JPS6111197A - Control device for air flow rate for sewage treatment plant - Google Patents

Control device for air flow rate for sewage treatment plant

Info

Publication number
JPS6111197A
JPS6111197A JP59130129A JP13012984A JPS6111197A JP S6111197 A JPS6111197 A JP S6111197A JP 59130129 A JP59130129 A JP 59130129A JP 13012984 A JP13012984 A JP 13012984A JP S6111197 A JPS6111197 A JP S6111197A
Authority
JP
Japan
Prior art keywords
air
aeration
aeration tank
tank
utilization rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130129A
Other languages
Japanese (ja)
Other versions
JPH05118B2 (en
Inventor
Itaru Takase
高瀬 格
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59130129A priority Critical patent/JPS6111197A/en
Publication of JPS6111197A publication Critical patent/JPS6111197A/en
Publication of JPH05118B2 publication Critical patent/JPH05118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To reduce the cost of driving power by dividing air diffusing pipes for feeding air to an aeration tank to plural air diffusing pipe groups of with which the flow rates are adjustable, providing devices for measuring the rate of utilizing oxygen to the respective air diffusing pipe groups and providing an arithmetic part to the device. CONSTITUTION:Sewage flows through a pipeline A into the aeration tank 1 and is mixed with the return sludge returned from a settling basin B through a pipeline C. Air for aeration is fed from the plural air diffusing pipe groups 2 via respective flow rate control valves 3 to the tank 1 and the air flow rate over the entire part is controlled by a blower 4 and a flow rate control valve 5. A water temp. measuring device 6 and sample selector valves 7 which can make sampling with each of the air diffusing pipes and a sampling pump 8 are provided to the tank 1. The rate of utilizing oxygen is measured by each number of the air diffusing pipes.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、活性汚泥を用いた汚水処理プラントの曝気槽
への送風量を、硝化反応が生じない範囲で効率的に制御
する汚水処理プラントの送風量制御装置に関するもので
ある。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is directed to a sewage treatment plant that efficiently controls the amount of air blown to an aeration tank in a sewage treatment plant using activated sludge to the extent that no nitrification reaction occurs. The present invention relates to an air flow rate control device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

活性汚泥法は有機性廃水(以下汚水と呼ぶ)の生物処理
法の一種であシ、曝気槽と沈殿池を用いている。汚水は
沈砂、前曝気、沈殿などの一次処理を受けたあと、曝気
種口流入し、曝気槽内の活性汚泥と混合する。
The activated sludge method is a type of biological treatment method for organic wastewater (hereinafter referred to as sewage), and uses an aeration tank and a settling tank. After the sewage undergoes primary treatment such as settling, pre-aeration, and sedimentation, it flows into the aeration port and mixes with activated sludge in the aeration tank.

曝気槽には空気が吹込まれるので、活性汚泥は汚水中の
有機物を吸着資化して増殖し、これによって汚水が処理
される。
Since air is blown into the aeration tank, activated sludge adsorbs and assimilates organic matter in the sewage and multiplies, thereby treating the sewage.

処理された汚水は沈殿池に流入して固液分離され、分離
された活性汚泥の大部分は曝気槽に返送されて再利用さ
れ、残部は余剰汚泥として外部に引抜かれる。
The treated sewage flows into a settling tank and is separated into solid and liquid. Most of the separated activated sludge is returned to the aeration tank and reused, and the remainder is extracted outside as surplus sludge.

活性汚泥法において、汚水の処理効率を安定C二維持す
るためには、活性汚泥の状態を適正に保持すると共に曝
気槽への送風量を適正に制御する必要がある。
In the activated sludge method, in order to maintain stable wastewater treatment efficiency, it is necessary to properly maintain the state of activated sludge and to appropriately control the amount of air blown to the aeration tank.

活性汚泥法の処理過程は、有機物の吸着、 BODの酸
化、同化1体内呼吸、硝化がら成り、これらは次の反応
式によって表わすことができる。
The treatment process in the activated sludge method consists of adsorption of organic matter, oxidation of BOD, assimilation, internal respiration, and nitrification, which can be expressed by the following reaction equation.

すなわち例えば活性汚泥なC5H7NO2、有機物をC
x Hy Ozとすると、有機物の吸着は、C5H7N
O2+ CXI(YOZ−+C5H7NO2・CxHy
Oz  −(1)BODの酸化は YZ      Y CXHYO2+(Xi −子)Q2→XCO2+21(
20−ΔH+・+  (2)同化は CxHyOz+NH3+Oz→(4ffllfl物質)
+CO2+ル0−41(+++ (3)体内呼吸は (細胞物質)+02→Cot + HtO+ NHs−
ΔH・・・ (4)硝化は 側(、+’02→NO2−+H,0+2H・・・ (5
)NO! +  zOt→NO3・・・(6)となる。
For example, activated sludge C5H7NO2, organic matter C
x Hy Oz, the adsorption of organic matter is C5H7N
O2+ CXI(YOZ-+C5H7NO2・CxHy
The oxidation of Oz - (1) BOD is YZ Y CXHYO2+ (Xi - child) Q2 → XCO2 + 21 (
20-ΔH+・+ (2) Assimilation is CxHyOz+NH3+Oz→(4ffllfl substance)
+CO2+ Le 0-41 (+++ (3) Internal respiration is (cell matter) +02 → Cot + HtO+ NHs-
ΔH... (4) Nitrification is on the side (, +'02→NO2-+H, 0+2H... (5
)NO! + zOt→NO3...(6).

汚水処理では通常の過程では硝化への進行は少ないが、
負荷が低いときや長時間曝気したときなどは硝化へ進行
することが多い。
In sewage treatment, progress to nitrification is small in the normal process, but
Nitrification often progresses when the load is low or when aeration is carried out for a long time.

曝気槽の送風量制御には、従来から曝気槽内の溶存酸素
濃度が一定値になるような所謂DO一定制御が用いられ
ているが、上述のように、負荷の低いときや、水量が少
なくて曝気が過度になるときや、夏季仏水温が高くて反
応速度が速いときには・5、硝化反応が発生し、上記(
5)式、(6)式に示すようにNH4の1分子が酸素2
分子をとりこむので、酸素要求量が急激に増加し、従っ
てDo一定制御では、送風量が増加する。
Conventionally, so-called constant DO control, which maintains the dissolved oxygen concentration in the aeration tank at a constant value, has been used to control the air flow rate in the aeration tank, but as mentioned above, when the load is low or when the water volume is low, When aeration becomes excessive, or when the water temperature in summer is high and the reaction rate is fast, the nitrification reaction occurs, and the above (
As shown in equations 5) and 6, one molecule of NH4 is oxygen 2
Since molecules are taken in, the amount of oxygen required increases rapidly, and therefore, in constant Do control, the amount of air blown increases.

また硝化反応が発生すると、沈殿池で活性汚泥が沈降濃
縮されるとき;:嫌気性条件(−さらされ1脱窒素反応
が起シ、窒素ガスの気泡が発生して汚泥(−付着して汚
泥の浮上を招く。
In addition, when a nitrification reaction occurs, activated sludge settles and concentrates in a settling tank; when it is exposed to anaerobic conditions (1) a denitrification reaction occurs, nitrogen gas bubbles are generated, and sludge (-) adheres to the sludge. leading to the emergence of

従って従来のDO一定制御では、硝化反応が起ると、送
風量の増加に伴なう動力量の増大を招くと共に、汚泥の
浮上による処理水質を悪化を招くという問題がある。
Therefore, in the conventional constant DO control, when the nitrification reaction occurs, there is a problem that the amount of power increases due to the increase in the amount of air blown, and the quality of the treated water deteriorates due to the floating of sludge.

〔発明の目的〕[Purpose of the invention]

本発明は、硝化反応が起こらない範囲で送風量を制御し
、これによって送風機の動力費を節減すると共に、汚泥
の浮上を防止して処理水質を向上させる合理的な汚水処
理プラントの送風量制御装置を提供することを目的とし
ている。
The present invention provides rational air flow control for wastewater treatment plants that controls the air flow within a range in which nitrification reactions do not occur, thereby reducing the power cost of the blower, and preventing sludge from floating to improve the quality of treated water. The purpose is to provide equipment.

〔発明の概要〕[Summary of the invention]

本発明は、曝気槽と沈殿池を備え、送風機(−よって曝
気槽にを気を送入し活性汚泥を介して汚水を処理する汚
水処理プラントの送風量制御装置において、曝気槽に空
気を送入する散気管を曝気槽の流下方向にそれぞれ流量
調整可能な複数の散気管群に分けて設け、さらにそれぞ
れの散気管群に対応する曝気槽の各位置毛二おける酸素
利用速度なりOD除去C二よる酸素利用速度と硝化反応
による酸素利用速度とに分けて測定する酸素利用速度測
定器を設けると共に、BOD除去によるWR素素剤用速
度測定値ら各散気管群ごとの所要風量を算出する第一演
算部と、硝化反応による酸素利用速匿測定値から上記所
要風量算出値を修正する第二演算部と、第二演算部の出
力から全所要風量を算出する第二演算部を設け、第二演
算部の出力(対応じて各散気管群のそれぞれの散気風量
を制御すると共に第王演算部の出力(対応じて送風機の
送風流量を制御し、これによって硝化反応を発生を抑制
して、 処理水質を向上させると共に送風機の動力費の低減をは
かったものである。
The present invention is an air flow rate control device for a sewage treatment plant that is equipped with an aeration tank and a settling tank, and which blows air into the aeration tank to treat wastewater via activated sludge. The aeration tubes that enter the aeration tank are divided into a plurality of aeration tube groups whose flow rate can be adjusted in the downstream direction of the aeration tank, and the oxygen utilization rate or OD removal at each position of the aeration tank corresponding to each aeration tank is further adjusted. In addition to installing an oxygen utilization rate measuring device that measures the oxygen utilization rate by two methods and the oxygen utilization rate by nitrification reaction, the required air volume for each diffuser pipe group is calculated from the measured value of the rate for WR element by BOD removal. A first calculation unit, a second calculation unit that corrects the required air volume calculation value from the measured value of oxygen utilization by the nitrification reaction, and a second calculation unit that calculates the total required air volume from the output of the second calculation unit, The output of the second calculation section (correspondingly controls the air volume of each diffuser tube group), and the output of the first calculation section (correspondingly controls the air flow rate of the blower, thereby suppressing the occurrence of nitrification reaction) This aims to improve the quality of treated water and reduce the cost of powering the blower.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG.

第1図において、図示しない前処理工程で前処理を受け
た汚水は管路Aを通って曝気槽11−流入し、沈殿池B
から管路Cを通って返送された返送汚泥と混合される。
In FIG. 1, wastewater that has been pretreated in a pretreatment step (not shown) flows into the aeration tank 11 through pipe A, and flows into the settling tank B.
The sludge is mixed with return sludge returned from the sludge through pipe C.

曝気槽1には複数の散気管群2からそれぞれの流量調節
弁3を介して曝気用空気が送入され、全体の空気流量は
送風機4および流量調節弁5によって割、御される。
Aeration air is fed into the aeration tank 1 from a plurality of aeration pipe groups 2 via respective flow rate control valves 3, and the overall air flow rate is divided and controlled by a blower 4 and a flow rate control valve 5.

第2図は本発明の動作を示すフローチャートであり、以
下第2図を参照して本発明の詳細な説明する。
FIG. 2 is a flowchart showing the operation of the present invention, and the present invention will be described in detail below with reference to FIG.

曝気槽1には水温測定器6および散気管群ごとにサンプ
ルを採取できるサンプル切換弁7とサンプリングポンプ
8が設置され、採取された谷サンプルは酸素利用速度測
定器9において、BOD除去による酸素利用速L RR
BODと硝化反応による酸素利用速度RRNO3とに分
けて曝気槽上流側からの散気管番号I  (I=1〜n
)ごとに測置される。
The aeration tank 1 is equipped with a water temperature measuring device 6, a sample switching valve 7 that can collect samples for each group of aeration tubes, and a sampling pump 8. Speed L RR
Diffusion pipe number I (I = 1 to n
).

第1演算部10は上目己測定値RRBOD (1,)と
水温測定値Tを入力して散気管ごとの送風量QA(I)
を下記(7)式を用いて算出する。
The first calculation unit 10 inputs the upper eye's measured value RRBOD (1,) and the water temperature measured value T, and calculates the air blowing amount QA (I) for each diffuser pipe.
is calculated using the following formula (7).

QA(I) −f (RR(I)、T )      
   ・・・ (力第−記憶部11は上記測定値RRs
os (I)と第一演算部10の出力QA(I)を次の
制御周期まで記憶する。
QA(I) −f (RR(I), T )
... (The force storage section 11 stores the above measured value RRs.
os(I) and the output QA(I) of the first arithmetic unit 10 are stored until the next control cycle.

第−判定部12は上記記憶されたRRNO3(I)を入
力してRRNO8の検出値のあられれた(すなわち硝化
反応が検出された)最初の散気管の番号Nを求める。
The third determination unit 12 inputs the stored RRNO3(I) and determines the number N of the first diffuser pipe in which the detected value of RRNO8 was detected (that is, the nitrification reaction was detected).

第二配憶部13は上記散気管番号Nを次の制御周期まで
記憶する。
The second storage unit 13 stores the diffuser pipe number N until the next control cycle.

第二判定部14は弗−判定s12の出力Nと第二記憶部
13の出力である前回制御周期の出力N′とを比較して
送風量を修正すべき散気管曽号N″を判別する。
The second determination unit 14 compares the output N of the determination s12 with the output N' of the previous control cycle, which is the output of the second storage unit 13, and determines the diffuser pipe number N'' whose air flow rate should be corrected. .

すなわちN−A’N’のときはN“−N−1とし、N〈
N′のときはN’=N−2とする。
In other words, when N-A'N', it is N"-N-1, and N<
When N', N'=N-2.

第一演算部10は第一記憶部11の記憶しているQA(
I)のうちN′番目以下の散気管の送風量を演算しなお
すと共に設定された上限同量および下限同量と比較し、
その範囲内の値QA’(I)i二修正する。
The first calculation unit 10 calculates the QA (
In I), recalculate the air flow rate of the N'th diffuser pipe and below, and compare it with the set upper limit and lower limit,
The value QA'(I)i within that range is modified.

すなわち先ず I <: rのとき  Qに(I) = QA(I) 
   ・・・ (8)I≧N“のとき  QA’ (I
) = QA(I) X A  ・・・(9)とする。
That is, first, when I <: r, for Q (I) = QA (I)
... (8) When I≧N"QA' (I
) = QA(I) X A ...(9).

ここでAは修正係数(A<1)  ごあり、例えば0.
9とすることができる。
Here, A is a correction coefficient (A<1), for example 0.
9.

次にあらかじめ設定された最大送風量QA、、、、と最
小送風量QAm+nと比較し、 QA、、、、x≧QA’(I)≧QAm+nのときQA
’(I) = QA’(I)        ・・・・
・・αQQAm、x< QA (I)のとき QA’(I) = QAffl、、        −
・−・・−ul)QAml、’、> QR(I)のとき QA (I) −QAmla       ・・・・・
・醤とする。
Next, compare the preset maximum air flow rate QA,... with the minimum air flow rate QAm+n, and when x≧QA'(I)≧QAm+n, QA
'(I) = QA'(I)...
・When αQQAm, x< QA (I), QA'(I) = QAffl, -
・-・・-ul) QAml,',> When QR(I), QA (I) −QAmla ・・・
・Make it into sauce.

矛三演轢部16は上記第二演算部15の出力QA’(I
)から送風機4が送り出すべき全送風量QATを下記(
13)式を用いて算出する。
The third calculation unit 16 calculates the output QA'(I
) The total air flow QAT that should be sent out by the blower 4 from ) is shown below (
13) Calculate using the formula.

QAT =ぷ、QA’(I)    ・・・・・・(1
:1ここにnは散気管2の総数である。
QAT = Pu, QA'(I) ・・・・・・(1
:1 where n is the total number of air diffusers 2.

第一制御器17は上記QAtを入力して流量調節弁5を
制御し、送風機4の送風量をQAT +二制御する。
The first controller 17 inputs the QAt and controls the flow control valve 5, thereby controlling the amount of air blown by the blower 4 by QAT+2.

また第二制御器18は各散気管の流量調節弁3を制御し
、各散気管ごとの送風量をQA’(I) に制御する。
Further, the second controller 18 controls the flow rate control valve 3 of each diffuser pipe, and controls the amount of air blown from each diffuser pipe to QA'(I).

これによって曝気槽の送風量が硝化反応を発生しない範
囲で適正に制御される。
This allows the amount of air blown from the aeration tank to be appropriately controlled within a range that does not cause nitrification reactions.

なお上記実施例では酸素利用速度測定器を1セット設け
、サンプル弁を切換えて全部の測定を行っているが、各
測定点ごと(−設けると測定の速度を速めることができ
る。
In the above embodiment, one set of oxygen utilization rate measuring devices is provided and all measurements are performed by switching the sample valves, but if one set is provided for each measurement point (-), the measurement speed can be increased.

また全送風量の制御は流量調節弁5で行っているが送風
機の台数制御を用いることも可能である。
Further, although the total amount of air blown is controlled by the flow control valve 5, it is also possible to control the number of air blowers.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば硝化反応を発生する
ことなく効果的な曝気が行われる。
As explained above, according to the present invention, effective aeration can be performed without causing a nitrification reaction.

すなわち従来方法の一つであるDO一定制御では、硝化
反応が起きたとき、前述のように脱窒素反応を起こして
窒素ガスが発生し、汚泥が浮上して水質を悪化させると
共に送風量が増大して送風動力費が上昇するという問題
があるが、本発明を用いると酸素利用速度に見合った送
風が行われるので、硝化反応の起る可能性が低減し、ま
た硝化反応が起った場合には修正演算ζ二よって送風量
を低下させているので硝化反応の進行が阻止される。
In other words, with constant DO control, which is one of the conventional methods, when the nitrification reaction occurs, the denitrification reaction occurs as described above and nitrogen gas is generated, sludge floats to the surface, worsening the water quality and increasing the amount of air blown. However, with the present invention, the air is blown in proportion to the rate of oxygen utilization, reducing the possibility of nitrification reactions occurring, and reducing the possibility of nitrification reactions occurring. Since the amount of air blown is reduced by the correction calculation ζ2, the progress of the nitrification reaction is inhibited.

従って硝化反応をほとんど起こすことなく曝気が行われ
るので、沈殿池での脱窒反応による汚泥の浮上がなく、
処理水の水質が向上すると共に送風エネルギの節減が可
能となる。
Therefore, aeration is performed without causing almost any nitrification reaction, so there is no sludge floating due to denitrification reaction in the settling tank.
The quality of the treated water is improved and it is possible to save energy for blowing air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は本発
明における演算動作なボすフローチャートである。 l    −気槽 2    散気管群 3+5    (/II;量調節升 4         送ノjしく、(シ呟1;6   
 水温測定器 7    サンプル切換弁 8    サンプルポンプ 9    酸素利用速度測定器 10、15.16  演算部 11.13   記憶部 12、14   判定部 17、18   制御部 19     沈殿池 (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名)第  1  図 第  2  図
FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart showing arithmetic operations in the present invention. l - Air tank 2 Diffusion pipe group 3 + 5 (/II; Amount adjustment square 4
Water temperature measuring device 7 Sample switching valve 8 Sample pump 9 Oxygen utilization rate measuring device 10, 15.16 Arithmetic section 11.13 Storage section 12, 14 Judgment section 17, 18 Control section 19 Sedimentation tank (8733) Agent Patent attorney Inomata Yoshiaki (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 曝気槽と沈殿池を備え、送風機によつて曝気槽に空気を
送入し活性汚泥を介して汚水を処理する汚水処理プラン
トの送風量制御装置において、曝気槽に空気を送入する
散気管を曝気槽の流下方向にそれぞれ流量調整可能な複
数の散気管群に分けて設け、さらにそれぞれの散気管群
に対応する曝気槽の各位置における酸素利用速度をBO
D除去による酸素利用速度と硝化反応による酸素利用速
度とに分けて測定する酸素利用速度測定器を設けると共
に、上記BOD除去による酸素利用速度測定値から各散
気管群ごとの所要風量を算出する第一演算部と、上記硝
化反応による酸素利用速度測定値から上記所要風量算出
値を修正する第二演算部と、上記第二演算部の出力から
全所要風量を算出する第三演算部を設け、上記第二演算
部の出力に応じて上記各散気管群のそれぞれの散気風量
を制御すると共に、上記第三演算部の出力に応じて送風
機の送風減量を制御することを特徴とする汚水処理プラ
ントの送風量制御装置。
In an air flow control device for a sewage treatment plant that is equipped with an aeration tank and a settling tank, and uses a blower to send air into the aeration tank and treat wastewater through activated sludge, an aeration pipe that sends air to the aeration tank is used. The aeration tank is divided into a plurality of aeration pipe groups whose flow rate can be adjusted in the downstream direction, and the oxygen utilization rate at each position of the aeration tank corresponding to each aeration pipe group is determined by BO.
In addition to providing an oxygen utilization rate measuring device that separately measures the oxygen utilization rate due to D removal and the oxygen utilization rate due to nitrification reaction, a device that calculates the required air volume for each diffuser group from the oxygen utilization rate measurement value due to BOD removal described above is provided. one calculation section, a second calculation section that corrects the calculated value of the required air volume from the measured value of the oxygen utilization rate due to the nitrification reaction, and a third calculation section that calculates the total required air volume from the output of the second calculation section, Sewage treatment characterized by controlling the amount of air diffused in each of the aeration tube groups according to the output of the second calculation section, and controlling the amount of air blown by the blower according to the output of the third calculation section. Plant air flow control device.
JP59130129A 1984-06-26 1984-06-26 Control device for air flow rate for sewage treatment plant Granted JPS6111197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130129A JPS6111197A (en) 1984-06-26 1984-06-26 Control device for air flow rate for sewage treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130129A JPS6111197A (en) 1984-06-26 1984-06-26 Control device for air flow rate for sewage treatment plant

Publications (2)

Publication Number Publication Date
JPS6111197A true JPS6111197A (en) 1986-01-18
JPH05118B2 JPH05118B2 (en) 1993-01-05

Family

ID=15026642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130129A Granted JPS6111197A (en) 1984-06-26 1984-06-26 Control device for air flow rate for sewage treatment plant

Country Status (1)

Country Link
JP (1) JPS6111197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125638A (en) * 2007-11-21 2009-06-11 Panasonic Corp Wastewater treatment apparatus
WO2011091341A2 (en) * 2010-01-25 2011-07-28 Process Kinetics, Llc Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125638A (en) * 2007-11-21 2009-06-11 Panasonic Corp Wastewater treatment apparatus
WO2011091341A2 (en) * 2010-01-25 2011-07-28 Process Kinetics, Llc Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant
WO2011091341A3 (en) * 2010-01-25 2011-12-15 Process Kinetics, Llc Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant
GB2488737A (en) * 2010-01-25 2012-09-05 Process Kinetics Llc Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant

Also Published As

Publication number Publication date
JPH05118B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
CN210595439U (en) System for effect is carried in consumption reduction suitable for biological denitrogenation of oxidation ditch
JP5833791B1 (en) Aeration control method for activated sludge
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP6532723B2 (en) Method and system for treating organic wastewater
Capela et al. Comparison of oxygen‐transfer measurement methods under process conditions
JPS6111197A (en) Control device for air flow rate for sewage treatment plant
JPH0757353B2 (en) Wastewater treatment equipment
JPH01242198A (en) Controlling device for stepped nitration denitrification process
JP3707526B2 (en) Waste water nitrification method and apparatus
JP4579450B2 (en) Operation control method of oxidation ditch
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
JP3023921B2 (en) Activated sludge treatment equipment
JP2002177985A (en) Efficient addition method of organic carbon source for denitrification
JPS631920B2 (en)
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JPH04110198U (en) Anaerobic/aerobic activated sludge treatment equipment
CN212198904U (en) Landfill leachate&#39;s processing system
CN212476266U (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device based on pulse aeration
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JP2019171235A (en) Wastewater treatment apparatus
JPH0579400B2 (en)
KR102031869B1 (en) Oxic zone control type advanced treatment process wastewater treatment facility and its operation method
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
CN108585205B (en) A/O sewage treatment device and sewage treatment process
JPS61118190A (en) Controller of activated sludge process plant