の窒化物すなわちFe4N
等が磁気特性を劣化しない程度に含有されること
は止むを得ない。 本発明の上記条件で実施することにより、
Fe16N2を多量に含有する磁性材料は、純鉄を越
える飽和磁化を有している。 次に実施例について説明する。 実施例 ターゲツトに純鉄、サブストレート(基板)に
ガラスを用い、デポジツシヨン速度を、およそ
500〜1000Å/minとして行つた。ガラスのサブ
ストレートは銅製ホルダーにセツトし、基板温度
が300℃以下となるように該銅製ホルダーを水冷
した。 スパツタリング中の窒素ガス分圧は、次の2方
法で制御した。 1 アルゴンと窒素の2つのボンベを用い、それ
ぞれ流量調節バルブで制御する方法。 2 アルゴンと窒素の圧力比を予めセツト(例え
ば99:1)した混合気体ボンベを用い、1つの
流量調節バルブで制御する方法。 ターゲツト電圧0.5KV、電流密度4mA/cm3
実施した。第1図にスパツタリング中の窒素分圧
PN2と飽和磁化σsとの関係を示す。該磁性材料は
厚さ3μmである。PN21×10-3Torr以下、特に
PN24.0×10-4Torr近辺で純鉄の218e.m.u./grよ
り高いσsが得られている。 次に熱磁気分析の結果を第2図に示す。 ●−●は本発明磁性材料、△−△は純鉄の加熱
曲線である。加熱前では本発明の磁性材料σsは純
鉄のσs=218emu/grよりも大きい。 この加熱曲線から明らかなように、約200℃で
磁化の減少がみられる。これはFe16N2のキユリ
ー点に相当すると考えられる。さらに加熱を続
け、300℃を越えると純鉄のσsよりも低下してい
く傾向がみられる。さらに480℃附近でσsの明瞭
な減少があるがこれはFe4Nのキユリー点でσs
著しく低下している。 以上より明らかなように、本発明の磁性材料
は、純鉄のσsよりも優れたσsすなわち飽和磁化を
有していることが分り、そのことは、磁性材料中
にFe16N2が多量に存在していることを意味する。 さらにまた、上記加熱曲線により、Fe16N2
Fe4Nへと変化していく段階で飽和磁化は、純鉄
の飽和磁化よりも低下していくことが分り、そし
て、スパツタリング操作中では基板の温度を300
℃以下、より好ましくは200℃以下に保持すべき
ことが明瞭となる。
[Table] In the production of iron nitride, suppressing the generation of Fe 4 N,
No effective technology for producing a large amount of Fe 16 N 2 has conventionally existed, and only attempts have been made to produce Fe 16 N 2 by vacuum evaporation in an N 2 atmosphere. However, even with this vacuum evaporation, there is only a slight reaction with N 2 and the evaporation rate is extremely slow.
Since it could only be made as ultra-thin as 100 Å, it was far from suitable for industrial use. The present invention has been made in view of this point, and includes a magnetic material formed by reactive sputtering in a nitrogen-containing atmosphere using pure iron as a target, the magnetic material having a thickness of 1 μm or more, and more than 10% by weight in magnetic materials based on pure iron.
A high saturation magnetization magnetic material characterized by containing Fe 16 N 2 iron nitride and a substrate temperature of 300°C or less,
Pure iron-based high saturation magnetization magnetic material containing a large amount of Fe 16 N 2 iron nitride is manufactured by performing reactive sputtering in a nitrogen and argon gas atmosphere with a nitrogen partial pressure (PN 2 ) of 1×10 -3 Torr or less. Regarding how to. As a result, a magnetic material with excellent magnetic properties can be obtained, and the manufacturing speed has also been significantly increased, making it possible to manufacture a high-performance magnetic material at low cost. recent years,
With the increasing demand for high-density recording, Co-Ni Binder-free magnetic recording media in which a magnetic recording layer is a ferromagnetic metal thin film such as Co--Cr are attracting attention, and some of them have been put into practical use. In order to further increase the recording density, magnetic thin film materials with high saturation magnetization and coercive force are required, so research is focused on Fe-based alloys, Co-based alloys, and Ni-based alloys. Fe 16 N 2 , which is the iron nitride of the present invention, has a saturation magnetization higher than that of pure iron, as shown in Table 1, and is promising as a material for magnetic recording media. That is, by forming a thin film of iron nitride on a nonmagnetic substrate, a recording layer with much higher saturation magnetization and coercive force than conventional materials can be obtained, making it possible to increase magnetic recording density. The iron nitride-containing magnetic material of the present invention can also be used as a magnetic medium material. When producing nitrides by reactive sputtering, it is necessary to introduce nitrogen gas in addition to argon gas to create a mixed gas atmosphere of argon gas and nitrogen . )
Must be less than 1×10 -3 Torr. Generally, we tend to think that the higher the nitrogen partial pressure (P N2 ) , the faster the nitride formation rate, and therefore the production of a large amount of Fe 16 N 2 , but if the nitrogen partial pressure (P N2 ) is 1×10 - When the temperature exceeds 3 Torr, the generation of Fe 4 N, etc. increases, and the generation of Fe 16 N 2 stops. The present invention has focused on this point among many attempts, but it is common knowledge that it would be unthinkable to lower the nitrogen partial pressure P N2 to a lower pressure side in the production of such nitrides. It is. A more effective range of P N2 is 2 to 7×10 −4 Torr, and if it is lower than 2×10 −4 Torr, the saturation magnetization will be lower than that of pure iron. Furthermore, as described later, Fe 16 N 2 is decomposed by heating. In particular, at temperatures exceeding 250 to 300°C, it changes to Fe 4 N, which has poor magnetic properties. During the sputtering operation, the substrate is heated by radiant heat from the filament and the temperature of the substrate also increases, so the change from Fe 16 N 2 to Fe 4 N also occurs during the sputtering operation. Therefore, in order to suppress this, the substrate temperature should be
It is necessary to keep the temperature below 300℃. A more effective range for this substrate temperature is 200°C or less. As described above, by adjusting the nitrogen gas partial pressure P N2 and selecting the critical conditions of the substrate temperature, it became possible for the first time to produce iron nitride containing a large amount of Fe 16 N 2 . As explained in the example below, when sputtering is performed on a glass substrate on a water-cooled steel plate, a thickness of approximately 3 μm is obtained.
Fe 16 N 2 -containing magnetic material is produced, but thicker magnetic material can be formed by increasing the cooling rate and sputtering rate can also be increased. A magnetic material having such a shape can be used industrially. Furthermore, in order to obtain good properties exceeding the saturation magnetization of pure iron, it is necessary that at least 10% by weight of Fe 16 N 2 be present in the sputtered magnetic material. The magnetic material components other than Fe 16 N 2 are mainly pure iron, but other nitrides, such as Fe 4 N
It is unavoidable that such substances are contained to an extent that does not deteriorate the magnetic properties. By implementing the present invention under the above conditions,
Magnetic materials containing a large amount of Fe 16 N 2 have saturation magnetization that exceeds that of pure iron. Next, an example will be described. Example Using pure iron as the target and glass as the substrate, the deposition speed was set to approximately
The rate was 500 to 1000 Å/min. The glass substrate was set in a copper holder, and the copper holder was cooled with water so that the substrate temperature was below 300°C. The nitrogen gas partial pressure during sputtering was controlled by the following two methods. 1 A method using two cylinders for argon and nitrogen, each controlled by a flow rate adjustment valve. 2. A method that uses a mixed gas cylinder with a preset pressure ratio of argon and nitrogen (for example, 99:1) and controls it with a single flow control valve. The experiment was carried out at a target voltage of 0.5 KV and a current density of 4 mA/cm 3 . Figure 1 shows the nitrogen partial pressure during sputtering.
The relationship between P N2 and saturation magnetization σ s is shown. The magnetic material is 3 μm thick. P N2 1×10 -3 Torr or less, especially
σ s higher than that of pure iron, 218e.mu/gr, was obtained near P N2 4.0×10 -4 Torr. Next, the results of thermomagnetic analysis are shown in Figure 2. ●-● are the heating curves of the magnetic material of the present invention, and △-△ are the heating curves of pure iron. Before heating, the magnetic material σ s of the present invention is larger than that of pure iron, σ s =218 emu/gr. As is clear from this heating curve, magnetization decreases at about 200°C. This is considered to correspond to the Kyrie point of Fe 16 N 2 . If heating continues further and the temperature exceeds 300℃, there is a tendency for σ s to decrease compared to that of pure iron. Furthermore, there is a clear decrease in σ s near 480°C, but this is the Curie point of Fe 4 N, where σ s decreases significantly. As is clear from the above, the magnetic material of the present invention has σ s , that is , saturation magnetization, which is superior to the σ s of pure iron . This means that it is present in large quantities. Furthermore, according to the above heating curve, Fe 16 N 2
It was found that the saturation magnetization becomes lower than that of pure iron at the stage of changing to Fe 4 N.
It becomes clear that the temperature should be maintained at ℃ or below, more preferably 200℃ or below.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパツタリング時の窒素分圧(PN2
と室温での飽和磁化との関係を示すグラフ、第2
図は本発明で得られたスパツタリングフイルムの
熱磁気分析による飽和磁化σsと加熱温度との関係
を示すグラフである。
Figure 1 shows nitrogen partial pressure (P N2 ) during sputtering.
Graph showing the relationship between and saturation magnetization at room temperature, 2nd
The figure is a graph showing the relationship between the saturation magnetization σ s and the heating temperature according to thermomagnetic analysis of the sputtering film obtained in the present invention.

Claims (1)

【特許請求の範囲】 1 1μm以上の厚さを有し、かつ純鉄を基とす
る磁性材料の中に10重量%以上のFe16N2窒化鉄
を含有することを特徴とする高飽和磁化磁性材
料。 2 基板温度を300℃以下とし、窒素分圧(PN2
1×10-3Torr以下の窒素とアルゴンガス雰囲気
中で反応性スパツタリングを行なうことにより
Fe16N2窒化鉄を多量に含有する純鉄基高飽和磁
化磁性材料を製造する方法。 3 基板温度を200℃以下とする特許請求の範囲
第2項記載の方法。 4 窒素分圧(PN2)を2〜7×10-4Torrとし
たことを特徴とする特許請求の範囲第2項および
第3項記載の方法。
[Claims] 1. High saturation magnetization characterized by having a thickness of 1 μm or more and containing 10% by weight or more of Fe 16 N 2 iron nitride in a magnetic material based on pure iron. magnetic material. 2 Keep the substrate temperature below 300°C and reduce the nitrogen partial pressure (PN 2 ).
By performing reactive sputtering in a nitrogen and argon gas atmosphere below 1×10 -3 Torr.
A method for producing a pure iron-based highly saturated magnetized magnetic material containing a large amount of Fe 16 N 2 iron nitride. 3. The method according to claim 2, wherein the substrate temperature is 200°C or less. 4. The method according to claims 2 and 3, characterized in that the nitrogen partial pressure (PN 2 ) is 2 to 7×10 −4 Torr.
JP3589582A 1982-03-09 1982-03-09 KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO Expired - Lifetime JPH0227806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3589582A JPH0227806B2 (en) 1982-03-09 1982-03-09 KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3589582A JPH0227806B2 (en) 1982-03-09 1982-03-09 KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5945911A JPS5945911A (en) 1984-03-15
JPH0227806B2 true JPH0227806B2 (en) 1990-06-20

Family

ID=12454758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3589582A Expired - Lifetime JPH0227806B2 (en) 1982-03-09 1982-03-09 KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227806B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618135B2 (en) * 1983-06-10 1994-03-09 株式会社日立製作所 Perpendicular magnetic recording medium
US4640755A (en) * 1983-12-12 1987-02-03 Sony Corporation Method for producing magnetic medium
JPH0679369B2 (en) * 1984-05-08 1994-10-05 大日本印刷株式会社 Magnetic recording material and manufacturing method thereof
JPH0726194B2 (en) * 1984-05-08 1995-03-22 大日本印刷株式会社 Corrosion resistant thin film and manufacturing method thereof
JP2525211B2 (en) * 1987-11-24 1996-08-14 日新製鋼株式会社 Method for producing Fe-based alloy thin film having austenite structure
WO1996002925A1 (en) * 1994-07-18 1996-02-01 Migaku Takahashi Magnetic thin film and production method therefor
JP6763542B2 (en) * 2016-11-22 2020-09-30 住友電気工業株式会社 Iron nitride material and method for manufacturing iron nitride material

Also Published As

Publication number Publication date
JPS5945911A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPS63299219A (en) Magnetically soft thin film
US8158276B2 (en) FePtP-alloy magnetic thin film
Naoe et al. Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering
JPH0227806B2 (en) KOHOWAJIKAJISEIZAIRYOOYOBISONOSEIZOHOHO
JPH0475304B2 (en)
JP3167808B2 (en) Soft magnetic thin film
JPS6039157A (en) Manufacture of amorphous magnetic alloy
US5534080A (en) Method for producing Mn-Al thin films
KR100270605B1 (en) Fe based soft magnetic film alloys and their manufacturing method
JP2007164845A (en) Magnetic recording medium and manufacturing method
JPH0340491B2 (en)
JPH03265105A (en) Soft magnetic laminate film
CN110643910B (en) Soft magnetic Fe-based amorphous alloy and preparation method thereof
RU2815774C1 (en) SOFT MAGNETIC AMORPHOUS ALLOY BASED ON Fe-Co WITH HIGH SATURATION MAGNETISATION
JPH02200778A (en) Sputtering target
JPS60243843A (en) Production of photothermomagnetic recording medium
CN1327459C (en) Magnetic particle film having controllable magnetic anisotropy and preparing method thereof
JPH04285153A (en) Multi-layer magnetic film and its formation
JPS61174616A (en) Manufacture of amorphous and magnetic thin film
CN110747440A (en) Ultra-low magnetic damping soft magnetic CoFeMnSi alloy film and preparation method thereof
KR100190681B1 (en) Method for producing mn-al thin films
JP2604372B2 (en) Manufacturing method of soft magnetic amorphous alloy
JP2546275B2 (en) Soft magnetic thin film
JPH035644B2 (en)
CN117577407A (en) Double-amorphous core-shell structure soft magnetic composite material and preparation method thereof