JPS6110999B2 - - Google Patents

Info

Publication number
JPS6110999B2
JPS6110999B2 JP16064476A JP16064476A JPS6110999B2 JP S6110999 B2 JPS6110999 B2 JP S6110999B2 JP 16064476 A JP16064476 A JP 16064476A JP 16064476 A JP16064476 A JP 16064476A JP S6110999 B2 JPS6110999 B2 JP S6110999B2
Authority
JP
Japan
Prior art keywords
film
photoconductive
input
resistive
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16064476A
Other languages
Japanese (ja)
Other versions
JPS5384695A (en
Inventor
Masuji Sato
Takao Furumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16064476A priority Critical patent/JPS5384695A/en
Publication of JPS5384695A publication Critical patent/JPS5384695A/en
Publication of JPS6110999B2 publication Critical patent/JPS6110999B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は光学的電位差計や光の位置検知器とし
て用いられる光導電素子に関するもので、許容電
力の増大を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoconductive element used as an optical potentiometer or an optical position detector, and its purpose is to increase allowable power.

従来かかる用途の光導電素子としては、第1図
に示すように、光導電膜1の両側に抵抗膜2と金
属膜3を平行に形成し、光ビーム4の位置により
入力電圧Voに対して出力電圧Veは、Ve=Vo(1
−S)(但しSは光ビームの位置0S1)の
変化が得られることが知られている。
Conventionally, as shown in FIG. 1, a photoconductive element for this purpose has a resistive film 2 and a metal film 3 formed in parallel on both sides of a photoconductive film 1, and the position of the light beam 4 is adjusted to the input voltage Vo. The output voltage Ve is Ve=Vo(1
-S) (where S is the position of the light beam 0S1) is known to be obtained.

この従来の素子の実際の製造に際しては、ガラ
ス,セラミツクよりなる基板上に先ず蒸着法によ
りCdSe,CdS等の光導電膜1を形成し、次いで
その上に抵抗膜2と金属膜3を作るが、光導電膜
1は熱に弱いため、抵抗膜2は室温程度の温度下
で形成されるものでなければならず、Ni−Cr,
Sio−Cr等の蒸着により作られた抵抗膜が主とし
て使用されている。
In actual manufacturing of this conventional element, first a photoconductive film 1 of CdSe, CdS, etc. is formed on a substrate made of glass or ceramic by vapor deposition, and then a resistive film 2 and a metal film 3 are formed thereon. Since the photoconductive film 1 is sensitive to heat, the resistive film 2 must be formed at a temperature around room temperature.
A resistive film made by vapor deposition of Sio-Cr or the like is mainly used.

この素子形成はかなり大変であり最低2回のマ
スク位置合せを必要とし、抵抗膜の膜幅は500μ
m、光導電膜の膜幅は100μm程度が量産を考え
た場合の限界である。両方の膜の膜幅は小さい
程、また膜の長さは大きい程入力抵抗は高くなる
が、膜の長さも構造上精々20mmが限界であり、量
産により製造される素子の入力抵抗は数100Ω〜
数KΩが普通である。
Forming this element is quite difficult and requires at least two mask alignments, and the width of the resistive film is 500 μm.
m, the film width of the photoconductive film is about 100 μm, which is the limit when considering mass production. The smaller the width of both films and the larger the length of the film, the higher the input resistance, but due to the structure, the film length is limited to 20 mm at most, and the input resistance of devices manufactured in mass production is several 100 Ω. ~
Several kilohms is normal.

この素子を現在主として用いられている6Vお
よび12Vの電源系で使用すると、入力電流は
10mA〜20mA程度となり、単位断面積当りの入
力電流は6000A/cm2程度の非常に大きな値にな
る。入力電流が大きいと発熱により光導電膜の劣
化が促進されるため、入力電流は小さくすること
が望ましく、またそのため素子印加電圧を小さく
することは電圧降下用の抵抗を必要とし、また変
化する電圧範囲を狭くするために望ましい方法と
は言えない。
When this element is used in the 6V and 12V power supply systems currently in use, the input current will be
The input current per unit cross-sectional area is approximately 10mA to 20mA, which is a very large value of approximately 6000A/cm 2 . If the input current is large, heat generation will accelerate the deterioration of the photoconductive film, so it is desirable to reduce the input current.For this reason, reducing the applied voltage to the element requires a resistor for voltage drop, and also reduces the voltage This is not a desirable method for narrowing the range.

そこで本発明は、印加電圧をそのままとして、
変化する電圧範囲もそのままの大きさに保つて、
入力抵抗を2倍にして素子入力電流を半分に減少
せしめ、許容電力を増加させた素子構成を提案す
るものである。
Therefore, the present invention maintains the applied voltage as it is,
Keeping the changing voltage range the same size,
This paper proposes an element configuration in which the input resistance is doubled, the element input current is halved, and the allowable power is increased.

第2図は本発明による光導電素子の素子構成を
示している。
FIG. 2 shows the element configuration of a photoconductive element according to the present invention.

本発明においては、光導電膜21の両側に抵抗
膜22と金属膜23を平行に形成した2個の素子
A,Bを両金属膜23,23が対向する配列で配
置し、両素子A,Bの抵抗膜22,22は電極2
4により直列接続される。光ビーム25は両光導
電膜21,21を横切つて照射され、光導電膜の
長さ方向(矢印)に0〜1の位置まで移動する。
なお、26は抵抗膜22,22の電極である。
In the present invention, two elements A and B each having a resistive film 22 and a metal film 23 formed in parallel on both sides of a photoconductive film 21 are arranged in an arrangement such that both metal films 23 and 23 face each other, and both elements A, The resistive films 22, 22 of B are the electrodes 2
4 are connected in series. The light beam 25 is irradiated across both photoconductive films 21, 21 and moves to a position from 0 to 1 in the length direction (arrow) of the photoconductive films.
Note that 26 is an electrode of the resistive films 22, 22.

いま、光ビーム25の位置をS(但し0S
1),入力端子O,R間の入力電圧をVi,電流Io
は矢印方向に流れるものとすると、素子A,素子
Bの出力端子P,Qに発生する電圧VPS,VQS
は、 VPS=Vi/2(1−S)+Vi/2 VQS=Vi/2S となり、端子PQ間の出力電圧Veは、 Ve=VPS−VQS=Vi(1−S) すなわち光ビーム25の位置により出力電圧は
0〜Vi(入力電圧)まで変化することとにな
る。
Now, set the position of the light beam 25 to S (however, 0S
1), the input voltage between input terminals O and R is Vi, and the current Io
Assuming that flows in the direction of the arrow, the voltages V PS and V QS generated at the output terminals P and Q of element A and element B are
is V PS = Vi/2 (1-S) + Vi/2 V QS = Vi/2S, and the output voltage Ve between terminals PQ is Ve = V PS - V QS = Vi (1-S) In other words, the light beam The output voltage changes from 0 to Vi (input voltage) depending on the position of 25.

一方入力抵抗は、2つの素子A,Bが直列に接
続されているので、各素子の入力抵抗の2倍の
値,入力電流Ioは1/2となり、最大印加電圧,許
容入力電力は増加し、目的は達成されたことにな
る。
On the other hand, since the two elements A and B are connected in series, the input resistance is twice the input resistance of each element, the input current Io is 1/2, and the maximum applied voltage and allowable input power are increased. , the purpose has been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光導電素子、第2図は本発明に
よる光導電素子を示している。 第1図において、1…光導電膜、2…抵抗膜、
3…金属膜、4…光ビーム。第2図において、2
1…光導電膜、22…抵抗膜、23…金属膜、2
4,26…電極、25…光ビーム、O,P,Q,
R…夫々電極端子。
FIG. 1 shows a conventional photoconductive element, and FIG. 2 shows a photoconductive element according to the present invention. In FIG. 1, 1... photoconductive film, 2... resistive film,
3...Metal film, 4...Light beam. In Figure 2, 2
1... Photoconductive film, 22... Resistive film, 23... Metal film, 2
4, 26... Electrode, 25... Light beam, O, P, Q,
R...Each electrode terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 光導電膜の両側に抵抗膜と金属膜を平行に形
成した2組の素子の、該抵抗膜を直列接続して光
は両素子の光導電膜に同時照射し、出力を夫々の
金属膜から得るようにしたことを特徴とする光導
電素子。
1. Two sets of elements in which a resistive film and a metal film are formed in parallel on both sides of a photoconductive film, the resistive films are connected in series, light is irradiated to the photoconductive film of both elements simultaneously, and the output is transmitted to each metal film. A photoconductive element characterized in that it is obtained from.
JP16064476A 1976-12-29 1976-12-29 Photo conductive element Granted JPS5384695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16064476A JPS5384695A (en) 1976-12-29 1976-12-29 Photo conductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16064476A JPS5384695A (en) 1976-12-29 1976-12-29 Photo conductive element

Publications (2)

Publication Number Publication Date
JPS5384695A JPS5384695A (en) 1978-07-26
JPS6110999B2 true JPS6110999B2 (en) 1986-04-01

Family

ID=15719380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16064476A Granted JPS5384695A (en) 1976-12-29 1976-12-29 Photo conductive element

Country Status (1)

Country Link
JP (1) JPS5384695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346680B2 (en) * 1988-03-03 1991-07-16 Yoshio Kinoshita
JPH0350120B2 (en) * 1988-06-02 1991-07-31 Yoshio Kinoshita

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346680B2 (en) * 1988-03-03 1991-07-16 Yoshio Kinoshita
JPH0350120B2 (en) * 1988-06-02 1991-07-31 Yoshio Kinoshita

Also Published As

Publication number Publication date
JPS5384695A (en) 1978-07-26

Similar Documents

Publication Publication Date Title
JPS6273207A (en) Optical waveguide device
JPH0422485B2 (en)
JPH0298965A (en) Multielement infrared ray detection sensor
JPS6110999B2 (en)
JPS60239072A (en) Photosensor
CA2031867A1 (en) Method for manufacturing a thermal head
JPH05181149A (en) Electrode structure of liquid crystal display element
JPS6035554A (en) Thin film solar cell
JPH0132363Y2 (en)
JPS6150115A (en) Liquid crystal light valve
JPS61220378A (en) Amorphous silicon solar cell
JPS62153835A (en) Liquid crystal element
JPH0132751Y2 (en)
JPH08288049A (en) Surge absorber
JPS5471594A (en) Production of photo sensor array
JPH03244179A (en) Semiconductor laser
JPS5853724B2 (en) Balanced photoconductive device
JPH01208805A (en) Thin-film temperature sensor
JPH02201229A (en) Infrared sensor
JPS60216502A (en) Switching element
JPS593863B2 (en) hand tai souchi no seizou houhou
JPS5467444A (en) Reflecting mirror having variable focal point
JPS5994023A (en) Thermopile
JPH0822902A (en) Thin film resistor
JPH0658447B2 (en) Optical circuit element