JPS61111530A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS61111530A
JPS61111530A JP59233584A JP23358484A JPS61111530A JP S61111530 A JPS61111530 A JP S61111530A JP 59233584 A JP59233584 A JP 59233584A JP 23358484 A JP23358484 A JP 23358484A JP S61111530 A JPS61111530 A JP S61111530A
Authority
JP
Japan
Prior art keywords
wavelength
light
optical system
light source
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233584A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Hideki Ine
秀樹 稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59233584A priority Critical patent/JPS61111530A/en
Publication of JPS61111530A publication Critical patent/JPS61111530A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable the accurate positioning of circuit patterns to wafers by varying the oscillation wavelength from a light source for alignment in the presence of step structure on the wafer surface. CONSTITUTION:In the presence of step structure 10 on the wafer surface 9, reflection light fluxes on the top and bottom of the step structure 10 interfere with each other and make difficulty in observation on the wafer surface, or the S/N ratio of signals from a TV camera, a photo receiving means, etc. decreases when they are used. Therefore, in this case, interference is prevented by varying the oscillation wavelength by moving the wavelength-selecting elements such as rhythm and grating in a color element laser 3 with a wavelength controller 3 manually or automatically. In place of exciting the color element laser with an excimer laser 1 in such a manner, a Raman shifter or the harmonic of the crystal of KDP or the like can be utilized as the wavelength converting means.

Description

【発明の詳細な説明】 本発明はIC、LSI等の電子回路の微細な回路パター
ンを被露光物であるシリコン等のウニ八基板上に投影露
光する為の露光装置に関するもので6る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exposure apparatus for projecting and exposing a fine circuit pattern of an electronic circuit such as an IC or LSI onto a substrate made of silicon or the like to be exposed.

特に本発明は1つの光源からの光束を複数に分割し、一
方の光束を回路パターン全ウェハ面上に投影露光するの
に使用し他方の光束をウェハ面上の観察に好ましい波長
に変換して回路パターンとウェハの位置合わせを行つ文
学導体製造に好適な露光装置に関するものである。
In particular, the present invention divides the light beam from one light source into multiple parts, uses one light beam to project and expose the circuit pattern on the entire wafer surface, and converts the other light beam into a wavelength suitable for observation on the wafer surface. The present invention relates to an exposure apparatus suitable for manufacturing literary conductors that aligns circuit patterns and wafers.

最近の半導体技術は電子回路の高集積化、微細化の一途
を辿り、光学的な露光方式も晶解像力のレンズの開発等
でますますその領域を拡げつつある。このような半導体
製造における露光装置において、マスク又はレチクルの
回路パターンをウェハ面上に転写、焼付ける場合には、
ウェハ面上に焼付けられる回路パターンの解像線巾が光
源の波長に比例する九め、近年では遠紫外(Deep 
UV )領域の短い波長の光源が用いられている。
In recent years, semiconductor technology has continued to increase the integration and miniaturization of electronic circuits, and optical exposure methods are also expanding their scope further with the development of crystal-resolving lenses. In such exposure equipment for semiconductor manufacturing, when transferring and printing the circuit pattern of a mask or reticle onto the wafer surface,
The resolution line width of the circuit pattern printed on the wafer surface is proportional to the wavelength of the light source.
Short wavelength light sources in the UV) region are used.

従来この梅の遠紫外光源としては、重水素ランプやXs
 −Hgランプが知られている。
Conventionally, the far ultraviolet light source for this plum tree was a deuterium lamp or Xs.
-Hg lamps are known.

しかしながらこれらの光源は遠紫外領域においては出力
が低く、ま九ウェハ面上に塗付されルフォトレシスト材
の感光ヰも低いので、露光時間が長くなり、スルーブツ
トが小さくなる等の欠点があった。
However, these light sources have low output in the deep ultraviolet region, and the photoresist material coated on the wafer surface has low photosensitivity, resulting in long exposure times and small throughput. .

一方、近年エキシマ(s+xe1mor )レーザーと
いう高出力の遠紫外領域を発振波長とする光源が各方面
で使用されている。
On the other hand, in recent years, excimer (s+xe1 mor) lasers, which are high-output light sources whose oscillation wavelength is in the deep ultraviolet region, have been used in various fields.

このエキシマレーザーは高輝度性、単色性及び可干渉性
がめまりないこと等から半導体製造の露光装置に大変有
効である。エキシマレーザ−t−露光装置に用い几場合
、エヤシマレーザーの発掘波長は不可視光であるので従
来の露光装置と同様にマスク若しくはレチクル等の回路
パターンとウェハの位置合わせを行う為の装置即ちアラ
イメント装置が必要となってくる。
This excimer laser is very effective in exposure equipment for semiconductor manufacturing because of its high brightness, monochromaticity, and excellent coherence. When used in an excimer laser t-exposure system, the excavation wavelength of the excimer laser is invisible light, so it is used as a device for aligning the circuit pattern of a mask or reticle with the wafer in the same way as a conventional exposure system. equipment will be required.

一般に半導体基板としてのウェハ面上にLSI等の回路
パターン金フォトリソグラフィ技術により形成する場合
、ウニへ面に各種の回路パターンを何度も繰り返し投影
露光しウエノ・を写真食刻していく方法が採られる。こ
の為通常第2回目以降の投影露光の処理工程においては
既にウェハ面上に写真食刻された回路パターンの段差構
造が形成されている。
Generally, when forming circuit patterns such as LSI on the surface of a wafer as a semiconductor substrate using gold photolithography technology, the method of repeatedly projecting and exposing various circuit patterns on the surface of the wafer and photo-etching the wafer is generally used. taken. For this reason, normally, in the second and subsequent projection exposure processing steps, a stepped structure of the photo-etched circuit pattern has already been formed on the wafer surface.

この為例えばウニ・・面上へ光束を照射し反射光束を利
用してウニへ面を観、祭する場合、ウェハ面上の段差構
造の上面と下面からの反射光束が干渉を起こし観察が困
緘となる場合がある。
For this reason, for example, when a light beam is irradiated onto the surface of a sea urchin and the reflected light beam is used to view and worship the sea urchin surface, the light beams reflected from the top and bottom surfaces of the stepped structure on the wafer surface interfere, making observation difficult. It may become a scar.

即ち観県用光源の発振波長をλ、段差構造の上面と下面
の段差tをdとし段差idが波長オーダーで可干渉距離
でめったとき za、(n+4)λ    ・・・・−・・(1)(但
しn−0,1,2,=・) のときはウェハ面上の段差構造の上面と下面からの反射
光束は干渉しあい観察出来なくなる。
That is, if the oscillation wavelength of the light source for prefecture viewing is λ, and the step t between the top and bottom surfaces of the step structure is d, then when the step id is in the wavelength order and coincides with the coherence distance, za, (n+4)λ ・・・・−・(1 ) (however, n-0, 1, 2, =.), the reflected light beams from the top and bottom surfaces of the stepped structure on the wafer surface interfere with each other and cannot be observed.

この結果回路パターンとウェハとの位置合わせが困難に
なってくる。
As a result, it becomes difficult to align the circuit pattern and the wafer.

又受光手段、TVカメラ等を用いて自動的に回路パター
ンとウェハとの位置合わせを行う所謂オートアライメン
トに際しても反射光束が干渉すると受光手段のS/N比
が低下し、高精度の位置合わせが困難になってくる。特
に高輝度光源としてレーザー等の可干渉距離の長い単色
光源を用い友場合はこのようなことが非常に起こりやす
くなる。
Furthermore, even in so-called auto-alignment, which automatically aligns the circuit pattern and the wafer using a light-receiving means, a TV camera, etc., if the reflected light beam interferes, the S/N ratio of the light-receiving means decreases, making it difficult to achieve high-precision alignment. It's getting difficult. This is particularly likely to occur when a monochromatic light source with a long coherence length, such as a laser, is used as the high-brightness light source.

甘た近年LSIの高集積化に伴う露光装置の投影光栄糸
の高解像力により、焼付の焦点深度が浅くなってきてい
るが、この問題への対策として多層レジスト技術がある
。この技術を用い元場合、レジスト層が焼付光を吸収し
てしまい、反射光がほとんどなくなるので焼付用の波長
によるアライメントができない。従って多層レジスト技
術においては、アライメント光は焼付用の波長と別波長
にする必懺がある。
In recent years, the depth of focus of printing has become shallower due to the higher resolution of the projection light beam of exposure equipment as LSIs have become more highly integrated, but multilayer resist technology has been developed as a solution to this problem. When this technique is used, the resist layer absorbs the printing light and there is almost no reflected light, making it impossible to perform alignment based on the printing wavelength. Therefore, in multilayer resist technology, it is necessary to use alignment light with a wavelength different from that for printing.

本発明は回路パターンを被露光物であるウェハ面上に投
影露光する際ウェハ面上に回路パターンによるいかなる
段差構造があっても回路パターンとウェハの位置合わせ
全精度良く行うことのできる半導体製造に好適な露光装
置の提供を目的とする。
The present invention is applicable to semiconductor manufacturing in which the circuit pattern and the wafer can be aligned with perfect precision even if there is any step structure due to the circuit pattern on the wafer surface when projecting and exposing the circuit pattern onto the wafer surface that is the object to be exposed. The purpose of the present invention is to provide a suitable exposure apparatus.

本発明のもう1つの目的は多ノーレジスト技術において
も回路パターンとウェハの位置合わせ全可能とすること
である。
Another object of the present invention is to enable full alignment of circuit patterns and wafers even in multi-no-resist technology.

本発明の目的を達成する為の露光装置の王九る特徴は、
被露光物の微細な段差構造の段差量に応じて被露光物へ
の照射光の波長を連続的九可変にして被露光物の位置合
わせを行なう観察光学系と、被露光物を露光する露光光
学系と、前記観察光学系及び前記露光光学系に導光され
る光束を発する光源と、該光源から発する光束を前記観
察光学系及び前記露光光学系へ導光する九めの光分割手
段金偏え几ことである。
The main features of the exposure apparatus for achieving the purpose of the present invention are as follows:
An observation optical system that aligns the object by continuously varying the wavelength of the light irradiated onto the object according to the amount of step difference in the fine step structure of the object, and an exposure system that exposes the object. an optical system, a light source that emits a light flux that is guided to the observation optical system and the exposure optical system, and a ninth light splitting means that guides the light flux emitted from the light source to the observation optical system and the exposure optical system. It is a biased thing.

このように本発明においてはウェハ面上の段差構造の上
面と下面から反射してくる光束による干渉を′wl露光
物への照射光の波長を変えることにより避け、回路パタ
ーンとウェハの位置合わせ全精度良く行うことを可能と
している。さらに本@明においては色素レーザーを用い
ることでアライメント元の波長ケ焼付用の波長と別にし
ている。
In this way, in the present invention, the interference caused by the light beams reflected from the top and bottom surfaces of the step structure on the wafer surface is avoided by changing the wavelength of the light irradiated onto the exposed object, and the alignment of the circuit pattern and the wafer is completely controlled. This makes it possible to do this with high precision. Furthermore, by using a dye laser, the wavelength of the alignment source is separated from the wavelength for printing.

次に本発明の一夫施ψりを各図と共に説明する。Next, the implementation of the present invention will be explained with reference to each figure.

第1図は本発明の一実施しリの概略図である。同図にお
いて1は発掘波長が可変の光源としてのエキシマレーザ
−であル。エキシマレーサー1から発振(、九例えば波
長308 tLm若しくは248nrrL の光束はハ
ーフミラ−2によって2光束に分割される。
FIG. 1 is a schematic diagram of one implementation of the present invention. In the figure, 1 is an excimer laser as a light source whose excavation wavelength is variable. A light beam emitted from the excimer laser 1 (for example, a light beam having a wavelength of 308 tLm or 248nrrL) is split into two beams by a half mirror 2.

このうちハーフミラ−2で反射された光束は照明光学系
5に導光される。
Of these, the light beam reflected by the half mirror 2 is guided to the illumination optical system 5.

照明を学系5に入射し次光束はライトインチグレーター
、コンデンサーレンズ等圧よって所定の開口数と照度分
布を有し次光束となってマスク又はレチクル等の回路パ
ターン7を照明する。そして回路パターン7は投影光学
系8によってウェハIf19上に投影され露光される。
Illumination is incident on the optical system 5, and the subsequent light flux has a predetermined numerical aperture and illuminance distribution due to the light inch grater and the condenser lens, and illuminates a circuit pattern 7 such as a mask or reticle. The circuit pattern 7 is then projected onto the wafer If19 by the projection optical system 8 and exposed.

一方ハーフミラー2を通過し次光束は色素レーザー3に
入射し、色素レーザー3の励起光として色素レーザー3
内の色素セルに入射し所定の波長の光束全発振する。
On the other hand, the light beam that passes through the half mirror 2 enters the dye laser 3 and serves as the excitation light for the dye laser 3.
The light beam enters the dye cell inside and oscillates in its entirety at a predetermined wavelength.

第2図は308 nmのXaCl V−ザー(エキ7マ
レーザーの一種)で励起させ友色素レーザーの発振波長
と発振効率の一例でおり山形の各々の曲線は色素を変え
九場合の発振効率である。
Figure 2 shows an example of the oscillation wavelength and oscillation efficiency of an allyochrome laser excited with a 308 nm XaCl V-laser (a type of ex-7 laser), and each chevron curve shows the oscillation efficiency when the dye is changed. .

このように色素レーザーは単独の色素でも数十n1rL
 の波長幅を有して発振をする。そして色素金変えれば
数回n1rLの範囲で波長を変えることができる。さら
にこれらの波長けもとの XeCtレーザーの308 
nm とは別波長である。
In this way, the dye laser can produce tens of n1rL even with a single dye.
It oscillates with a wavelength width of . By changing the pigment gold, the wavelength can be changed several times within the range of n1rL. In addition, these wavelengths of XeCt laser 308
It is a different wavelength from nm.

一般にエキシマレーサー等の紫外領域で高出力を有する
レーザーは色素レーザーの励起用光源として適している
。このエキシマレーザ−で励起されて発振し定色素レー
ザー3からの可視域の光束は回路パターンとウェハの位
置合わせ七行う為のアライメント光学系6に入射する。
Generally, a laser having high output in the ultraviolet region, such as an excimer laser, is suitable as a light source for excitation of a dye laser. The excimer laser excites and oscillates, and the visible light beam from the fixed dye laser 3 enters an alignment optical system 6 for aligning the circuit pattern and the wafer.

その後アライメントに好ましい光束に変換され回路パタ
ーン7を照射する。
Thereafter, it is converted into a light beam suitable for alignment and irradiates the circuit pattern 7.

回路パターン7は投影光学系8によってウェハ面9上に
投影されるので回路パターン7とウェハ9との位置合わ
せは肉眼で行つ九り若しくはアライメント光学系6内の
TVカメラや受光手段等からの信号を用いて自動的に℃
ステージ11 i移動させて行うことができる。
Since the circuit pattern 7 is projected onto the wafer surface 9 by the projection optical system 8, the alignment between the circuit pattern 7 and the wafer 9 is performed by the naked eye or by using a TV camera, light receiving means, etc. in the alignment optical system 6. Automatically using signal °C
This can be done by moving the stage 11i.

このとき前述のようにウエノ・面9上に段差構造10が
あると段差構造10の上面と下面での反射光束が干渉し
2合いウニ・・面上の覗察が田畑となつ*D、TVカメ
ラや受光手段等を用いたときはこれからの信号のS/N
が低下してくるので回路パターンとウェハとの位置合わ
せを肉眼でも又自動的に精度良く行うのが困難となる。
At this time, as mentioned above, if there is a step structure 10 on the surface 9, the reflected light beams on the top and bottom surfaces of the step structure 10 will interfere, and the observation on the surface will become a tabata *D, TV When using a camera, light receiving means, etc., the S/N of the future signal
As this decreases, it becomes difficult to accurately align the circuit pattern and the wafer with the naked eye or automatically.

本実施列ではこのような場合は例えば手動若しくは自動
的に波長コントローラ4によって色素レーザー3内のプ
リズムやグレーティング等の波長選択素子奮励かしてや
ることにより発振波長を変えて干渉が起こらないように
若しくは前述の(11式からなるぺ〈外れるようにして
いる。
In this embodiment, in such a case, for example, the wavelength controller 4 manually or automatically activates a wavelength selection element such as a prism or grating in the dye laser 3 to change the oscillation wavelength so that interference does not occur, or to avoid interference as described above. (It consists of 11 types) and is made to come off.

色素レーザーからの発振波長の可変方法はこの他エキシ
マレーザ−の出力エネルギーを変えて行っても良く、又
発振波長を大きく変化させる場合は色素を変えて行うよ
うにしても良い。
The oscillation wavelength from the dye laser may also be varied by changing the output energy of the excimer laser, or by changing the dye if the oscillation wavelength is to be changed significantly.

本実施例においてはエキシマレーザ−を回路パターンの
投影露光用として用い更に色素レーザーの励起用光源と
して用いることにより半導体装置全体の小型化及び低価
格化全図っている。
In this embodiment, an excimer laser is used for projection exposure of a circuit pattern and is further used as a light source for excitation of a dye laser, thereby making the entire semiconductor device smaller and cheaper.

さらに本実施例においてはアライメント光全焼付用の波
長と別波長にして、多層レジスト技術においても位置合
わせを可能にしている。
Furthermore, in this embodiment, the wavelength of the alignment light is set to be different from the wavelength for full baking, thereby making alignment possible even in multilayer resist technology.

本実施例においてエキシマレーザ−の出力は大きいので
エキシマレーザ−からの光束を複数に分割しても露光量
が不足となるようなことは少ない。
In this embodiment, since the output of the excimer laser is large, even if the luminous flux from the excimer laser is divided into a plurality of parts, the amount of exposure is unlikely to be insufficient.

なお本実施例においてエキシマレーザ−で色素レーザー
を励起する代わりに、波長変換手段としてラマンシフタ
ー或いは、KDP等の結晶の高調波等全利用しても良い
。又、波長斐換手段でなく光源から発する光の波長を選
択する分光器やフィルタのような波長選択手段を用いて
も良い。
In this embodiment, instead of exciting the dye laser with an excimer laser, a Raman shifter or harmonics of a crystal such as KDP may be used as a wavelength conversion means. Further, instead of the wavelength conversion means, a wavelength selection means such as a spectroscope or a filter for selecting the wavelength of light emitted from the light source may be used.

さらに本実施例においてレーザー光源の代わりに超商圧
水銀灯叫の仮数の発光スペクトルを有する光源を用い、
それらの発光スペクトルを適当[7択し、て行っても良
い。
Furthermore, in this embodiment, a light source having an emission spectrum of the mantissa of a supercommercial pressure mercury lamp was used instead of the laser light source,
The emission spectra of these may be selected as appropriate.

以上のように本発明によれば回路パターンをウェハl上
に投影底光する際、ウェハl上に段差構造があっても、
アライメント用の光源からの発振波長を変えることによ
り回路パターンとウェハの位置合わせt−精度良く行う
ことが出来しかも露光光源からの光束を観察光学系へ導
光する九め小型かつ低価格の露光装置を達成することが
できる。
As described above, according to the present invention, when projecting a circuit pattern onto a wafer l, even if there is a stepped structure on the wafer l,
By changing the oscillation wavelength from the alignment light source, it is possible to align the circuit pattern and the wafer with high precision.In addition, it is a compact and low-cost exposure device that guides the light flux from the exposure light source to the observation optical system. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施りlの概略図、第2図は従来の
色素レーザーの発振波長と発掘効率の一列である。 図中1はエキシマレーザ−12はハーフミラ−151d
色iレーf−14R波長コントローラー、5は照明光学
系、6はアライメント光学系、7は回路パターン、8は
投影光学系、9はウェハ、10は段差構造、11は℃ス
テージである。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a diagram of the oscillation wavelength and excavation efficiency of a conventional dye laser. In the figure, 1 is an excimer laser and 12 is a half mirror 151d.
5 is an illumination optical system, 6 is an alignment optical system, 7 is a circuit pattern, 8 is a projection optical system, 9 is a wafer, 10 is a stepped structure, and 11 is a °C stage.

Claims (4)

【特許請求の範囲】[Claims] (1)被露光物の微細な段差構造の段差量に応じて被露
光物への照射光の波長を連続的に可変にして被露光物の
位置合わせを行なう観察光学系と、被露光物を露光する
露光光学系と、 前記観察光学系及び前記露光光学系に導光される光束を
発する光源と、 該光源から発する光束を前記観察光学系及び前記露光光
学系へ導光するための光分割手段を備えたことを特徴と
する露光装置。
(1) An observation optical system that aligns the exposed object by continuously varying the wavelength of the irradiation light on the exposed object according to the amount of step difference in the fine step structure of the exposed object; an exposure optical system that performs exposure; a light source that emits a light flux that is guided to the observation optical system and the exposure optical system; and a light splitter that guides the light flux emitted from the light source to the observation optical system and the exposure optical system. An exposure apparatus characterized by comprising means.
(2)前記観察光学系は前記光源から発する光の波長を
変える波長変更手段を備える特許請求の範囲第1項記載
の露光装置。
(2) The exposure apparatus according to claim 1, wherein the observation optical system includes wavelength changing means for changing the wavelength of the light emitted from the light source.
(3)前記光源がエキシマレーザーであり、前記波長変
更手段が該エキシマレーザーで励起される色素レーザー
である特許請求の範囲第2項記載の露光装置。
(3) The exposure apparatus according to claim 2, wherein the light source is an excimer laser, and the wavelength changing means is a dye laser excited by the excimer laser.
(4)前記観察光学系は前記光源から発する光の波長を
選択する波長選択手段を備える特許請求の範囲第1項記
載の露光装置。
(4) The exposure apparatus according to claim 1, wherein the observation optical system includes wavelength selection means for selecting the wavelength of the light emitted from the light source.
JP59233584A 1984-11-06 1984-11-06 Exposure device Pending JPS61111530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233584A JPS61111530A (en) 1984-11-06 1984-11-06 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233584A JPS61111530A (en) 1984-11-06 1984-11-06 Exposure device

Publications (1)

Publication Number Publication Date
JPS61111530A true JPS61111530A (en) 1986-05-29

Family

ID=16957357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233584A Pending JPS61111530A (en) 1984-11-06 1984-11-06 Exposure device

Country Status (1)

Country Link
JP (1) JPS61111530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053356A1 (en) * 1998-04-09 1999-10-21 Japan Science And Technology Corporation Microscope system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053356A1 (en) * 1998-04-09 1999-10-21 Japan Science And Technology Corporation Microscope system

Similar Documents

Publication Publication Date Title
US6348357B2 (en) Exposure apparatus with a pulsed laser
JP2003318086A (en) Illumination optical system, exposure apparatus having the same, and device manufacturing method
JP2015531076A (en) Photon source, measurement apparatus, lithography system, and device manufacturing method
US4812880A (en) Exposure apparatus
JPH01114035A (en) Aligner
JPS62188316A (en) Projection exposure device
JP3392034B2 (en) Illumination device and projection exposure apparatus using the same
JPS61111530A (en) Exposure device
JPS5950518A (en) Project printing method
JP2002340524A (en) Pattern detecting method and pattern detector
JPH11162824A (en) Aligner
JP3629801B2 (en) Exposure equipment
JPH0894338A (en) Mask inspection device
JP3517483B2 (en) Position detecting device and method for manufacturing semiconductor device using the same
JPH07135145A (en) Aligner
JP3554243B2 (en) Projection exposure apparatus and device manufacturing method
JPH07226367A (en) Light exposure equipment and manufacture of device by using this equipment
JPS61112122A (en) Observing device
Wynand et al. The Importance of Photolithography for Moore’s Law
Lambrechts et al. 3 The Importance of
JPH08306619A (en) Aligner and manufacture of device which uses this aligner
JPH03120816A (en) Pattern aligner and formation of pattern using same
KR100646555B1 (en) Exposure System of Semiconductor
JPS61111529A (en) Exposure amount controller
JP2013162109A (en) Exposure device and exposure method