JPS61257473A - Target material for sputtering - Google Patents

Target material for sputtering

Info

Publication number
JPS61257473A
JPS61257473A JP9719285A JP9719285A JPS61257473A JP S61257473 A JPS61257473 A JP S61257473A JP 9719285 A JP9719285 A JP 9719285A JP 9719285 A JP9719285 A JP 9719285A JP S61257473 A JPS61257473 A JP S61257473A
Authority
JP
Japan
Prior art keywords
target
sputtering
magnetic flux
magnetic
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9719285A
Other languages
Japanese (ja)
Inventor
Kikuo Suzuki
喜久雄 鈴木
Masateru Nose
正照 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP9719285A priority Critical patent/JPS61257473A/en
Publication of JPS61257473A publication Critical patent/JPS61257473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the utilization efficiency of the resulting titled target material by producing a mechanical strain in a plastically deformable magnetic material. CONSTITUTION:A mechanical strain is produced in a plastically deformable magnetic material such as 'Permalloy(R)' by a plastic deforming means such as rolling, forging or pressing. At this time, the working temp. is preferably regulated to the recrystallization temp. of the material or below, especially the restoration temp. or below so as to effectively produce the strain. Thus, the coercive force of the material is increased or the magnetic permeability is reduced, and when the resulting target material is fixed in the magnetic circuit of a sputtering apparatus, magnetic flux leaking out of the surface of the material is increased. The material is eroded in an extended region, sputtering is carried out with improved efficiency and the utilization efficiency of the target material can be enhanced.

Description

【発明の詳細な説明】 利用産業分野 この発明は、マグネトロンスパッタ装置に用いる軟質強
磁性材料からなるターゲット材に係り、利用効率にすぐ
れかつ安価なスパッタリング用ターゲット材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to a target material made of a soft ferromagnetic material used in a magnetron sputtering device, and more particularly to a target material for sputtering that is highly efficient and inexpensive.

背景技術 一般に、スパッタリングは、真空容器内で、形成被膜す
べきコーティング材料を陰極グーゲット材とし、コーテ
ィング材料を被着させる材料を陽極として、少なくとも
2極間に電圧を加え、真空容器内に導入したアルゴンカ
スまたは反応性ガスの単独あるいは混合ガスをスパッタ
ー電源により放電し、雰囲気ガスをイオン化し、生じた
陽イオンが電界により加速されて大きな運動エネルギー
をもって陰極表面に衝突し、表面原子をスパッタリング
し、このたたき出された原子が陽極の材料表面に被着し
て、薄膜が形成被覆されるものである。
BACKGROUND ART In general, sputtering is performed by applying a voltage between at least two electrodes in which the coating material to be formed is used as a cathode Googet material and the material to which the coating material is to be applied is used as an anode, and the material is introduced into the vacuum container. Argon gas or reactive gas alone or in a mixture is discharged by a sputtering power source to ionize the atmospheric gas, and the resulting positive ions are accelerated by the electric field and collide with the cathode surface with large kinetic energy, sputtering surface atoms. The ejected atoms adhere to the material surface of the anode, forming a thin film.

かかるスパッタリングを行なう装置として、ターゲット
を支持するバッキングプレー1・の背後に、永久磁石ま
たは電磁石による磁界発生装置を設け、ターゲット面に
平行な磁場を発生させながら、磁場に直交する高密度の
放電プラズマを、ターゲット面上に収束させ、高速スパ
ッタリングするマグネトロンスパッタ装置が一般的でお
る。
As a device for performing such sputtering, a magnetic field generating device using a permanent magnet or an electromagnet is installed behind the backing plate 1 that supports the target, and while generating a magnetic field parallel to the target surface, a high-density discharge plasma perpendicular to the magnetic field is generated. A magnetron sputtering device that converges the sputtering material onto the target surface and performs high-speed sputtering is commonly used.

このマグネトロンスパッタ装置は、半導体ウェハーの薄
膜被着等に多用されており、多くの場合、被被着物質は
、アルミニウム及びその合金等のように非磁性材料であ
る。
This magnetron sputtering apparatus is often used for depositing thin films on semiconductor wafers, and in many cases, the material to be deposited is a nonmagnetic material such as aluminum and its alloys.

しかし、今日のコンピューターメモリーにおける磁気デ
ィスク基板には、少なくとも1層の磁性材料からなる層
や非磁性層等を多層に」−ティングする必要があり、非
磁性材ターゲラ1〜と同様に、鉄、ニッケル、あるいは
鉄、ニッケルの合金のごとき磁性材料を、効率よくスパ
ッタリングできることが切望されている。
However, magnetic disk substrates in today's computer memories require multiple layers of at least one layer of magnetic material and non-magnetic layers. There is a strong desire to be able to efficiently sputter magnetic materials such as nickel or alloys of iron and nickel.

マグネトロンスパッタ装置において、ターグツ1〜材料
に強磁性材を用いると、磁界発生装置の磁束がこのター
ゲットの強磁性材にシールドされて、ターゲット表面に
漏洩し難いため、ターゲット材の厚みを2mm〜3 m
m程度に薄くして、漏洩磁束の増加を図る必要があった
In magnetron sputtering equipment, when a ferromagnetic material is used for the target material, the magnetic flux of the magnetic field generator is shielded by the ferromagnetic material of this target and is difficult to leak to the target surface. m
It was necessary to increase the leakage magnetic flux by making it as thin as 500 m.

ところが、かかるスパッタ装置ではもともと、スパッタ
リングに伴なうターゲットのエロージョン域が狭いため
、上記の薄いターゲット材では、短時間で寿命かつき、
スパッタリングの作業性や利用効率の」−から種々の問
題があった。
However, in such sputtering equipment, the erosion area of the target during sputtering is originally narrow, so the thin target material mentioned above has a short lifespan.
There have been various problems with sputtering workability and utilization efficiency.

上述のターゲット材の利用効率の問題を改善するだめに
、ターゲット材のエロージョン域を含む特定位置の材お
1厚みを厚くする技術(特開昭59−232271号)
や、同様に漏洩磁束を考慮してターゲラ!へ材のエロー
ジョン域厚みを厚くする技術(特開昭60−39158
号)か提案されている。しかし、強磁性ターゲット材の
場合は上述した如く、適用に問題が生じる。
In order to improve the above-mentioned problem of utilization efficiency of the target material, a technique of increasing the thickness of the target material at a specific location including the erosion area (Japanese Patent Laid-Open No. 59-232271)
And, similarly, considering the leakage magnetic flux, Targera! Technology for increasing the thickness of the erosion zone of heel material (Japanese Patent Application Laid-Open No. 60-39158
No.) has been proposed. However, in the case of a ferromagnetic target material, problems arise in its application as described above.

また、強磁性ターゲラ1へ材の漏洩磁束を多くするため
に、バッキングプレート上に3mm以下の隙間をあけて
ターゲラ1〜材を多数配置したり(特開昭57−160
113号)、強磁性ターゲット材に一定間隔で31uf
fl以下の深い溝を多数説りる発明(特開昭59−21
1211号)が提案されているが、かかる溝を設(プた
ターゲラ1〜材は加工費が著しく高騰する問題がある。
In addition, in order to increase the leakage magnetic flux of the material to the ferromagnetic targeter 1, a large number of targetera 1 to materials are arranged on the backing plate with a gap of 3 mm or less (Japanese Patent Laid-Open No. 57-160
No. 113), 31uf at regular intervals on the ferromagnetic target material.
Invention that explains many deep grooves below fl
No. 1211) has been proposed, but there is a problem in that the machining cost of the material with such grooves increases significantly.

発明の目的 この発明は、スパッタ時のエロージョン域が広く利用効
率にすぐれたスパッタリング用強磁性ターゲット材を目
的とし、かつ製造容易で安価な強磁性ターゲット材を目
的としている。
OBJECTS OF THE INVENTION The object of the present invention is to provide a ferromagnetic target material for sputtering which has a wide erosion area during sputtering and has excellent utilization efficiency, and which is easy to manufacture and inexpensive.

発明の構成 この発明は、塑性加工可能な磁性材料からなるスパッタ
リング用ターゲット材であり、材料に機械的歪みを加え
、材料自身の保磁力を増加または透磁率を低下させ、ス
パッタ装置の磁気回路に装着時におけるターゲット材の
表面からの漏洩磁束を増加させたことを特徴とするスパ
ッタリング用ターグツ1〜である。
Structure of the Invention The present invention is a sputtering target material made of a magnetic material that can be plastically processed, and which applies mechanical strain to the material to increase its own coercive force or decrease its magnetic permeability, and which can be applied to the magnetic circuit of a sputtering device. Sputtering tags 1 to 1 are characterized by increasing leakage magnetic flux from the surface of the target material when attached.

この発明におけるターゲット材料は、強磁性を有する種
々の金属あるいは合金がコーティング材料に応じて適宜
選定され、また、Fa、 Co、 Niあるいはけい素
鋼、パーマロイ等の塑性変形可能な磁性材料も同様に適
宜選定利用できる。
As the target material in this invention, various ferromagnetic metals or alloys are appropriately selected depending on the coating material, and magnetic materials that can be plastically deformed such as Fa, Co, Ni, silicon steel, and permalloy can also be used. You can select and use as appropriate.

詳述すれば、純Fθ、純Co、 1iliNiのほか、
Fs、C。
In detail, in addition to pure Fθ, pure Co, 1iliNi,
Fs, C.

およびNiのうち少なくとも2種以上の元素よりなる軟
磁性合金、および、上記にCu、 Inn、 Cr、 
Mo。
and a soft magnetic alloy consisting of at least two or more elements among Ni, and Cu, Inn, Cr,
Mo.

W、 Nb、 Ta、丁5. Zy、 Aρ、 Mal
のうち少なくとも1種を0.1wt%〜17wt%含有
の軟磁性合金があり、特に、NLを40wt%〜90v
yt%、好ましくは7(hvt%〜85wt%と、Co
、 CIL、 lln、 Cr、 Mo、 W、 Nb
、 Ta、 Ti。
W, Nb, Ta, Ding5. Zy, Aρ, Mal
There are soft magnetic alloys containing 0.1 wt% to 17 wt% of at least one of these, and in particular, 40 wt% to 90 v of NL.
yt%, preferably 7 (hvt% to 85wt%) and Co
, CIL, lln, Cr, Mo, W, Nb
, Ta, Ti.

Zy、△LMc+のうち少なくとも1種をo、 1vl
lt%〜15wt%含み、残部Fi1よりなる軟磁性合
金や、さらに、FaにSzを0. Iwt%〜5W[%
を含む合金、「eに/Vを0、1wt%〜17wt%を
含む合金等の軟磁性材が適宜選定利用できる。
At least one of Zy, △LMc+ o, 1vl
A soft magnetic alloy containing lt% to 15wt% with the remainder being Fi1, and a soft magnetic alloy containing 0.1 to 15 wt% of Sz to Fa. Iwt%~5W[%
Soft magnetic materials such as alloys containing 0.1 to 17 wt% of /V in e can be appropriately selected and used.

また、機械的歪を加える手段は、圧延、鍛造。In addition, the means of applying mechanical strain are rolling and forging.

プレス、引張等、通常金属材料に適用されるすべての塑
性変形手段が採用できる。さらに、加工温度は、一般的
な加工可能な範囲の温度であればよいが、歪みを効果的
に加えるには、各々の(A利の再結晶温度以下であるこ
とが必要であり、回復温度以下であることが望ましい。
All plastic deformation methods normally applied to metal materials, such as pressing and tensioning, can be employed. Furthermore, the processing temperature may be within a general processable range, but in order to effectively apply strain, it must be below the recrystallization temperature of each (A), and the recovery temperature The following is desirable.

発明の開示と効果 この発明は、スパッタ時のエロージョン域が広く利用効
率にすぐれたスパッタリング用強磁性ターゲット材を目
的に種々検討した結果、冷間圧延したパーマロイからな
るターゲット材が、ターゲット表面からの漏洩磁束が多
く、エロージョン域が広く、スパッタ効率にすぐれるこ
とを知見したものである。
DISCLOSURE AND EFFECTS OF THE INVENTION As a result of various studies aimed at creating a ferromagnetic target material for sputtering that has a wide erosion area during sputtering and is highly efficient in use, the present invention has revealed that a target material made of cold-rolled permalloy has a wide erosion area during sputtering and is highly efficient. It was discovered that the leakage magnetic flux is large, the erosion area is wide, and the sputtering efficiency is excellent.

この発明を、比−Cuパーマロイ(78Ni−4,5M
This invention is based on the ratio -Cu permalloy (78Ni-4,5M
.

=3.5Cu−Fe)を例に説明すると、同一成分のM
=3.5Cu-Fe) as an example, M of the same component
.

−Cuパーマロイを用いて、5mm厚み×125冊幅×
300mm長さのターゲット材を作製し、同一条件でス
パッタリングを行なったところ、第1図に示すごとく、
試料1(熱間圧延材)はエロージョン域が狭く、深く浸
蝕されてほぼ裏面にまで達しているが、試料2(冷間圧
延材)は、エロージョン域が広く、材料厚みの約半分ま
でしか浸蝕されていない。さらにこの試料2のターゲッ
ト材を試料1と同じくエロージョンが裏面に達するまで
使用したところ、試料2は試料1の2倍の利用効率が必
つlこ。
-Using Cu permalloy, 5mm thickness x 125 book width x
When a target material with a length of 300 mm was prepared and sputtering was performed under the same conditions, as shown in Figure 1,
Sample 1 (hot rolled material) has a narrow erosion zone and is deeply eroded, reaching almost the back surface, whereas Sample 2 (cold rolled material) has a wide erosion zone and is eroded only up to about half of the material thickness. It has not been. Furthermore, when the target material of sample 2 was used until the erosion reached the back surface, like sample 1, sample 2 had a utilization efficiency twice that of sample 1.

この試料1は、ターゲット(Aを熱間圧延後に所要寸法
となしたもので、これに対して試料2は熱間圧延後に3
5%圧下率にて冷間圧延し、所要寸法に形成したもので
ある。各試1!31の直流での磁化曲線を第2図と第3
図に示すが、熱間圧延後に空冷した試料1ターゲツ1〜
材は、保磁力が0.590eで最大透磁率は約4500
であり、冷間圧延を行なった試料2のターゲット材は、
保磁ツノが5.00sで最大透磁率は約250であり、
また、500θ磁界での磁束密度850は、試料1では
7.6kQ、試料2が4.9kQであった。
This sample 1 is a target (A) made into the required dimensions after hot rolling, whereas sample 2 is a
It is cold rolled at a rolling reduction of 5% and formed into the required dimensions. Figures 2 and 3 show the magnetization curves under direct current for each trial 1!31.
As shown in the figure, sample 1 target 1 ~ air cooled after hot rolling
The material has a coercive force of 0.590e and a maximum permeability of approximately 4500.
The target material of sample 2 that was cold rolled is:
The coercive horn is 5.00s and the maximum permeability is about 250,
Further, the magnetic flux density 850 in a 500θ magnetic field was 7.6 kQ for sample 1 and 4.9 kQ for sample 2.

ところで、上述の第1図に示す結果が得、られた理由は
、冷間で大きな歪が加えられたパーマロイは軟質磁性材
料であるが、その軟磁性は著しく劣化しており、スパッ
タ装置のターゲラ1〜材として用いた場合、透磁率が小
ざく、また一定の印加磁界での磁束密度が低いため、タ
ーゲット・表面からの漏洩磁束が多くなり、スパッタに
伴なうエロージョン域が増大し、スパッタ効率が向上す
るものと考えられ、他の磁性材料でも同様の機構により
、ターゲット材のスパッタ効率が向上するものと考えら
れる。
By the way, the reason for the results shown in Figure 1 above is that permalloy, which has been subjected to large strains in the cold, is a soft magnetic material, but its soft magnetism has deteriorated significantly, and the target lens of the sputtering equipment When used as material No. 1, the magnetic permeability is small and the magnetic flux density under a constant applied magnetic field is low, so leakage magnetic flux from the target/surface increases, the erosion area accompanying sputtering increases, and the sputtering It is thought that the efficiency is improved, and it is thought that the sputtering efficiency of the target material is improved with other magnetic materials by a similar mechanism.

また、この発明において、冷間圧延の圧下率とスパッタ
効率との関係は、機械的歪の付与により、vJ利の保磁
力の増加または透磁率の低下が得られる程度でよいが、
少なくとも5%は必要でおる。
In addition, in this invention, the relationship between the reduction ratio of cold rolling and the sputtering efficiency may be such that an increase in coercive force or a decrease in magnetic permeability of vJ gain can be obtained by applying mechanical strain.
At least 5% is required.

実験データで説明すると、熱間圧延した5mm厚みのM
o −Cuパーマロイ板より、歪を加えることなく、1
5mmX30mm小片を切出し、これらに10%〜50
%の圧下率で冷間圧延し、各材料の保磁力を測定したと
ころ、第4図の結果を得た。例えば、10%の圧下率で
はその保磁力が約7倍に増加しており、透磁率は保磁力
の増加とともに低下していると考えられ、一定の印加磁
界での磁束密度が低くなり、スパッタ装置の磁気回路に
装着した際に、ターゲット表面の平行方法への漏洩磁束
が多くなり、スパッタに伴なうエロージョン域が増大し
、スパッタ効率が向上するものと考えられる。
To explain using experimental data, hot rolled M with a thickness of 5 mm
1 from the o-Cu permalloy plate without adding strain.
Cut out small pieces of 5mm x 30mm and add 10% to 50%
When the coercive force of each material was measured by cold rolling at a rolling reduction of 1.5%, the results shown in FIG. 4 were obtained. For example, at a rolling reduction of 10%, the coercive force increases approximately 7 times, and it is thought that the magnetic permeability decreases as the coercive force increases, and the magnetic flux density in a constant applied magnetic field decreases, causing spatter. It is thought that when attached to the magnetic circuit of the apparatus, leakage magnetic flux in the parallel direction of the target surface increases, the erosion area accompanying sputtering increases, and sputtering efficiency improves.

詳述した如く、この発明は、パーマロイ等の塑性変型可
能な磁性材料に、例えば冷間圧延を施すことにより、容
易にスパッタ効率を向上させることができ、利用効率に
すぐれた強磁性ターゲット材を安価に提供できる利点が
ある。
As described in detail, the present invention provides a ferromagnetic target material that can easily improve sputtering efficiency by cold rolling a plastically deformable magnetic material such as permalloy, and has excellent utilization efficiency. It has the advantage of being available at a low price.

実施例 実施例1 Moパーマロイ(8ONj −5Mo−Fs) 祠を6
.0mm厚みまで熱間圧延し、その後、グラインダーで
黒皮を除去して5.5mm厚みになし、さらに、3、O
mm厚みまで冷間圧延し、200mmφの円板状ターゲ
ットを作製した。
Examples Example 1 Mo permalloy (8ONj -5Mo-Fs) Shrine 6
.. Hot rolled to a thickness of 0 mm, then removed with a grinder to a thickness of 5.5 mm, and then rolled to a thickness of 3.0 mm.
It was cold rolled to a thickness of mm to produce a disc-shaped target with a diameter of 200 mm.

また、上記の黒皮を除去した5、5mm厚みの熱間圧延
材を、旋盤及び研削盤にて、厚み3.0mmまで削った
のち、200mmφの円板状ターゲットを作製した。
Further, the hot-rolled material with a thickness of 5.5 mm from which the black scale had been removed was ground down to a thickness of 3.0 mm using a lathe and a grinder, and then a disk-shaped target with a diameter of 200 mm was produced.

得られた2種のターゲット材を、市販の8インチ用マグ
ネトロンスパッタ装置に装着し、ターゲット表面の水平
方向の漏洩磁束密度を測定した。
The two types of target materials obtained were mounted on a commercially available 8-inch magnetron sputtering device, and the leakage magnetic flux density in the horizontal direction of the target surface was measured.

測定条件は、ヨーク(1)に組立てられた永久fIIt
石(2)とバッキングプレート(3)に固着されたター
ゲット(4)との距離L(+は5mm、ターゲットの厚
みtは3w+m、磁束密度測定用プローブ(5)の中心
とターゲット(4)表面との距離は2.5mmであった
The measurement conditions were a permanent fIIt assembled on the yoke (1).
The distance L between the stone (2) and the target (4) fixed to the backing plate (3) (+ is 5 mm, the thickness t of the target is 3 W + m, the center of the magnetic flux density measurement probe (5) and the surface of the target (4) The distance between them was 2.5 mm.

また、いずれのターゲットの厚みも、6か所にお【プる
厚み測定値の平均値の差が0.1mm以下であった。
Moreover, the difference in the average value of the thickness measurements taken at six locations was 0.1 mm or less for each target.

漏洩磁束密度の測定結果は、ターゲット中心からの半径
方向距離とターゲット表面水平方向の漏洩磁束密度との
関係のグラフ並びにターゲラ1へ中心からの半径方向距
離との相関関係を示す磁気回路の断面説明図である第5
図に示す。
The leakage magnetic flux density measurement results are shown in a graph of the relationship between the radial distance from the target center and the leakage magnetic flux density in the horizontal direction of the target surface, as well as a cross-sectional explanation of the magnetic circuit showing the correlation between the radial distance from the center and the target laser 1. Figure 5
As shown in the figure.

第5図から明らかなように、本発明ターゲットと従来の
熱間圧延によるターゲット材とでは、漏洩磁束密度のピ
ークはほとんど一致しているが、3mm程度の比較的薄
いターゲット材においても、漏洩磁束の分布が異なり、
本発明ターゲット材のほうが漏洩磁束密度の分布か広く
、プラズマ密度の高い領域が拡がり、エロージョン域の
拡大が可能なことが分る。
As is clear from FIG. 5, the peaks of the leakage magnetic flux density are almost the same between the target of the present invention and the conventional hot-rolled target material, but even in the relatively thin target material of about 3 mm, the leakage magnetic flux The distribution of
It can be seen that the target material of the present invention has a wider distribution of leakage magnetic flux density, expands the region of high plasma density, and can expand the erosion region.

実施例2 Mo −Cuパーマロイ(78Ni −4,5Mo −
3,5Cu−Fe)材を6.0mm厚みまで熱間圧延し
、その後、グラインダーで黒皮を除去して5.5w+m
厚みになし、ざらに、4.6+nm厚みまで冷間圧延し
、100mmφの円板状ターゲラi〜を作製した。
Example 2 Mo-Cu permalloy (78Ni-4,5Mo-
3,5Cu-Fe) material was hot rolled to a thickness of 6.0mm, and then the black scale was removed using a grinder to reduce the thickness to 5.5w+m.
The material was cold-rolled to a thickness of 4.6+ nm without any thickness, and a disk-shaped Targera i~ with a diameter of 100 mm was produced.

また、上記の黒皮を除去した5、5+mn厚みの熱間圧
延材を、旋盤及び研削盤にて、厚み4.6mmまで削っ
たのち、100mmφの円板状ターゲラ1〜を作製した
Further, the hot-rolled material having a thickness of 5,5+mn from which the black scale had been removed was ground to a thickness of 4.6 mm using a lathe and a grinder, and then disc-shaped Targera 1 to 100 mmφ were produced.

得られた2種のターゲット材を、市販の4インヂ用マグ
ネ1ヘロンスパツタ装置に装着し、ターゲット表面の水
平方向の漏洩磁束密度を測定した。
The two types of target materials obtained were attached to a commercially available 4-inch Magne 1 Heron sputtering device, and the leakage magnetic flux density in the horizontal direction of the target surface was measured.

測定条件は、ヨーク(1)に組立てられた永久磁石(2
)とバッキングプレー1− (3)に固着されたターゲ
ット(4)との距離1−gは5mm、ターゲラ1への厚
みtは4.6mm、磁束密度測定用プローブ(5)の中
心とターゲラ1〜(4)表面との距離は2.5mmでお
った。
The measurement conditions were a permanent magnet (2) assembled on a yoke (1).
) and the target (4) fixed on the backing plate 1-(3), the distance 1-g is 5 mm, the thickness t to the target plate 1 is 4.6 mm, and the distance between the center of the magnetic flux density measurement probe (5) and the target plate 1 is 5 mm. (4) The distance to the surface was 2.5 mm.

また、いずれのターゲットの厚みも、6か所における厚
み測定値の平均値の差が0.1+nm以下であった。
Moreover, the difference in the average value of the thickness measurements at six locations was 0.1+nm or less for the thickness of each target.

漏洩磁束密度の測定結果は、第6図に示す如く、本発明
ターゲットと従来熱間圧延によるターゲット材とでは、
漏洩磁束密度のピークはほとんど一致しているが、漏洩
磁束の分布が異なり、本発明ターゲット材のほうが漏洩
磁束密度の分布か広く、プラズマ密度の高い領域が拡が
り、エロージョン域の拡大が可能なことが分る。
As shown in Fig. 6, the measurement results of leakage magnetic flux density are as follows for the target of the present invention and the conventional hot-rolled target material.
Although the peaks of the leakage magnetic flux density are almost the same, the distribution of the leakage magnetic flux is different, and the target material of the present invention has a wider distribution of the leakage magnetic flux density, and the area with high plasma density expands, making it possible to expand the erosion area. I understand.

また、一般に5 X 10−3丁orrのAT雰囲気で
、スパッタリングには磁束密度は1000以上必要であ
るとされているが、第6図において、かかる1000以
上の領域は、本発明ターゲット材は従来ターゲットに比
較して25%も拡大してあり、約16%の圧下率で冷間
圧延した本発明ターゲット材は、スパッタ効率の向上に
すこぶる有効なことが分かる。
In addition, it is generally said that a magnetic flux density of 1000 or more is required for sputtering in an AT atmosphere of 5 x 10-3 orr, but in Fig. 6, the area of 1000 or more is It can be seen that the target material of the present invention, which is expanded by 25% compared to the target and cold-rolled at a rolling reduction of about 16%, is extremely effective in improving sputtering efficiency.

実施例3 純鉄材を5.0mm厚みまで熱間圧延し、その後、グラ
インダーで黒皮を除去して4.5mm厚みになし、さら
に、3.0mm厚みまで冷間圧延し、100mmφの円
板状ターゲットを作製した。
Example 3 A pure iron material was hot rolled to a thickness of 5.0 mm, then the black scale was removed using a grinder to a thickness of 4.5 mm, and then cold rolled to a thickness of 3.0 mm to form a disc shape of 100 mmφ. A target was created.

また、上記の黒皮を除去した4、5mm厚みの熱間圧延
材を、旋盤及び研削盤にて、厚み3.0mmまで削った
のち、100mmφの円板状ターゲットを作製した。
Further, the hot-rolled material with a thickness of 4 to 5 mm from which the black scale had been removed was ground down to a thickness of 3.0 mm using a lathe and a grinder, and then a disk-shaped target with a diameter of 100 mm was produced.

得られた2種のターゲット材を、市販の4インチ用マグ
ネトロンスパッタ装置に装着し、ターゲット表面の水平
方向の漏洩磁束密度を測定した。
The two types of target materials obtained were mounted on a commercially available 4-inch magnetron sputtering device, and the leakage magnetic flux density in the horizontal direction of the target surface was measured.

測定条件は、ヨーク(1)に組立てられた永久磁石(2
)とバッキングプレート(3)に固着されたターゲラト
(4)との距離Lgは5mm、ターゲットの厚みtは3
mm、磁束密度測定用プローブ(5)の中心とターゲッ
ト(4)表面との距離は2.5mmであった。
The measurement conditions were a permanent magnet (2) assembled on a yoke (1).
) and the target rat (4) fixed to the backing plate (3), the distance Lg is 5 mm, and the thickness t of the target is 3 mm.
mm, and the distance between the center of the magnetic flux density measuring probe (5) and the surface of the target (4) was 2.5 mm.

また、いずれのターゲットの厚みも、6か所における厚
み測定値の平均値の差が0.1mm以下であった。
Moreover, the difference in the average value of the thickness measurements at six locations was 0.1 mm or less for each target.

漏洩磁束密度の測定結果は、ターゲット中心からの半径
方向距離とターゲット表面水平方向の漏洩磁束密度との
関係のグラフ並びにターゲット中心からの半径方向距離
との相関関係を示す磁気回路の断面説明図である第7図
に示す。
The leakage magnetic flux density measurement results are shown in a graph of the relationship between the radial distance from the target center and the leakage magnetic flux density in the horizontal direction of the target surface, as well as a cross-sectional explanatory diagram of the magnetic circuit showing the correlation with the radial distance from the target center. As shown in FIG.

第7図から明らかなように、本発明ターゲットと従来熱
間圧延によるターゲット材とでは、漏洩磁束密度のピー
クはほとんど一致しているが。漏洩磁束の分布が異なり
、本発明ターゲット材のほうが漏洩磁束密度の分布か広
く、プラズマ密度の高い領域が拡がり、エロージョン域
の拡大が可能なことが分る。
As is clear from FIG. 7, the leakage magnetic flux density peaks of the target of the present invention and the conventional hot-rolled target material are almost the same. It can be seen that the distribution of leakage magnetic flux is different, and the target material of the present invention has a wider distribution of leakage magnetic flux density, that the region of high plasma density is expanded, and that the erosion region can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はターゲットの浸蝕状況を示す断面説明図で必る
。第2図と第3図はターゲット材料の直流での磁化曲線
を示すグラフであり、第2図は熱間圧延材によるターゲ
ット、第3図はこの発明によるターゲットの場合を示す
。第4図は冷間圧下率とターゲットvJ利の保磁力との
関係を示すグラフである。第5図から第7図は実施例に
おけるターゲット中心からの半径方向の距離とターゲッ
ト表面水平方向の漏洩磁束密度との関係のグラフ並びに
ターゲット中心からの半径方向の距離との相関関係を示
す磁気回路の断面説明図である。 1・・・ヨーク、2・・・永久磁石、3・・・バッキン
グプレート、4・・・ターグツ1〜.5・・・プルーブ
。 出願人  住友特殊金属株式会社 第1図
FIG. 1 is a cross-sectional explanatory diagram showing the erosion state of the target. FIGS. 2 and 3 are graphs showing magnetization curves of target materials under direct current, with FIG. 2 showing a target made of a hot-rolled material, and FIG. 3 showing a case of a target according to the present invention. FIG. 4 is a graph showing the relationship between the cold rolling reduction rate and the coercive force of the target vJ yield. Figures 5 to 7 are graphs of the relationship between the radial distance from the target center and the leakage magnetic flux density in the horizontal direction of the target surface, and magnetic circuits showing the correlation between the radial distance from the target center and the magnetic flux density in the horizontal direction of the target surface. FIG. 1...Yoke, 2...Permanent magnet, 3...Backing plate, 4...Tagtsu 1~. 5... Probe. Applicant Sumitomo Special Metals Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 塑性加工可能な磁性材料からなるスパッタリング用
ターゲット材であり、材料に機械的歪みを加え、材料自
身の保磁力を増加または透磁率を低下させ、スパッタ装
置の磁気回路に装着時におけるターゲット材の表面から
の漏洩磁束を増加させたことを特徴とするスパッタリン
グ用ターゲット材。
1 A sputtering target material made of a magnetic material that can be plastically processed, which applies mechanical strain to the material to increase its own coercive force or decrease its magnetic permeability, thereby improving the target material when attached to the magnetic circuit of a sputtering device. A sputtering target material characterized by increased leakage magnetic flux from the surface.
JP9719285A 1985-05-08 1985-05-08 Target material for sputtering Pending JPS61257473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9719285A JPS61257473A (en) 1985-05-08 1985-05-08 Target material for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9719285A JPS61257473A (en) 1985-05-08 1985-05-08 Target material for sputtering

Publications (1)

Publication Number Publication Date
JPS61257473A true JPS61257473A (en) 1986-11-14

Family

ID=14185719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9719285A Pending JPS61257473A (en) 1985-05-08 1985-05-08 Target material for sputtering

Country Status (1)

Country Link
JP (1) JPS61257473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314864A (en) * 1986-07-08 1988-01-22 Ulvac Corp Co alloy sputtering target and its production
CN102453882A (en) * 2010-11-05 2012-05-16 信越化学工业株式会社 Magnetic circuit for sputtering apparatus
RU207556U1 (en) * 2021-08-10 2021-11-01 федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» (СПбГЭТУ «ЛЭТИ») Sputtered magnetron assembly for deposition of a FexNi1-x binary alloy film in the range 0.23 <x <0.27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113759A (en) * 1984-11-09 1986-05-31 Matsushita Electric Ind Co Ltd Target for sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113759A (en) * 1984-11-09 1986-05-31 Matsushita Electric Ind Co Ltd Target for sputtering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314864A (en) * 1986-07-08 1988-01-22 Ulvac Corp Co alloy sputtering target and its production
JPH0249384B2 (en) * 1986-07-08 1990-10-30 Ulvac Corp
CN102453882A (en) * 2010-11-05 2012-05-16 信越化学工业株式会社 Magnetic circuit for sputtering apparatus
RU207556U1 (en) * 2021-08-10 2021-11-01 федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» (СПбГЭТУ «ЛЭТИ») Sputtered magnetron assembly for deposition of a FexNi1-x binary alloy film in the range 0.23 <x <0.27

Similar Documents

Publication Publication Date Title
US6190516B1 (en) High magnetic flux sputter targets with varied magnetic permeability in selected regions
US5685959A (en) Cathode assembly having rotating magnetic-field shunt and method of making magnetic recording media
US5876576A (en) Apparatus for sputtering magnetic target materials
JPH08311642A (en) Magnetron sputtering method and sputtering target
US7347353B2 (en) Method for connecting magnetic substance target to backing plate, and magnetic substance target
EP0333101B1 (en) Process for manufacturing magnetic recording material
JPS61257473A (en) Target material for sputtering
JPH0794709B2 (en) Target for magnetron cathode sputtering device
JP2000268357A (en) Method and system for producing magnetic recording medium
JPH11193457A (en) Magnetic substance sputtering target
JPS61113759A (en) Target for sputtering
JPS583975A (en) Method and device for forming film by sputtering
US4476000A (en) Method of making a magnetic film target for sputtering
JPH031810B2 (en)
JPS63118067A (en) Target for sputtering
IE20000425A1 (en) Low permeability non-planar ferromagnetic sputter targets
JP4698779B2 (en) Magnetic sputtering target and manufacturing method thereof
JPS6338576A (en) Sputtering device
US4410406A (en) Process for preparing magnetic recording medium
JP4353323B2 (en) Ferromagnetic target backing plate and ferromagnetic target / backing plate assembly
JPS5813622B2 (en) Magnetron type sputtering equipment
JPS5887272A (en) Planar magnetron sputtering device
JPH0625845A (en) Sputtering device
JPS63244727A (en) Manufacture of target for sputtering
JPH06264218A (en) Sputtering target