JP2624727B2 - Method for producing Co-Ni-Cr alloy target material - Google Patents

Method for producing Co-Ni-Cr alloy target material

Info

Publication number
JP2624727B2
JP2624727B2 JP62290364A JP29036487A JP2624727B2 JP 2624727 B2 JP2624727 B2 JP 2624727B2 JP 62290364 A JP62290364 A JP 62290364A JP 29036487 A JP29036487 A JP 29036487A JP 2624727 B2 JP2624727 B2 JP 2624727B2
Authority
JP
Japan
Prior art keywords
target material
sputtering
working
producing
strain relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290364A
Other languages
Japanese (ja)
Other versions
JPH01132757A (en
Inventor
丈夫 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62290364A priority Critical patent/JP2624727B2/en
Publication of JPH01132757A publication Critical patent/JPH01132757A/en
Application granted granted Critical
Publication of JP2624727B2 publication Critical patent/JP2624727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば、ハードディスクなどの磁気記録媒体
をスパッター法、特にマグネトロンスパッタ装置により
製造する時に使われるCo−Ni−Cr系合金ターゲット材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to, for example, the production of a Co—Ni—Cr alloy target material used for producing a magnetic recording medium such as a hard disk by a sputtering method, in particular, a magnetron sputtering apparatus. It is about the method.

〔従来の技術〕[Conventional technology]

一般にマグネトロン・スパッタリング法は、ターゲッ
トの裏側に磁石をセットし、その磁界によってプラズマ
をターゲット表面に高密度で収束させることによってス
パッタリング速度を大幅に向上させるものである。
In general, in the magnetron sputtering method, a magnet is set on the back side of a target, and the magnetic field converges the plasma on the target surface at a high density, thereby greatly increasing the sputtering rate.

このマグネトロン・スパッタリング法をCo−Ni−Cr系
合金のような強磁性体をターゲット材として用いると、
ターゲット材の裏側にセットした磁石から発生する磁束
はほとんど強磁性体であるターゲットに吸収されプラズ
マが封じ込められる部分はほとんどないか、あっても極
くわずかになってしまう。したがって、この場合にはタ
ーゲット材の非常に限られた狭い部分からのみスパッタ
リングされるのでスパッタリング効率が悪くなり、また
ターゲット材も局部的に消耗してしまう。
When this magnetron sputtering method uses a ferromagnetic material such as a Co-Ni-Cr alloy as a target material,
The magnetic flux generated from the magnet set on the back side of the target material is absorbed by the target, which is almost ferromagnetic, and there is little or no portion where the plasma is confined. Therefore, in this case, sputtering is performed only from a very limited narrow portion of the target material, so that sputtering efficiency is deteriorated and the target material is locally consumed.

このため、強磁性体をターゲット材とする場合には、
磁力の強い磁石を用いターゲット材を磁気的に飽和さ
せ、残りの磁束をターゲット材の表面から漏洩せざるを
得ない状態にしておけばよい。しかし、この場合であっ
ても、ターゲット材の板厚が薄い場合には、ターゲット
材が磁気的に飽和しやすく問題ないが、ターゲット材の
板厚が厚くなると磁気的に飽和しにくくなり、良好なス
パッタリングが行なわれなくなる。
Therefore, when a ferromagnetic material is used as a target material,
The target material may be magnetically saturated by using a magnet having a strong magnetic force so that the remaining magnetic flux must be leaked from the surface of the target material. However, even in this case, when the thickness of the target material is small, the target material is likely to be magnetically saturated, and there is no problem. No sputtering is performed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来、Co−Ni−Cr系合金ターゲット材は、一般に真空
誘導炉で溶解、鋳造された鋳塊を、もしくはその鋳塊に
熱間加工を施して得られる鍛造・圧延材を歪取り焼鈍を
施した後に機械加工によって所定の寸法に仕上げられて
いた。
Conventionally, a Co-Ni-Cr alloy target material is generally subjected to strain relief annealing of an ingot melted and cast in a vacuum induction furnace or a forged / rolled material obtained by hot working the ingot. After finishing, it was finished to predetermined dimensions by machining.

前記の熱間加工を施さない鋳塊から製造されたターゲ
ット材はスパッタ時に被エッチング性が不均一になる傾
向があり、特に量産用大型ターゲットには不適である。
また結晶粒もスパッタが進むにつれて変化し、経時的に
スパッタ速度に差が出る等の問題があった。これらの問
題のかなりの部分を解決したのが、上記の鍛造・圧延な
どの熱間加工の後で歪取り焼鈍を施したターゲット材で
ある。
The target material manufactured from the ingot that is not subjected to the hot working tends to have a non-uniform etching property at the time of sputtering, and is particularly unsuitable for a large-scale target for mass production.
Further, the crystal grains also change as the sputtering progresses, and there is a problem that the sputtering speed varies over time. What solved a considerable part of these problems was a target material subjected to strain relief annealing after hot working such as forging and rolling.

しかしながら、このようなターゲット材であっても前
述のように板厚が厚くなるとターゲット材が磁気的に飽
和しにくくなり、良好なスパッタリングが行なわれなく
なるのである。
However, even with such a target material, when the plate thickness is large as described above, the target material is hard to be magnetically saturated, and good sputtering cannot be performed.

本発明は、板厚の厚い場合であっても良好なスパッタ
リングの行なえるCo−Ni−Cr系合金ターゲット材の製造
方法の提供を目的とする。
An object of the present invention is to provide a method for producing a Co—Ni—Cr alloy target material that can perform good sputtering even when the plate thickness is large.

〔問題点を解決するための手段〕[Means for solving the problem]

前述のように、マグネトロン・スパッタリング法で良
好なスパッタリングを行なうためには、ターゲット材表
面に漏洩磁束による磁界が生じている必要があり、その
ために強い磁石を用いる等の方策が講じられていたが、
板厚が厚い場合には、ターゲット材が飽和しにくくな
り、良好なスパッタリングを行なうための十分な磁界が
得られなかった。
As described above, in order to perform good sputtering by the magnetron sputtering method, it is necessary to generate a magnetic field due to a leakage magnetic flux on the surface of the target material, and for that purpose, measures such as using a strong magnet have been taken. ,
When the plate thickness is large, the target material is hardly saturated, and a sufficient magnetic field for performing good sputtering cannot be obtained.

本発明者は以上の事項に鑑み、ターゲット材中を磁束
が通過(ターゲット材中のみを通過すること)しにくい
状態、換言するとターゲット材の最大透磁率(以後μm
と記す)を小さくすることにより、磁束をターゲット材
表面から漏洩させて磁界を確保することを検討し、本発
明を完成するに至ったのである。
In view of the above, the present inventor considers a state in which the magnetic flux hardly passes through the target material (passes only through the target material), in other words, the maximum magnetic permeability of the target material (hereinafter, μm
The present invention was completed by studying how to make the magnetic flux leak from the surface of the target material by reducing the magnetic field of the target material, thereby securing a magnetic field.

すなわち本発明は、前述の熱間加工、歪取り焼鈍を施
した後に加工率10〜70%で冷間加工を施し、次いで600
〜900℃の温度範囲で歪取り焼鈍することを特徴とするC
o−Ni−Cr系合金ターゲット材の製造方法である。
That is, in the present invention, after the above-described hot working and strain relief annealing, cold working is performed at a working rate of 10 to 70%, and then 600
C characterized by strain relief annealing in the temperature range of ~ 900 ° C
This is a method for producing an o-Ni-Cr alloy target material.

本発明における冷間加工はμmを小さくする効果を有
するものである。すなわち、μmは材料中の内部エネル
ギーを大きくすれば低下するものであるが、冷間加工は
ターゲット材中に内部歪を導入し、内部欠陥を増大し
て、μmを低下させるために実施されるのである。
Cold working in the present invention has the effect of reducing μm. That is, μm is reduced by increasing the internal energy in the material, but cold working is performed to introduce internal strain in the target material, increase internal defects, and reduce μm. It is.

冷間加工率が大であるほど冷間加工後のμmは小さく
することができる。しかし、追って行なわれる歪取り焼
鈍により、回復現象で内部歪が減少するためμmは大き
くなる。この回復現象は熱処理温度が高いほど、また同
じ熱処理温度ならば材料内部に導入された欠陥の数が多
いほど生じやすくなる。したがって、歪取り焼鈍後にお
いても所望する低μmを得るためには冷間加工率に一定
の上限を設ける必要がある。本発明では以上の事項を考
慮して冷間加工率の上限を70%とし、一方加工率は10%
未満ではμm低下に十分な効果が得られないため10%以
上とした。
The larger the cold working ratio, the smaller the μm after cold working. However, the subsequent strain relief annealing reduces the internal strain due to the recovery phenomenon, so that μm increases. This recovery phenomenon is more likely to occur as the heat treatment temperature is higher, or at the same heat treatment temperature, as the number of defects introduced into the material is larger. Therefore, in order to obtain a desired low μm even after the strain relief annealing, it is necessary to set a certain upper limit for the cold working ratio. In the present invention, taking the above into consideration, the upper limit of the cold working rate is set to 70%, while the working rate is set to 10%.
If it is less than 10%, the effect of reducing μm cannot be sufficiently obtained.

次に歪取り焼鈍について説明する。 Next, the strain relief annealing will be described.

冷間加工によってμmを低下させることができること
は前述のとおりであり、冷間加工ままの状態でターゲッ
ト材に供されるのが望ましいのは言うまでもない。しか
しながら、冷間加工ままの状態では所望するターゲット
材の形状、寸法に機械加工した場合に変形が生じてしま
う。そこで本発明においては冷間加工後に歪取り焼鈍を
実施するのである。温度範囲は、500℃未満では歪取り
効果が十分でなく、一方900℃を越えると前述のよう
に、内部歪の回復現象が顕著となるために500〜900℃と
した。なお、熱処理の保持時間は材料が概略均熱化させ
るに十分であれば良く、対象材料の大きさ等により任意
に選択される。加熱後の冷却は徐冷されればよく、炉冷
または炉外の空冷等が採用される。
The fact that μm can be reduced by cold working is as described above, and it is needless to say that it is desirable to provide the target material as it is in cold working. However, in the state of cold working, deformation occurs when machining is performed to the desired shape and dimensions of the target material. Therefore, in the present invention, the strain relief annealing is performed after the cold working. If the temperature range is less than 500 ° C., the effect of removing strain is not sufficient, while if it exceeds 900 ° C., as described above, the internal strain recovery phenomenon becomes remarkable, so that the temperature range is 500 to 900 ° C. Note that the holding time of the heat treatment may be sufficient as long as the material is substantially soaked, and is arbitrarily selected according to the size of the target material. Cooling after heating may be performed by slow cooling, and furnace cooling or air cooling outside the furnace is employed.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 Hereinafter, the present invention will be described based on examples.

実施例1 原子%で62.5Co−30Ni−7.5Crの30m/m×200m/m×400m
/m大きさのシートバーを鍛造で製造した。これを、1130
℃に加熱し、15m/m×400m/m×400m/mに、熱間圧延した
のち、1130℃×15分間歪取りのための熱処理をした。
Example 1 30m / m x 200m / m x 400m of 62.5Co-30Ni-7.5Cr in atomic%
/ m sheet bar was manufactured by forging. This is 1130
After heating to 15 ° C. and hot rolling to 15 m / m × 400 m / m × 400 m / m, heat treatment was performed at 1130 ° C. × 15 minutes for straightening.

これを4等分し、減面率が10%、30%、50%、70%、
80%となるまで、室温で冷間圧延をした。
This is divided into four equal parts, and the area reduction rate is 10%, 30%, 50%, 70%,
Cold rolling was performed at room temperature until it reached 80%.

この冷間圧延ままの材料およびその材料を600℃×1Hr
後炉冷の処理をした材料の、結晶粒度と、硬さ(Hv)
は、第1表に示す通りである。
This as-cold-rolled material and its material are 600 ℃ × 1Hr
Grain size and hardness (Hv) of post-furnace cooled material
Is as shown in Table 1.

また、第1表のNo.1〜4からμm測定用のリングを機
械加工して、その特性を調べた。結果を第1図に示す。
Further, the rings for μm measurement were machined from Nos. 1 to 4 in Table 1 and their characteristics were examined. The results are shown in FIG.

第1図から、加工率が10〜70%の範囲にあれば最大透
磁率(μm)を低く規制できることが理解される。最大
透磁率(μm)を低く規制するためには、歪取り焼鈍と
の兼ね合いから低い加工率を選択すべきであるが、この
場合、第1表に示されるように、スパッタ特性に悪影響
があると考えられる結晶粒がやや粗粒となる点で不利と
なる。したがって、必要に応じてこの点を考慮し加工率
を選択することが望ましい。
From FIG. 1, it is understood that the maximum magnetic permeability (μm) can be controlled to be low if the working ratio is in the range of 10 to 70%. In order to restrict the maximum magnetic permeability (μm) to a low value, a low processing rate should be selected in consideration of the strain relief annealing, but in this case, as shown in Table 1, there is an adverse effect on the sputtering characteristics. This is disadvantageous in that the crystal grains considered to be slightly coarser. Therefore, it is desirable to select a processing rate in consideration of this point as needed.

実施例2 実施例1と同様に熱間圧延、熱処理を施した材料を加
工率50%で冷間圧延し、第1表に示す種々の温度で熱処
理を施した。
Example 2 A material subjected to hot rolling and heat treatment in the same manner as in Example 1 was cold-rolled at a working ratio of 50%, and heat-treated at various temperatures shown in Table 1.

実施例1と同様にμmを測定した結果も合せて第2表
に示す。
Table 2 also shows the results of measurement of μm as in Example 1.

熱処理温度が高くなるにつれ、μmが増大し、900℃
を越えると本発明の目的に反する結果となる。
As heat treatment temperature increases, μm increases, 900 ° C
If it exceeds, the result is contrary to the object of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明のように、本発明によると最大透磁率(μ
m)を低く規制することができるため、Co−Ni−Cr系合
金ターゲット材の板厚を厚くした場合であっても、漏洩
磁束による磁界が確保され良好なスパッタリングが行な
える。
As described above, according to the present invention, the maximum magnetic permeability (μ
m) can be regulated low, so that even when the thickness of the Co—Ni—Cr alloy target material is increased, a magnetic field due to the leakage magnetic flux is ensured and good sputtering can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、600℃×1Hr歪取り焼鈍後の冷間加工率と最大
透磁率の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the cold work rate after 600 ° C. × 1 Hr strain relief annealing and the maximum magnetic permeability.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱間加工後、歪取り焼鈍を施し、次いで加
工率10〜70%の冷間加工を行った後、温度500〜900℃で
歪取り焼鈍することを特徴とするCo−Ni−Cr系合金ター
ゲット材の製造方法。
1. Co-Ni characterized by performing strain relief annealing after hot working, then performing cold working at a working ratio of 10 to 70%, and then performing strain relief annealing at a temperature of 500 to 900 ° C. -A method for producing a Cr-based alloy target material.
JP62290364A 1987-11-17 1987-11-17 Method for producing Co-Ni-Cr alloy target material Expired - Lifetime JP2624727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290364A JP2624727B2 (en) 1987-11-17 1987-11-17 Method for producing Co-Ni-Cr alloy target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290364A JP2624727B2 (en) 1987-11-17 1987-11-17 Method for producing Co-Ni-Cr alloy target material

Publications (2)

Publication Number Publication Date
JPH01132757A JPH01132757A (en) 1989-05-25
JP2624727B2 true JP2624727B2 (en) 1997-06-25

Family

ID=17755076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290364A Expired - Lifetime JP2624727B2 (en) 1987-11-17 1987-11-17 Method for producing Co-Ni-Cr alloy target material

Country Status (1)

Country Link
JP (1) JP2624727B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001286668A1 (en) * 2000-08-21 2002-03-04 Honeywell International, Inc. Sputtering targets
US6497797B1 (en) 2000-08-21 2002-12-24 Honeywell International Inc. Methods of forming sputtering targets, and sputtering targets formed thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244727A (en) * 1987-03-31 1988-10-12 Nkk Corp Manufacture of target for sputtering

Also Published As

Publication number Publication date
JPH01132757A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
JP4963037B2 (en) Cobalt target for sputtering and manufacturing method thereof
JPH06104120A (en) Sputtering target for magnetic recording medium and its production
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPWO2005045090A1 (en) Tantalum sputtering target
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
US3743550A (en) Alloys for magnetic recording-reproducing heads
GB2088415A (en) Amorphous magnetic alloys
US3089795A (en) Method for producing fiber texture and cube-texture sheets of iron-base alloys
JP2624727B2 (en) Method for producing Co-Ni-Cr alloy target material
JP3294029B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
US2799602A (en) Process for producing stainless steel
EP0877825B1 (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
US3144363A (en) Process for producing oriented silicon steel and the product thereof
Xu et al. Tracing the recrystallization of warm temper-rolled Fe–6.5 wt% Si non-oriented electrical steel using a quasi in situ EBSD technique
JPS58123848A (en) Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JP3972719B2 (en) Method for producing Co-based sputtering target
JPS61113759A (en) Target for sputtering
JPH03115562A (en) Production of sputtering target material
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPH03115564A (en) Production of sputtering target material
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPH11222671A (en) Target for sputtering and its production
US1915766A (en) Manufacture of magnetic alloys
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method