JPS61110967A - Pressure type fuel cell - Google Patents

Pressure type fuel cell

Info

Publication number
JPS61110967A
JPS61110967A JP59233906A JP23390684A JPS61110967A JP S61110967 A JPS61110967 A JP S61110967A JP 59233906 A JP59233906 A JP 59233906A JP 23390684 A JP23390684 A JP 23390684A JP S61110967 A JPS61110967 A JP S61110967A
Authority
JP
Japan
Prior art keywords
pressure
gas
container
pressure container
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233906A
Other languages
Japanese (ja)
Other versions
JPH0261097B2 (en
Inventor
Masao Kumeta
粂田 政男
Masahiro Ide
井出 正裕
Nobuyoshi Nishizawa
信好 西沢
Shinya Inoue
伸也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59233906A priority Critical patent/JPS61110967A/en
Publication of JPS61110967A publication Critical patent/JPS61110967A/en
Publication of JPH0261097B2 publication Critical patent/JPH0261097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To treat so that reaction gas leaked from a cell may not accumulate while heightening efficiency of a pressure type system by setting up a white metal catalyzer inside a pressure container. CONSTITUTION:In the captioned cell, where inert gas pressure inside a pressure container housing a cell is almost equalized to the pressure of each reaction gas to be supplied to the cell, a catalyzer 14 making hydrogen gas leaked from the manifold sealing part into the container 2 to react to air for producing water inside the pressure container 2. For instance, a catalyzer metal such as platinum-palladium is borne by carbon paper and a nickel or stainless steel net for being wrapped in a wire net in order to be fixed to the inside wall of the container 2. Thereby, each reaction gas leaked inside the pressure container is combined into water by an action of the catalyzer so as not to be in danger of accumulating leak gas inside the pressure container while being not required to let a large amount of inert gas into the pressure container so that it safies to seal inert gas into the pressure container or to let flow a small amount of inert gas.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は圧力容器内に電池を収納した加圧式燃料電池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a pressurized fuel cell in which a battery is housed in a pressure vessel.

(ロ)従来の技術 燃料電池は高い圧力下で運転すると反応性が良くなり、
常圧式に比して高い特性を得ることができるため、加圧
式システムが開発されている。この場合圧力容器内に収
納しり電池には、各反応ガスが5気圧程度に加圧して供
給されると共に、圧力容器内にはこれと同程度の圧力下
でN2もしくは002などの不活性ガスが充満される。
(b) Conventional technology fuel cells have better reactivity when operated under high pressure;
Pressurized systems have been developed because they offer better properties than normal pressure systems. In this case, each reaction gas is pressurized to about 5 atmospheres and supplied to the battery housed in the pressure vessel, and an inert gas such as N2 or 002 is also supplied to the pressure vessel under the same pressure. be filled.

しかしながら各反応ガス(水素ガス及び空気)がt池ス
タックのマニホルドシール部等からリークすることはさ
けられず、これが圧力容器内に蓄積すると危険性が増大
する。そのため従来圧力容器内に加圧下で不活性ガスを
絶えず流してリークガスを容器外に送シ出す方法や圧力
容器内圧を電池への供給ガス圧よシ高くしマニホルドシ
ール部からのリークを抑制する方法などが提案されてい
る。
However, it is unavoidable that each reaction gas (hydrogen gas and air) leaks from the manifold seal portion of the T-cell stack, and the danger increases if this accumulates in the pressure vessel. For this reason, conventional methods include constantly flowing inert gas under pressure into the pressure vessel to send leak gas out of the vessel, and methods that increase the internal pressure of the pressure vessel higher than the pressure of the gas supplied to the battery to suppress leaks from the manifold seal. etc. have been proposed.

しかし前者の方法では、多足の不活性ガスを加圧してオ
ープン経路で流すため大容量のコンプレッサやプロワを
必要とし、システム全体の効率を損う。又後者の方法で
は圧力容器内の不活性ガスが電池スタック内にリークし
て各反応ガスに混入するため電池反応性を低下させると
共に、負荷変動時一時的に電池側供給圧力が容器内圧よ
シ高くなって容器内へ反応ガスがリークするなどいづれ
への方法も問題がめった。
However, the former method requires a large-capacity compressor or blower to pressurize a large amount of inert gas and flow it through an open path, which impairs the efficiency of the entire system. In addition, in the latter method, inert gas in the pressure vessel leaks into the battery stack and mixes with each reaction gas, reducing battery reactivity, and temporarily causing the supply pressure on the battery side to rise above the vessel internal pressure during load fluctuations. Both methods were fraught with problems, such as the reactant gas leaking into the container due to the high temperature.

el  発明が解決しようとする問題点この発明は圧力
容器内に、電池よシリークした反応ガスが蓄積しないよ
う処理すると共に加圧式システムの効率化を図る点に参
る。
Problems to be Solved by the Invention The present invention aims to prevent reaction gas leaking from batteries from accumulating in a pressure vessel, and to improve the efficiency of a pressurized system.

に)問題点を解決するための手段 この発明は圧力容器内に白金属触媒を設置したものであ
る。
B) Means for Solving the Problems This invention places a platinum metal catalyst inside a pressure vessel.

(ホ)作 用 この発明によれば、マニホルドシール部などから圧力容
器内にリークした各反応ガス(水素ガス及び空気)は触
媒の働きによシ結合して水となり、圧力容器内にリーク
ガスが蓄積するおそれがないので、多量の不活性ガスを
流す必要なく圧力容器内に不活性ガスを封入するか、わ
づかの不活性ガスを流すだけで充分となる。
(E) Effect According to the present invention, each reaction gas (hydrogen gas and air) leaking into the pressure vessel from the manifold seal etc. is combined into water by the action of the catalyst, and the leak gas is released into the pressure vessel. Since there is no risk of accumulation, it is sufficient to seal inert gas in the pressure vessel or to flow a small amount of inert gas without the need to flow a large amount of inert gas.

(へ)実施例 第1図は圧力容器内に収納した電池の各ガス経路を模式
的に示す図、第2図及び第6図は本発明による加圧式燃
料電池の横断面図及び縦断面図である。
(f) Example FIG. 1 is a diagram schematically showing each gas path of a battery housed in a pressure vessel, and FIGS. 2 and 6 are a cross-sectional view and a vertical cross-sectional view of a pressurized fuel cell according to the present invention. It is.

第1図の模式図で電池(1)の負極及び正極には夫々水
素ガス及び空気が加圧下で供給され、正負極から排出さ
れた高温各排出ガスは例えば改質器バーナー(図示せず
)で燃焼される。圧力容器(2)内は不活性ガス雰囲気
となるよう加圧ガスが供給される。これら各反応ガス及
び不活性ガスは各系統の圧力調整が必要なので入口側出
口側に夫々パルプ(31<3r、(41(41’及び(
51(51’を有する。又熱回収器(6)及びプロワ(
7)を有する循環閉回路(8)には加圧空気が循環して
電池を冷却する。この閉回路(8)内の加圧空気量はパ
ルプ+91 <9rにより調整される。
In the schematic diagram of FIG. 1, hydrogen gas and air are supplied under pressure to the negative and positive electrodes of a battery (1), respectively, and the high-temperature exhaust gases discharged from the positive and negative electrodes are sent to, for example, a reformer burner (not shown). is burned. Pressurized gas is supplied to create an inert gas atmosphere inside the pressure vessel (2). These reaction gases and inert gases require pressure adjustment in each system, so pulp (31 < 3r, (41 (41') and (
51 (51').It also has a heat recovery device (6) and a blower (
Pressurized air circulates in the closed circulation circuit (8) having 7) to cool the battery. The amount of pressurized air in this closed circuit (8) is adjusted by Pulp +91 <9r.

電池(1)は電池スタックααの一対向面に反応空気用
マニホルド(111(111′と水素ガス用マニホルド
(121(121’とを並設し、且他対向面に冷却空気
用マニホルドldを取付けて構成される。これら各マニ
ホルドの入口管及び出口管は第6図のように圧力容器(
2)の底壁を気密的に貫通して外部へ導出されている。
Battery (1) has a reaction air manifold (111 (111') and a hydrogen gas manifold (121 (121') installed side by side on one opposing surface of the battery stack αα, and a cooling air manifold ld on the other opposing surface. The inlet pipe and outlet pipe of each of these manifolds are connected to a pressure vessel (
2), and is led out to the outside by airtightly penetrating the bottom wall.

圧力容器(2)の内+仁は、マニホルドのシール部よシ
容器(2)内にリークした水素ガスと空気とを反応させ
て水とする触媒α由が設置される。図示実施例ではカー
ボンベーパーやニッケルもしくはステンレススチール網
に白金、パラジウムなどの触媒金属を担持させたものを
金網などに包んで容器(2)の内壁に固定した場合であ
る。
Inside the pressure vessel (2), a catalyst is installed which reacts the hydrogen gas leaked into the vessel (2) through the sealing part of the manifold with air to form water. In the illustrated embodiment, a catalyst metal such as platinum or palladium supported on carbon vapor or nickel or stainless steel mesh is wrapped in a wire mesh or the like and fixed to the inner wall of the container (2).

反応するガスは、リークした空気中の02ガスと旦2ガ
スであって不純物がないため、触媒αりは半永久的に使
用可能である。又触媒下での反応はH2ガス2モルと0
2ガス1モルの割合で行はれるが、リークガス量が02
)Ii2の場合R2ガス全部が消費され02ガスが残る
が、圧力容器(2)内は不活性ガスと02(空気)とに
なり、一方R2〉02の場合消費されないR2ガスが残
るが、圧力容器(2)内は不活性ガスとR2ガスとな9
、いづれもR2ガスと02ガスが混在することがないの
で危険性はない。生成した水は容器内が160°C以上
であるため水蒸気となり、適宜パルプ(51(5rを開
放して不活性ガスと共に容器(2)外に排出するか、又
はパルプ+s+t5fをわづかに開放して絶えず流れて
いる微量の不活性ガスと共に排出すればよい。
The reacting gases are the 02 gas in the leaked air and the 2 gases, and there are no impurities, so the catalyst can be used semi-permanently. In addition, the reaction under a catalyst involves 2 moles of H2 gas and 0
The gas is leaked at a ratio of 1 mole of 2 gases, but the amount of leaked gas is 0.2
) Ii2, all of the R2 gas is consumed and 02 gas remains, but the inside of the pressure vessel (2) becomes inert gas and 02 (air), while in the case of R2>02, unconsumed R2 gas remains, but the pressure Inside the container (2) are inert gas and R2 gas.9
There is no danger in either case because R2 gas and 02 gas do not coexist. The generated water becomes water vapor because the temperature inside the container is 160°C or higher, and the pulp (51 (5r) is opened and discharged to the outside of the container (2) together with the inert gas, or the pulp + s + t5f is slightly opened. It can be discharged along with a small amount of inert gas that is constantly flowing.

(ト)効果 本発明によれば、マニホルドシール部などから圧力容器
内にリークした水素ガスと空気(反応ガス・冷却ガス)
中の酸素ガスは、圧力容器内に設置した触媒の働きによ
り消費されるので、圧力容器内に水素ガスと酸素ガスが
混在して蓄積されることがなく、安全性が向上する。従
って又圧力容器内に加圧され大不活性ガスを多量に流し
つづける必要なく、その分だけコンプレッサやブロワの
容量及び不活性ガス流量を低減することが可能となシ、
加圧式燃料電池の効率改善にも貢献するものである。
(g) Effects According to the present invention, hydrogen gas and air (reactant gas/cooling gas) leaked into the pressure vessel from the manifold seal, etc.
Since the oxygen gas inside is consumed by the action of the catalyst installed in the pressure vessel, hydrogen gas and oxygen gas do not accumulate together in the pressure vessel, improving safety. Therefore, there is no need to continue to flow a large amount of pressurized inert gas into the pressure vessel, and it is possible to reduce the capacity of the compressor or blower and the inert gas flow rate accordingly.
It also contributes to improving the efficiency of pressurized fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加圧式燃料電池の各ガス経路を示す模式図、第
2図及び第6図は本発明による加圧式燃料電池の横断平
面図、及び縦断正面図を夫々示す。 (1)・・・・・・電池、(2)・・・・・・圧力容器
、α0)・・・・・・電池スタック、(111(ILr
・・・・・・反応空気用マニホルド、■Ol・・・・・
・水素ガス用マニホルド、α&叫′・・・・・・冷却空
気用マニホルド、0句・・・・・・触媒。
FIG. 1 is a schematic diagram showing each gas path of a pressurized fuel cell, and FIGS. 2 and 6 are a cross-sectional plan view and a vertical sectional front view of the pressurized fuel cell according to the present invention, respectively. (1)...Battery, (2)...Pressure vessel, α0)...Battery stack, (111(ILr
...Reaction air manifold, ■Ol...
・Hydrogen gas manifold, α &cry'... Cooling air manifold, 0 phrase... Catalyst.

Claims (1)

【特許請求の範囲】[Claims] (1)電池を収納した圧力容器内の不活性ガス圧と前記
電池へ供給される各反応ガス(水素ガスと空気)圧とを
ほゞ等しくしたものにおいて、前記圧力容器内に、前記
電池からリークした水素ガスと前記空気中の酸素ガスと
を反応させる触媒を設置したことを特徴とする加圧式燃
料電池。
(1) The pressure of the inert gas in the pressure vessel housing the battery is approximately equal to the pressure of each reaction gas (hydrogen gas and air) supplied to the battery, and the pressure from the battery to the pressure vessel is A pressurized fuel cell characterized in that a catalyst is installed to cause the leaked hydrogen gas to react with the oxygen gas in the air.
JP59233906A 1984-11-06 1984-11-06 Pressure type fuel cell Granted JPS61110967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233906A JPS61110967A (en) 1984-11-06 1984-11-06 Pressure type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233906A JPS61110967A (en) 1984-11-06 1984-11-06 Pressure type fuel cell

Publications (2)

Publication Number Publication Date
JPS61110967A true JPS61110967A (en) 1986-05-29
JPH0261097B2 JPH0261097B2 (en) 1990-12-19

Family

ID=16962435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233906A Granted JPS61110967A (en) 1984-11-06 1984-11-06 Pressure type fuel cell

Country Status (1)

Country Link
JP (1) JPS61110967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023657A2 (en) * 2000-09-15 2002-03-21 Siemens Aktiengesellschaft Fuel cell arrangement and method for operating a fuel cell arrangement
JP2003262626A (en) * 2002-03-07 2003-09-19 Tokyo Gas Co Ltd Method and apparatus for detection of leakage hydrogen
JP2010146934A (en) * 2008-12-22 2010-07-01 Mitsubishi Heavy Ind Ltd Solid oxide fuel battery, and solid oxide fuel battery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023657A2 (en) * 2000-09-15 2002-03-21 Siemens Aktiengesellschaft Fuel cell arrangement and method for operating a fuel cell arrangement
WO2002023657A3 (en) * 2000-09-15 2003-05-08 Siemens Ag Fuel cell arrangement and method for operating a fuel cell arrangement
JP2003262626A (en) * 2002-03-07 2003-09-19 Tokyo Gas Co Ltd Method and apparatus for detection of leakage hydrogen
JP2010146934A (en) * 2008-12-22 2010-07-01 Mitsubishi Heavy Ind Ltd Solid oxide fuel battery, and solid oxide fuel battery system

Also Published As

Publication number Publication date
JPH0261097B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
EP2311775B1 (en) Hydrogen generation device and fuel cell system provided therewith
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
GB2128013A (en) Leaking manifold seal
JPS61110967A (en) Pressure type fuel cell
JPS63232275A (en) Fuel cell of lamination type
JP2887346B2 (en) Fuel cell generator
JPS61218073A (en) Fuel cell system
JP3282066B2 (en) Fuel cell system
JPS61110968A (en) Cooling device of fuel cell
JPS6261278A (en) Pressurized fuel cell
JPS62148302A (en) Reforming device
JPS6217961A (en) Air cooled-type fuel cell
JP4011203B2 (en) Fuel cell power generation system
JPS59149664A (en) Fuel-cell system
JP2882019B2 (en) Fuel cell
JPS6199276A (en) Air-cooling fuel cell
JP3663653B2 (en) Hydrogen generator
JP3240785B2 (en) Internal reforming fuel cell
JPH0891803A (en) Modifying device of methanol for engine
JPH0426070A (en) Operation of fuel cell generator
JPS60207256A (en) Fuel cell power generation system
JPH0797503B2 (en) Molten carbonate fuel cell power generator
JPH02260369A (en) Fuel cell power generating plant
WO2010022732A1 (en) Fuel cell system and method of operating such fuel cell system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term