JPH07135145A - Aligner - Google Patents

Aligner

Info

Publication number
JPH07135145A
JPH07135145A JP5158970A JP15897093A JPH07135145A JP H07135145 A JPH07135145 A JP H07135145A JP 5158970 A JP5158970 A JP 5158970A JP 15897093 A JP15897093 A JP 15897093A JP H07135145 A JPH07135145 A JP H07135145A
Authority
JP
Japan
Prior art keywords
light
polarization
splitter
polarized light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5158970A
Other languages
Japanese (ja)
Inventor
Takanaga Shiozawa
崇永 塩澤
Shigeru Hayata
滋 早田
Kazuhiro Takahashi
和弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5158970A priority Critical patent/JPH07135145A/en
Publication of JPH07135145A publication Critical patent/JPH07135145A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve the light utilization of an aligner, by converting the nonlinearly polarized light from a light source to a linearly polarized light, and irradiating a pattern with the linear polarization light. CONSTITUTION:The light entering a polarization light beam splitter 21 is divided into transmitted light (P polarization light polarized in the direction of paper surface) and reflected light (S polarization light polarized in the direction vertical to paper surface), by the light dividing surface of the polarization beam splitter 21. The P polarization light is directed to the light incidence surface of an optical integrator 7 via a polarization element 27. The S polarization light is converted to a P polarization light by a halfwave plate 22, and directed to the light incidence surface of the optical integrator 7 via a polarization element 24. Thus secondary light sources formed in the vicinity of a light emission surface of a fly-eye lens of the optical integrator 7 are all P polarization lights, so that the lights illuminating a reticle 11 are all P polarization lights. Thereby the loss of light penetrating the reticle is not generated, and flare is not generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は露光装置、特にICやLSI等の
半導体デバイスやCCD等撮像デバイスや液晶パネル等
の表示デバイスや磁気ヘッドを製造する為に使用される
露光装置に関する。
TECHNICAL FIELD The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus used for manufacturing semiconductor devices such as IC and LSI, image pickup devices such as CCDs, display devices such as liquid crystal panels, and magnetic heads.

【0002】[0002]

【従来の技術】IC、LSI等の半導体装置の高集積化
が益々加速度を増しており、これに伴なう半導体ウエハ
ーの微細加工技術の進展も著しい。この微細加工技術の
中心をなす露光技術は、現在、0.5ミクロン以下の寸
法の像を形成するべく、解像度の向上が図られている。
2. Description of the Related Art Higher integration of semiconductor devices such as ICs and LSIs is accelerating more and more, and accompanying this, the progress of fine processing technology of semiconductor wafers is remarkable. The exposure technique, which is the center of this fine processing technique, is currently being improved in resolution in order to form an image of a size of 0.5 micron or less.

【0003】投影型の露光装置では露光光の波長を短く
して解像度を向上させる方法があるが、波長が短くなる
と投影レンズ系に使用可能な硝材の種類が制限される
為、色収差の補正が難しくなる。その為、この色収差の
補正を容易にするべく、凹面鏡とレンズ群と偏光ビーム
スプリッターと1/4波長板とにより構成された反射屈
折型光学系を用いた露光装置が提案されている。この反
射屈折型光学系は、レチクルのデバイスパターンからの
光を偏光ビームスプリッターと1/4波長板を介して凹
面鏡で反射した後、再度1/4波長と偏光ビームスプリ
ッターを介して被露光基板上に入射させるものである。
In the projection type exposure apparatus, there is a method of shortening the wavelength of the exposure light to improve the resolution, but when the wavelength is shortened, the type of glass material that can be used in the projection lens system is limited, so that correction of chromatic aberration is not possible. It gets harder. Therefore, in order to facilitate the correction of this chromatic aberration, an exposure apparatus using a catadioptric optical system including a concave mirror, a lens group, a polarization beam splitter, and a 1/4 wavelength plate has been proposed. This catadioptric optical system reflects light from the device pattern of the reticle on a concave mirror via a polarization beam splitter and a quarter wavelength plate, and then again on a substrate to be exposed via a quarter wavelength and a polarization beam splitter. Is to be incident on.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
露光装置では、水銀ランプ等の光源からの非直線偏光光
でレチクルを照明する場合、レチクルのデバイスパター
ンからの光の半分近くが偏光ビームスプリッターでケラ
レるので、光の利用効率が低下する。
However, in the conventional exposure apparatus, when a reticle is illuminated with non-linearly polarized light from a light source such as a mercury lamp, nearly half of the light from the device pattern of the reticle is a polarization beam splitter. Vignetting reduces the light utilization efficiency.

【0005】[0005]

【課題を解決するための手段】本発明の目的は光利用効
率を改善した露光装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exposure apparatus with improved light utilization efficiency.

【0006】本発明の露光装置は、光源からの非直線偏
光光を直線偏光光に変換し、該直線偏光光によりパター
ンを照明する手段を有することを特徴とする。
The exposure apparatus of the present invention is characterized by including means for converting non-linearly polarized light from a light source into linearly polarized light and illuminating a pattern with the linearly polarized light.

【0007】本発明の露光装置のある形態は、光源から
の非直線偏光光を直線偏光光に変換し、該直線偏光光に
よりパターンを照明する手段と、前記照明手段で照明さ
れたパターンを偏光光分割器を介して基板上に投影する
投影光学系とを有することを特徴とする。
According to one aspect of the exposure apparatus of the present invention, the non-linearly polarized light from the light source is converted into linearly polarized light, and the linearly polarized light illuminates the pattern, and the pattern illuminated by the illuminating means is polarized. And a projection optical system for projecting on a substrate via a light splitter.

【0008】前記照明手段のある形態は前記光源からの
非直線偏光光を2光束に分割する光分割器と前記2光束
の偏光方向を互いに一致せしめる手段とを備える。
[0008] A form of the illuminating means includes an optical splitter for splitting the non-linearly polarized light from the light source into two light fluxes, and means for matching the polarization directions of the two light fluxes with each other.

【0009】前記照明手段の好ましい形態は前記光源か
らの非直線偏光光を2光束に分割する偏光光分割器と前
記2光束の偏光方向が互いに一致するよう一方の光束の
偏光方向を変える1/2波長板とを備える。
A preferred form of the illuminating means is to change the polarization direction of one light beam so that the polarization directions of the two light beams coincide with each other and a polarization light splitter for dividing the non-linearly polarized light from the light source into two light beams. And a two-wave plate.

【0010】前記照明手段の他の形態は前記光源からの
非直線偏光光を直線偏光光に変える偏光板を備える。
Another form of the illuminating means comprises a polarizing plate that converts the non-linearly polarized light from the light source into linearly polarized light.

【0011】本発明のある形態は前記投影光学系が前記
偏光分割器を透過する光を反射し前記偏光分割器に際入
射せしめる凹面鏡と前記偏光分割器に再入射する光が前
記偏光分割器で反射されるよう前記偏光分割器を透過す
る光の偏光方向を変えるために前記偏光分割器と前記凹
面鏡の間に配した1/4波長板とを有し、前記照明手段
が、前記偏光分割器を透過する光の偏光方向と実質的に
同じ方向に偏光した直線偏光光を供給する。
According to an aspect of the present invention, the projection optical system reflects the light transmitted through the polarization splitter and makes the light incident on the polarization splitter at a concave mirror, and the light re-entering the polarization splitter is transmitted by the polarization splitter. The polarization splitter, the quarter wave plate disposed between the polarization splitter and the concave mirror to change the polarization direction of light passing through the polarization splitter to be reflected; Linearly polarized light polarized in substantially the same direction as the polarization direction of the light passing through.

【0012】また本発明の別の形態は前記投影光学系が
前記偏光分割器で反射する光を反射し前記偏光分割器に
再入射せしめる凹面鏡と前記偏光分割器に再入射する光
が前記偏光分割器を透過するよう前記偏光分割器を透過
する光の偏光方向を変えるために前記偏光分割器と前記
凹面鏡の間に配した1/4波長板とを有し、前記照明手
段が、前記偏光分割器で反射する光の偏光方向と実質的
に同じ方向に偏光した直線偏光光を供給する。
Further, according to another aspect of the present invention, the projection optical system reflects the light reflected by the polarization splitter and causes the light to re-enter the polarization splitter, and the light re-enters the polarization splitter includes the polarization splitter. The polarization splitter and the quarter-wave plate arranged between the concave mirror to change the polarization direction of the light transmitted through the polarization splitter so that the polarization means transmits the polarization splitter. Linearly polarized light polarized in substantially the same direction as the polarization direction of the light reflected by the vessel.

【0013】本発明の露光装置をICやLSI等の半導
体デバイスやCCD等撮像デバイスや液晶パネル等の表
示デバイスや磁気ヘッドを製造する為に使用することに
より、優れた各種デバイスが提供される。
By using the exposure apparatus of the present invention to manufacture semiconductor devices such as ICs and LSIs, image pickup devices such as CCDs, display devices such as liquid crystal panels, and magnetic heads, various excellent devices are provided.

【0014】[0014]

【実施例】図1は本発明の露光装置の一実施例を示す概
略構成図であり、この露光装置はICやLSI等の半導
体デバイスを製造するのに使用される走査型露光装置で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus of the present invention. This exposure apparatus is a scanning type exposure apparatus used for manufacturing semiconductor devices such as IC and LSI.

【0015】図1において、1は水銀ランプ等の紫外線
を発する光源であり、1aはその発光部である。2は楕
円ミラーであり、その第1焦点近傍に光源1の発光部1
aが配置されているので、楕円ミラー2は発光部1aを
その第2焦点3に結像する。従って、発光部1aからの
光は楕円ミラー2の第2焦点3に集光される。楕円ミラ
ー2の第2焦点3から発散する光は、コンデンサーレン
ズ4により光軸にほぼ平行な平行光に変換され、偏光ビ
ームスプリッター21に入射する。偏光ビームスプリッ
ター21に入射する光は偏光ビームスプリッター21の
光分割面21aにより透過光(紙面内に偏光したP偏光
光)と反射光(紙面と垂直な方向に偏光したS偏光光)
に分けられる。偏光ビームスプリッター21の光分割面
21aを透過した透過光(P偏光光)はミラー25、コ
ンデンサー26、プリズム等の偏向素子27を介してハ
エノ目レンズ等のオプティカルインテグレーター7の光
入射面に指向される。一方、偏光ビームスプリッター2
1の光分割面21aにより反射された反射光(S偏光
光)は2分の1波長板22を通過し2分の1波長板22
によりP偏光光に変換され、コンデンサー23、プリズ
ム等の偏向素子24を介してオプティカルインテグレー
ター7の光入射面に指向される。
In FIG. 1, 1 is a light source that emits ultraviolet rays, such as a mercury lamp, and 1a is its light emitting portion. Reference numeral 2 is an elliptical mirror, and the light emitting unit 1 of the light source 1 is provided in the vicinity of the first focal point
Since a is arranged, the elliptical mirror 2 forms an image of the light emitting portion 1a at the second focal point 3 thereof. Therefore, the light from the light emitting unit 1 a is focused on the second focus 3 of the elliptical mirror 2. The light diverging from the second focal point 3 of the elliptical mirror 2 is converted into parallel light substantially parallel to the optical axis by the condenser lens 4, and enters the polarization beam splitter 21. The light incident on the polarization beam splitter 21 is transmitted light (P-polarized light polarized in the plane of the paper) and reflected light (S-polarized light polarized in the direction perpendicular to the plane of the paper) by the light splitting surface 21a of the polarization beam splitter 21.
It is divided into The transmitted light (P-polarized light) transmitted through the light splitting surface 21a of the polarization beam splitter 21 is directed to the light incident surface of the optical integrator 7 such as a fly-eye lens through a mirror 25, a condenser 26, and a deflecting element 27 such as a prism. It On the other hand, the polarization beam splitter 2
The reflected light (S-polarized light) reflected by the first light splitting surface 21 a passes through the half-wave plate 22 and passes through the half-wave plate 22.
Is converted into P-polarized light by the condenser 23, and is directed to the light incident surface of the optical integrator 7 via the condenser 23 and the deflecting element 24 such as a prism.

【0016】オプティカルインテグレーター7を構成す
るのハエノ目レンズは複数の微小レンズを規則正しく並
べた集合体であり、その光射出面近傍に複数の2次光源
が形成される。
The fly-eye lens forming the optical integrator 7 is an assembly in which a plurality of minute lenses are regularly arranged, and a plurality of secondary light sources are formed near the light exit surface thereof.

【0017】8はコンデンサーレンズであり、コンデン
サーレンズ8により、オプティカルインテグレーター7
の光出射面に形成された2次光源からの光束をマスキン
グブレード(視野絞り)9のスリット状開口に、ケーラ
ー照明するよう、集光している。マスキングブレード9
のスリット状開口の位置とレチクル11のデバイスパタ
ーンの位置は結像レンズ10により光学的に共役に設定
されており、マスキングブレード9のスリット状開口の
像がレチクル上に投影されスリット状光がレチクルを照
明するので、マスキングブレード9の開口の形状と寸法
によりレチクル11における照明領域の形状と寸法が規
定される。
Reference numeral 8 denotes a condenser lens, and the condenser lens 8 allows the optical integrator 7
The light flux from the secondary light source formed on the light emission surface of (1) is focused on the slit-shaped opening of the masking blade (field stop) 9 so as to perform Koehler illumination. Masking blade 9
The position of the slit-shaped opening of the reticle and the position of the device pattern of the reticle 11 are set optically conjugate by the imaging lens 10, and the image of the slit-shaped opening of the masking blade 9 is projected onto the reticle so that the slit-shaped light is reticle. The shape and size of the illumination area on the reticle 11 are defined by the shape and size of the opening of the masking blade 9.

【0018】レチクル11における照明領域は、レチク
ルの走査方向に短辺を有する長方形のスリット状光によ
り形成される。この種の長方形の照射領域を効率よく照
明するために、オプティカルインテグレーター7のハエ
ノ目レンズは、図2、図3に示すように、その光入射面
及び光射出面が長方形の断面形状を持つ。
The illumination area on the reticle 11 is formed by rectangular slit light having a short side in the scanning direction of the reticle. In order to efficiently illuminate a rectangular irradiation area of this kind, the fly-eye lens of the optical integrator 7 has a rectangular cross-sectional shape in its light incident surface and light emitting surface, as shown in FIGS.

【0019】オプティカルインテグレーター7のハエノ
目レンズに入射する2つのP偏光光は、ハエノ目レンズ
の光射出面近傍に形成される2次光源が図3(B)に示
す強度分布を持つようにハエノ目レンズに向けられる。
これは、例えば図2に示すように、ハエノ目レンズの光
入射面及び光射出面がy方向に長い長方形の断面形状を
持つ場合、yz平面に関して光軸に対し角度を成す方向
から2つのP偏光光をハエノ目レンズに向けることによ
り達成出来る。また、オプティカルインテグレーター7
のハエノ目レンズの光射出面近傍に形成される2次光源
形成はすべてP偏光光であり、従ってレチクル11を照
明する光もすべてP偏光光となる。
The two P-polarized lights incident on the fly-eye lens of the optical integrator 7 are controlled so that the secondary light source formed near the light exit surface of the fly-eye lens has the intensity distribution shown in FIG. 3 (B). Aimed at the eye lens.
For example, as shown in FIG. 2, when the light entrance surface and the light exit surface of the fly-eye lens have a rectangular cross-sectional shape that is long in the y direction, two Ps from the direction that forms an angle with the optical axis with respect to the yz plane. This can be achieved by directing polarized light to the fly-eye lens. In addition, optical integrator 7
All the secondary light source formations formed in the vicinity of the light exit surface of the fly-eye lens are P-polarized light, so that the light that illuminates the reticle 11 is also P-polarized light.

【0020】12〜17は反射屈折型縮小投影光学系で
あり、12は正レンズ、13は偏光ビームスプリッター
(光分割器)、13aは光分割面、14は1/4波長
板、15は負レンズ、16は凹面鏡、17は正レンズを
示す。
Reference numerals 12 to 17 are catadioptric reduction projection optical systems, 12 is a positive lens, 13 is a polarization beam splitter (light splitter), 13a is a light splitting surface, 14 is a quarter wavelength plate, and 15 is negative. A lens, 16 is a concave mirror, and 17 is a positive lens.

【0021】レチクル11とウェハー18は、投影光学
系12〜17に関して光学的に共役な位置に配置され、
その位置で不図示の駆動装置により投影光学系12〜1
7の倍率に応じた一定の速度比でレチクル11はy方向
にウエハー18はz方向に移動し、レチクル11上のデ
バイスパターンがスリット上照明領域を横切って走査さ
れることによりレチクル11上のデバイスパターンがウ
ェハー18上に転写される。
The reticle 11 and the wafer 18 are arranged at optically conjugate positions with respect to the projection optical systems 12-17.
At that position, the projection optical systems 12 to 1 are driven by a driving device (not shown).
The reticle 11 moves in the y direction and the wafer 18 moves in the z direction at a constant speed ratio according to the magnification of 7. The device pattern on the reticle 11 is scanned across the illumination area on the slit, so that the device on the reticle 11 is scanned. The pattern is transferred onto the wafer 18.

【0022】レチクル11のデバイスパターンを透過し
たP偏光光は正の屈折力のレンズ12により光軸にほぼ
平行な平行光束に変換される。平行光束に変換されたP
偏光光は偏光ビームスプリッター13を実質的に損失無
く透過し、1/4波長板14により円偏光光に変換され
る。入射光が偏光ビームスプリッター13を透過するの
はP偏光光である場合であり、これ以外のS偏光光がレ
チクル11を透過して偏光ビームスプリッター13に入
射してきた場合は、偏光ビームスプリッター13の反射
面13aで反射されるので、光量損失やフレアの発生の
原因となるが、本実施例では、レチクル11を透過して
くる光は実質的にすべてP偏光光であるため、光量の損
失やフレア発生は生じない。さて1/4波長板14から
の円偏光光は、負の屈折力のレンズ15により発散せし
められ、凹面鏡16により反射及び集光されたの後、再
び負の屈折力のレンズ15に入射する。負の屈折力のレ
ンズ15を出射した円偏光光は再び1/4波長板14を
通過することによりS偏光光に変換され、偏光ビームス
プリッター13に入射する。このS偏光光は、偏光ビー
ムスプリッター13の反射面13aにより反射され、正
の屈折力のレンズ17を介して、ウェハー18上に集光
せしめられ、ウエハー18上にレチクル11のデバイス
パターンの縮小像を形成する。
The P-polarized light transmitted through the device pattern of the reticle 11 is converted by the lens 12 having a positive refracting power into a parallel light flux substantially parallel to the optical axis. P converted to parallel light flux
The polarized light passes through the polarization beam splitter 13 without any loss, and is converted into circularly polarized light by the quarter-wave plate 14. The incident light is transmitted through the polarization beam splitter 13 when it is P-polarized light, and when other S-polarized light is transmitted through the reticle 11 and is incident on the polarization beam splitter 13, the polarization beam splitter 13 Since the light is reflected by the reflecting surface 13a, it causes a light amount loss and flare. However, in the present embodiment, since the light transmitted through the reticle 11 is substantially all P-polarized light, the light amount loss and the flare are generated. No flare occurs. The circularly polarized light from the quarter-wave plate 14 is diverged by the lens 15 having a negative refractive power, reflected and condensed by the concave mirror 16, and then enters the lens 15 having a negative refractive power again. The circularly polarized light emitted from the lens 15 having a negative refracting power passes through the quarter-wave plate 14 again to be converted into S-polarized light, and enters the polarization beam splitter 13. This S-polarized light is reflected by the reflecting surface 13a of the polarization beam splitter 13, is focused on the wafer 18 via the lens 17 having a positive refractive power, and a reduced image of the device pattern of the reticle 11 is formed on the wafer 18. To form.

【0023】本実施例ではオプティカルインテグレータ
ー7のハエノ目レンズの光入出射面を紙面方向(y方
向)に長い長方形状としたが、レチクル11の照明領域
を紙面に垂直な方向に長くする場合、ハエノ目レンズの
光入出射面は紙面と垂直な方向(x方向)に長い長方形
状になるため、2つのP偏光光は紙面と垂直なxz平面
に関して光軸と角度を成す方向からハエノ目レンズに入
射される。この場合の2つのP偏光光の偏光方向は、投
影光学系12〜17の偏光ビームスプリッター13に最
初に入射する光が全て透過する偏光方向に設定される。
In the present embodiment, the light entrance / exit surface of the fly-eye lens of the optical integrator 7 has a rectangular shape elongated in the paper surface direction (y direction). However, when the illumination area of the reticle 11 is elongated in the direction perpendicular to the paper surface, Since the light entrance / exit surface of the fly-eye lens has a rectangular shape that is long in the direction (x direction) perpendicular to the paper surface, the two P-polarized lights are from the direction that forms an angle with the optical axis with respect to the xz plane perpendicular to the paper surface. Is incident on. The polarization directions of the two P-polarized lights in this case are set to the polarization directions in which all the lights that first enter the polarization beam splitter 13 of the projection optical systems 12 to 17 are transmitted.

【0024】本実施例では水銀ランプ1からの光束を2
つの光束に分けているが、ハーフミラー、偏光ビームス
プリッター、波長板等の光学部材を適宜組み合わせ、水
銀ランプ1からの光束を3つ以上の光束に分け、各光束
を互いに同じ方向に振動する直線偏光光にしてオプティ
カルインテグレーター7のハエノ目レンズに入射させて
も構わない。
In this embodiment, the luminous flux from the mercury lamp 1 is set to 2
Although it is divided into two light beams, the optical members such as a half mirror, a polarization beam splitter, and a wave plate are appropriately combined to divide the light beam from the mercury lamp 1 into three or more light beams, and each light beam vibrates in the same direction. The polarized light may be incident on the fly-eye lens of the optical integrator 7.

【0025】また、分割して得た複数の光束を直線偏光
以外の同じ偏光(例えば円偏光)にし、ハエノ目レンズ
の前方または後方に1/4波長板を配置してレチクル1
1を所望の偏光方向で照明してもよい。
Further, the plurality of light beams obtained by the division are made into the same polarized light (for example, circularly polarized light) other than the linearly polarized light, and a quarter wave plate is arranged in front of or behind the fly-eye lens to form the reticle 1.
1 may be illuminated with a desired polarization direction.

【0026】本実施例ではオプティカルインテグレータ
ー7のハエノ目レンズの断面形状を長方形にし、分割し
て得た複数の光束のハエノ目レンズへの入射方向を限定
しているが、ハエノ目レンズの断面形状は、例えば正方
形や六角形でもよいし、ハエノ目レンズへの入射角度に
十分な余裕がある場合どの方向から入射させてもよい。
In this embodiment, the cross-sectional shape of the fly-eye lens of the optical integrator 7 is rectangular and the incident directions of a plurality of light beams obtained by dividing the fly-eye lens are limited, but the cross-sectional shape of the fly-eye lens is limited. May be, for example, a square or a hexagon, and may be incident from any direction if the incident angle to the fly-eye lens has a sufficient margin.

【0027】本実施例においては、光源を偏光特性のな
い水銀ランプとしているが、光源を偏光特性のない光を
発するレーザーとしても構わない。また光源をプリズム
等により狭帯域された偏光特性のある光を発するエキシ
マレーザーとしても構わない。
In this embodiment, the light source is a mercury lamp having no polarization characteristic, but the light source may be a laser which emits light having no polarization characteristic. Further, the light source may be an excimer laser that emits light having a polarization characteristic that is narrow banded by a prism or the like.

【0028】本実施例では偏光ビームスプリッター21
を用いていたが、光源からの光をハーフミラー等により
複数の光束に分け、その複数の光束をある偏光成分に変
換するような偏光フィルターに入射させ、所望の偏光方
向の光のみ選択し、レチクル11を照明してもよい。
In this embodiment, the polarization beam splitter 21
However, the light from the light source is divided into a plurality of light fluxes by a half mirror or the like, and the plurality of light fluxes are made incident on a polarization filter that converts them into a certain polarization component, and only the light of a desired polarization direction is selected, The reticle 11 may be illuminated.

【0029】本実施例ではレチクル11のデバイスパタ
ーンをウェハー18上に結像するための光学系を反射屈
折型投影光学系としたが、本発明の照明装置は、ステッ
パーなどの屈折型投影光学系を備える露光装置や反射型
投影光学系を備える露光装置に適用してもよい。
In the present embodiment, the optical system for forming the device pattern of the reticle 11 on the wafer 18 is a catadioptric projection optical system, but the illumination device of the present invention is a refraction projection optical system such as a stepper. The present invention may be applied to an exposure apparatus including the above or an exposure apparatus including a reflection type projection optical system.

【0030】本実施例ではマスキングブレード9とレチ
クル11を結像レンズ10を用いて略共役な位置に配置
しているが、結像レンズ10等の結像光学系を介さず
に、レチクル11の近傍にマスキングブレード9を配置
してもよい。
In this embodiment, the masking blade 9 and the reticle 11 are arranged at substantially conjugate positions by using the image forming lens 10. However, the reticle 11 of the reticle 11 is not provided through the image forming optical system such as the image forming lens 10. The masking blade 9 may be arranged in the vicinity.

【0031】また本発明の他の実施例として、投影光学
系に偏光ビームスプリッターを用いず、レチクルの任意
の線状パターンを投影する際、投影すべき線状パターン
の延びる方向に偏光した直線偏光光をレチクルに供給す
べく、例えば図1の露光装置の照明光学系を改良し、こ
の照明光学系のオプテイカルインテグレーター7の前後
に1/2波長板を設け、この1/2波長板を回転させて
レチクル11に入射する直線偏光光の偏光方向を変え、
偏光方向を調整することができる露光装置がある。
Further, as another embodiment of the present invention, when a linear beam pattern of a reticle is projected without using a polarizing beam splitter in the projection optical system, linearly polarized light polarized in the direction in which the linear pattern to be projected extends. In order to supply light to the reticle, for example, the illumination optical system of the exposure apparatus shown in FIG. 1 is improved, a 1/2 wavelength plate is provided in front of and behind the optical integrator 7 of this illumination optical system, and the 1/2 wavelength plate is rotated. And change the polarization direction of the linearly polarized light incident on the reticle 11,
There is an exposure device capable of adjusting the polarization direction.

【0032】次に上記各露光装置を利用した半導体デバ
イスの製造方法の実施例を説明する。
Next, an embodiment of a method of manufacturing a semiconductor device using each of the above exposure apparatuses will be described.

【0033】図4は半導体デバイス(ICやLSI等の
半導体チップ、液晶パネルやCCD)の製造フローを示
す。ステップ1(回路設計)では半導体装置の回路設計
を行なう。ステップ2(マスク製作)では設計した回路
パターンを形成したマスク(レチクル304)を製作す
る。一方、ステップ3(ウエハー製造)ではシリコン等
の材料を用いてウエハー(ウエハー306)を製造す
る。ステップ4(ウエハープロセス)は前工程と呼ば
れ、上記用意したマスクとウエハーとを用いて、リソグ
ラフィー技術によってウエハー上に実際の回路を形成す
る。次のステップ5(組み立て)は後工程と呼ばれ、ス
テップ4よって作成されたウエハーを用いてチップ化す
る工程であり、アッセンブリ工程(ダイシング、ボンデ
ング)、パッケージング工程(チップ封入)等の工程
を含む。ステップ6(検査)ではステップ5で作成され
た半導体装置の動作確認テスト、耐久性テスト等の検査
を行なう。こうした工程を経て半導体装置が完成し、こ
れが出荷(ステップ7)される。
FIG. 4 shows a manufacturing flow of semiconductor devices (semiconductor chips such as IC and LSI, liquid crystal panels and CCDs). In step 1 (circuit design), the circuit of the semiconductor device is designed. In step 2 (mask manufacturing), a mask (reticle 304) on which the designed circuit pattern is formed is manufactured. On the other hand, in step 3 (wafer manufacturing), a wafer (wafer 306) is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 5 (assembly) is called a post-process, which is a process of making chips using the wafer prepared in step 4, and an assembly process (dicing, bonding
B ring), a packaging process (chip encapsulation). In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).

【0034】図5は上記ウエハープロセスの詳細なフロ
ーを示す。ステップ11(酸化)ではウエハー(ウエハ
ー306)の表面を酸化させる。ステップ12(CV
D)ではウエハーの表面に絶縁膜を形成する。ステップ
13(電極形成)ではウエハー上に電極を蒸着によって
形成する。ステップ14(イオン打ち込み)ではウエハ
ーにイオンを打ち込む。ステップ15(レジスト処理)
ではウエハーにレジスト(感材)を塗布する。ステップ
16(露光)では上記投影露光装置によってマスク(レ
チクル304)の回路パターンの像でウエハーを露光す
る。ステップ17(現像)では露光したウエハーを現像
する。ステップ18(エッチング)では現像したレジス
ト以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらステップを繰り返し行なうことによりウ
エハー上に回路パターンが形成される。
FIG. 5 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer (wafer 306) is oxidized. Step 12 (CV
In D), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15 (resist processing)
Then, a resist (photosensitive material) is applied to the wafer. In step 16 (exposure), the projection exposure apparatus exposes the wafer with an image of the circuit pattern of the mask (reticle 304). In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist are scraped off. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0035】本実施例の製造方法を用いれば、高集積度
の半導体デバイスを製造することが可能になる。
The use of the manufacturing method of this embodiment makes it possible to manufacture highly integrated semiconductor devices.

【0036】[0036]

【発明の効果】以上、本発明では、光利用効率が高い露
光装置を提供することが可能である。
As described above, according to the present invention, it is possible to provide an exposure apparatus having high light utilization efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体デバイス製造用
露光装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an exposure apparatus for manufacturing a semiconductor device showing an embodiment of the present invention.

【図2】ハエノ目レンズの概略外観図である。FIG. 2 is a schematic external view of a fly-eye lens.

【図3】ハエノ目レンズの光射出面に形成する2次光源
の説明図である。
FIG. 3 is an explanatory diagram of a secondary light source formed on a light exit surface of a fly-eye lens.

【図4】半導体素子の製造工程を示すフローチャート図
である。
FIG. 4 is a flowchart showing manufacturing steps of a semiconductor device.

【図5】図4の工程中のウエハープロセスの詳細を示す
フローチャート図である。
5 is a flow chart diagram illustrating details of a wafer process during the process of FIG.

【符号の説明】[Explanation of symbols]

1 水銀ランプ 7 ハエノ目レンズ 11 レチクル 13,21 偏光ビームスプリッター 14 1/波長板 16 凹面鏡 18 ウェハー 22 1/2波長板 1 Mercury Lamp 7 Fly-eye Lens 11 Reticle 13, 21 Polarization Beam Splitter 14 1 / Wave Plate 16 Concave Mirror 18 Wafer 22 1/2 Wave Plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光源からの非直線偏光光を直線偏光光に
変換し、該直線偏光光によりパターンを照明する手段を
有することを特徴とする露光装置。
1. An exposure apparatus having a means for converting non-linearly polarized light from a light source into linearly polarized light and illuminating a pattern with the linearly polarized light.
【請求項2】 光源からの非直線偏光光を直線偏光光に
変換し、該直線偏光光によりパターンを照明する手段
と、前記照明手段で照明されたパターンを偏光光分割器
を介して基板上に投影する投影光学系とを有することを
特徴とする露光装置。
2. A means for converting non-linearly polarized light from a light source into linearly polarized light and illuminating a pattern with the linearly polarized light, and a pattern illuminated by the illuminating means on a substrate through a polarized light splitter. An exposure apparatus having a projection optical system for projecting onto an image.
【請求項3】 前記照明手段が前記光源からの非直線偏
光光を2光束に分割する光分割器と前記2光束の偏光方
向を互いに一致せしめる手段とを備えることを特徴とす
る請求項2の露光装置。
3. The illumination means comprises a light splitter for splitting the non-linearly polarized light from the light source into two light fluxes, and means for matching the polarization directions of the two light fluxes with each other. Exposure equipment.
【請求項4】 前記照明手段が前記光源からの非直線偏
光光を2光束に分割する偏光光分割器と前記2光束の偏
光方向が互いに一致するよう一方の光束の偏光方向を変
える1/2波長板とを備えることを特徴とする請求項2
の露光装置。
4. A polarized light splitter for splitting the non-linearly polarized light from the light source into two light beams by the illuminating means and changing the polarization direction of one light beam so that the polarization directions of the two light beams coincide with each other. A wave plate is provided.
Exposure equipment.
【請求項5】 前記投影光学系が前記偏光分割器を透過
する光を反射し前記偏光分割器に再入射せしめる凹面鏡
と前記偏光分割器に再入射する光が前記偏光分割器で反
射されるよう前記偏光分割器を透過する光の偏光方向を
変えるために前記偏光分割器と前記凹面鏡の間に配した
1/4波長板とを有し、前記照明手段が、前記偏光分割
器を透過する光の偏光方向と実質的に同じ方向に偏光し
た直線偏光光を供給することを特徴とする請求項2〜4
の露光装置。
5. A concave mirror for causing the projection optical system to reflect the light transmitted through the polarization splitter and to re-enter the polarization splitter, and the light re-entering the polarization splitter is reflected by the polarization splitter. The light passing through the polarization splitter comprises the polarization splitter and a quarter-wave plate arranged between the concave mirror to change the polarization direction of the light passing through the polarization splitter. The linearly polarized light polarized in the substantially same direction as the polarization direction of the above is supplied.
Exposure equipment.
【請求項6】 前記投影光学系が前記偏光分割器で反射
する光を反射し前記偏光分割器に再入射せしめる凹面鏡
と前記偏光分割器に再入射する光が前記偏光分割器を透
過するよう前記偏光分割器を透過する光の偏光方向を変
えるために前記偏光分割器と前記凹面鏡の間に配した1
/4波長板とを有し、前記照明手段が、前記偏光分割器
で反射する光の偏光方向と実質的に同じ方向に偏光した
直線偏光光を供給することを特徴とする請求項2〜4の
露光装置。
6. A concave mirror for causing the projection optical system to reflect the light reflected by the polarization splitter and re-enter the polarization splitter, and to allow the light re-entering the polarization splitter to pass through the polarization splitter. 1 arranged between the polarization splitter and the concave mirror for changing the polarization direction of light transmitted through the polarization splitter
/ 4 wavelength plate, and the illumination means supplies linearly polarized light polarized in a direction substantially the same as the polarization direction of the light reflected by the polarization splitter. Exposure equipment.
【請求項7】 請求項1乃至請求項6に記載の露光装置
を用いてデバイスを製造することを特徴とするデバイス
製造方法。
7. A device manufacturing method comprising manufacturing a device using the exposure apparatus according to claim 1. Description:
JP5158970A 1993-06-29 1993-06-29 Aligner Withdrawn JPH07135145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158970A JPH07135145A (en) 1993-06-29 1993-06-29 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158970A JPH07135145A (en) 1993-06-29 1993-06-29 Aligner

Publications (1)

Publication Number Publication Date
JPH07135145A true JPH07135145A (en) 1995-05-23

Family

ID=15683357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158970A Withdrawn JPH07135145A (en) 1993-06-29 1993-06-29 Aligner

Country Status (1)

Country Link
JP (1) JPH07135145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746164A3 (en) * 1995-06-02 1998-04-22 Matsushita Electronics Corporation Lighting device transformed in the direction of polarization and projection type image display device using the same
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
WO2009050966A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JPWO2008007632A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2023238175A1 (en) * 2022-06-06 2023-12-14 株式会社ニコン LIGHT CONDENSING OPTICAL SYSTEM, Fθ OPTICAL SYSTEM, OPTICAL MACHINING DEVICE, AND OPTICAL MEASUREMENT DEVICE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746164A3 (en) * 1995-06-02 1998-04-22 Matsushita Electronics Corporation Lighting device transformed in the direction of polarization and projection type image display device using the same
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
US7196773B2 (en) 2003-09-12 2007-03-27 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
KR100731255B1 (en) * 2003-09-12 2007-06-25 캐논 가부시끼가이샤 Illumination optical system and exposure apparatus using the same
JPWO2008007632A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009050966A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP5459482B2 (en) * 2007-10-16 2014-04-02 株式会社ニコン Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
WO2023238175A1 (en) * 2022-06-06 2023-12-14 株式会社ニコン LIGHT CONDENSING OPTICAL SYSTEM, Fθ OPTICAL SYSTEM, OPTICAL MACHINING DEVICE, AND OPTICAL MEASUREMENT DEVICE

Similar Documents

Publication Publication Date Title
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
JP2698521B2 (en) Catadioptric optical system and projection exposure apparatus having the optical system
JP3093528B2 (en) Scanning exposure equipment
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
JPH11271619A (en) Illumination optical device and exposure device provided with illumination optical device
JPH09190969A (en) Projecting exposure system and manufacture of device using it
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
JPH06181162A (en) Reflective/refractive optical system and projection aligner employing it
JP2000021712A (en) Illuminating optical system and aligner provided with the system
JP3559694B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPH1070070A (en) Illuminator and projection aligner using the illuminator
JP2000114160A (en) Optical system for circular-arcuate illumination and aligner using the same
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPS62188316A (en) Projection exposure device
JPH07135145A (en) Aligner
JP2004207709A (en) Exposure method and device
JP2003232901A (en) Optical device, illuminator and exposure device
JPH09312254A (en) Scanning exposure device and manufacture of device using that
JP3236193B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP2006156857A (en) X ray generator and exposure device
JPH09246179A (en) Projection exposure apparatus and manufacture of device using the aligner
JPH09213618A (en) Projection exposure system and manufacture of device using the same
JP3347405B2 (en) Illumination device and exposure apparatus including the illumination device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905