JPH01208805A - Thin-film temperature sensor - Google Patents

Thin-film temperature sensor

Info

Publication number
JPH01208805A
JPH01208805A JP3424688A JP3424688A JPH01208805A JP H01208805 A JPH01208805 A JP H01208805A JP 3424688 A JP3424688 A JP 3424688A JP 3424688 A JP3424688 A JP 3424688A JP H01208805 A JPH01208805 A JP H01208805A
Authority
JP
Japan
Prior art keywords
film
thin
heating element
temperature
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3424688A
Other languages
Japanese (ja)
Inventor
Kazuo Ogata
一雄 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3424688A priority Critical patent/JPH01208805A/en
Publication of JPH01208805A publication Critical patent/JPH01208805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To scale down an external shape, to reduce thermal response and to select TCR, a resistance value, etc., within wide ranges by forming a heating element thin-film onto an insulating base body and shaping a temperature element thin-film onto the heating element thin-film through an insulating thin-film. CONSTITUTION:A heating element thin-film 12 having 5000Angstrom thickness and made of tungsten is formed onto an insulating base body 11 having 0.3mm thickness and made of quartz, and a heating element having 20OMEGA is manufactured through etching, etc. An insulating thin-film 13 having 4000Angstrom thickness and made of silicon nitride and further a temperature element thin film 14 having 4000Angstrom thickness and made of nickel are shaped onto the thin-film 12, and a temperature element having 300OMEGA is prepared through etching, etc. A protective film 15 having 5000Angstrom thickness and consisting of silicon dioxide is formed onto the thin-film 14, thus manufacturing a thin-film temperature sensor. Accordingly, since small geometry is shaped and a distance between the heating element and the temperature element is shortened, thermal response is reduced and both the heating element and the temperature element can be prepared separately, thus widely selecting resistance temperature characteristics (TCR) peculiar to a metal and a resistance value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は温度変化と抵抗値変化の間に相関をもった薄膜
温度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film temperature sensor that has a correlation between temperature change and resistance value change.

従来の技術 金属固有の抵抗温度特性(TOR)を利用して抵抗値変
量を温度変量に変換し、温度検知をするところの金属温
度センサには、金属線を利用したものと薄膜を利用した
ものの2種類がある。このうち金属線を利用したものは
金属細線をそのまま張シ渡したシ、絶縁基体上に金属線
をらせん状に巻きつける等の処置により固定されたもの
が温度センサとして用いられている。
Conventional technology There are two types of metal temperature sensors that use metal's inherent resistance-temperature characteristics (TOR) to convert resistance variables into temperature variables and detect temperature: those that use metal wires and those that use thin films. There are two types. Among these, those using metal wires are used as temperature sensors, such as those in which fine metal wires are stretched as they are, or those in which the metal wires are fixed by winding them in a spiral shape on an insulating substrate.

発明が解決しようとする課題 上記のような温度センサにおいて、金属線を利用したも
のは、細線化にも限界があるので、数100Ω程度の抵
抗値を得ようとすると、金属線の長さを充分に増す必要
があシ、形状2寸法が大きくなるという欠点を有してい
た。そして、形状。
Problems to be Solved by the Invention In the above-mentioned temperature sensors that use metal wires, there is a limit to how thin the wires can be. It is necessary to increase the size sufficiently, which has the disadvantage that the two dimensions of the shape become large. And the shape.

寸法が大きくなると熱応答性が大きくなることから、温
度センサとして支障の生ずる場合もあった。
As the size increases, the thermal responsiveness increases, which sometimes causes trouble as a temperature sensor.

一方、形状1寸法を小さくすると熱応答性は良くなるが
、金属線が短かくなるので得られる抵抗値が低くなり、
温度変化に対する抵抗値変化量が小さく、温度センサと
して使用するための信号量としては不充分なものであっ
た。
On the other hand, if the first dimension of the shape is made smaller, the thermal response improves, but the metal wire becomes shorter, so the resistance value obtained becomes lower.
The amount of change in resistance value with respect to temperature change was small, and the signal amount was insufficient for use as a temperature sensor.

また、薄膜を利用して作ったものは、同じ抵抗値で比較
すると、金属線を利用して作ったもの:す、小さな形状
1寸法で作成することができるので熱応答性は小さくな
シ、あるいは数にΩ程度までの比較的高い抵抗値を作る
ことも容易である等、多くの長所を有している。しかし
ながら、感温体としては抵抗値変量が大きいこと、即ち
同−TCRの場合、抵抗値が高い方が有利であるが、発
熱体としての役割からは、印加電圧や印加電力耐久性等
への考慮から抵抗値を高くすることに限界があるなど、
感温体と発熱体を同一体で兼ねることには矛盾が生ずる
ことがあった。これを改善する方法として、第2図a、
bに示すように、絶縁性基体21上に若干の距離を隔て
て、同一材料薄膜による発熱体22、感温体23を形成
したのち、保護膜24を設ける薄膜温度センサが提案さ
れてい、るが、同一材料薄膜を使うことから、抵抗値。
Also, when comparing the same resistance value, those made using thin films are compared to those made using metal wires, but because they can be made in a smaller shape with one dimension, the thermal response is smaller. It also has many advantages, such as the fact that it is easy to create a relatively high resistance value of up to several Ω. However, as a thermosensor, the resistance value has a large variation, that is, in the case of -TCR, a higher resistance value is advantageous, but from its role as a heat generating element, it has a negative effect on the applied voltage, applied power durability, etc. There is a limit to increasing the resistance value due to considerations, etc.
Conflicts sometimes arise when the same body serves as both a thermosensor and a heat generating body. As a way to improve this, Figure 2a,
As shown in b, a thin film temperature sensor has been proposed in which a heating element 22 and a temperature sensing element 23 are formed using thin films of the same material at a certain distance on an insulating substrate 21, and then a protective film 24 is provided. However, since thin films of the same material are used, the resistance value.

TCHに制限が生じた。また発熱体22、感温体23の
距離はパターン形成上の制約から数十〜数百ミクロンを
有し、さらに熱応答性を向上するには制約があった。
Limitations arose in TCH. Further, the distance between the heating element 22 and the temperature sensing element 23 is several tens to several hundreds of microns due to restrictions on pattern formation, and there are restrictions on further improving thermal responsiveness.

本発明は発熱体と感温体との材料に制約を受けることな
く、熱応答性を向上させることを目的とする。
An object of the present invention is to improve thermal responsiveness without being restricted by the materials of the heating element and the temperature sensing element.

課題を解決するための手段 上記の課題を解決するため本発明は、絶縁性基体上に発
熱体薄膜を形成し、その上部に絶縁性薄膜を介して感温
体薄膜を形成した構造を有する薄膜温度センサとしたも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a thin film having a structure in which a heating element thin film is formed on an insulating substrate, and a temperature sensitive element thin film is formed on top of the heating element thin film via an insulating thin film. This is a temperature sensor.

作用 この構成により薄膜を利用したものであるから小さな形
状1寸法で作ることができ、熱応答性が小さい。また発
熱体と感温体の距離は絶縁性薄膜の厚みである点からも
、熱応答性は小さくすることができる。さらに、発熱体
と感温体は別々に作成することができるので、τOR,
抵抗値等を広い範囲で選択することができる。
Function: Since this configuration utilizes a thin film, it can be made with a small shape and one dimension, and has low thermal responsiveness. Furthermore, since the distance between the heating element and the temperature sensing element is the thickness of the insulating thin film, the thermal response can be reduced. Furthermore, since the heating element and temperature sensing element can be created separately, τOR,
Resistance values etc. can be selected from a wide range.

実施例 以下、本発明の一実施例を第1図を用いて説明する。Example An embodiment of the present invention will be described below with reference to FIG.

絶縁性基体11に厚さ0.3 #の石英基板を用い、こ
れに厚み5,000オングストロームのタングステンに
よる発熱体薄膜12を形成し、エツチング等により2o
Ωの発熱体とする。この上層に厚み4.000オングス
トロームの窒化硅素による絶縁性薄膜13を作る。この
上に、厚み4,000オングストロームのニッケルの感
温体薄膜14を形成し、エツチング等によ#)SOOΩ
の感温体とする。
A quartz substrate with a thickness of 0.3 # is used as the insulating base 11, a heating element thin film 12 made of tungsten with a thickness of 5,000 angstroms is formed on this, and a quartz substrate with a thickness of 20 nm is formed by etching or the like.
Ω heating element. An insulating thin film 13 of silicon nitride having a thickness of 4,000 angstroms is formed on this upper layer. On top of this, a nickel temperature sensitive thin film 14 with a thickness of 4,000 angstroms is formed and etched etc.
temperature sensing body.

この上層に厚み5,000オングストロームの二酸化硅
素からなる保護膜16を作シ、発熱体と感温体を層状に
設けた薄膜温度センサとする。
A protective film 16 made of silicon dioxide having a thickness of 5,000 angstroms is formed on this upper layer to form a thin film temperature sensor in which a heating element and a temperature sensing element are provided in layers.

発明の詳細 な説明したように、本発明によれば、薄膜構造であるた
め、形状1寸法が小さく、また発熱体。
As described in detail, the present invention has a thin film structure, so one dimension of the shape is small, and the heating element.

感温体の距離が小さいため熱応答性は0.26秒と小さ
い。さらに発熱体と感温体は別々に作成することができ
るので、抵抗値で発熱体は20Ω、感温体は300Ωと
異なった値が容易に作成できる。
Since the distance between the temperature sensitive body is small, the thermal response is as small as 0.26 seconds. Furthermore, since the heating element and the temperature sensing element can be manufactured separately, different resistance values can be easily created, such as 20Ω for the heating element and 300Ω for the temperature sensing element.

これによって供給電源電圧によシ制約される発熱体と、
変化量を大きくするために高い方が好ましい感温体の抵
抗値をそれぞれに適して作成することができるので、温
度センサの使用条件に適応した設計が可能となる。なお
、従来例によるものでの熱応答性は0.66秒であった
This results in a heating element that is constrained by the supply voltage;
Since the resistance value of the temperature sensor, which is preferably higher in order to increase the amount of change, can be created appropriately, it is possible to design a temperature sensor that is suitable for the usage conditions. The thermal response of the conventional example was 0.66 seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による薄膜温度センサの断面
図、第2図a、bは従来例による薄膜温度センサの平面
図および断面図である。 11・・・・・・絶縁性基体、12・・・・・・発熱体
薄膜、13・・・・・・絶縁性薄膜、14・・・・・・
感温体薄膜、15・・・・・・保護膜。
FIG. 1 is a sectional view of a thin film temperature sensor according to an embodiment of the present invention, and FIGS. 2a and 2b are a plan view and a sectional view of a conventional thin film temperature sensor. 11...Insulating base, 12...Heating element thin film, 13...Insulating thin film, 14...
Temperature sensitive thin film, 15...Protective film.

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基体上に発熱体薄膜を形成し、その上部に絶縁性
薄膜を介して感温体薄膜を形成した薄膜温度センサ。
A thin film temperature sensor in which a heating element thin film is formed on an insulating substrate, and a temperature sensing element thin film is formed on top of the heating element thin film with an insulating thin film interposed therebetween.
JP3424688A 1988-02-17 1988-02-17 Thin-film temperature sensor Pending JPH01208805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424688A JPH01208805A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424688A JPH01208805A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Publications (1)

Publication Number Publication Date
JPH01208805A true JPH01208805A (en) 1989-08-22

Family

ID=12408806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424688A Pending JPH01208805A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Country Status (1)

Country Link
JP (1) JPH01208805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137960A (en) * 1992-10-29 1994-05-20 Kyocera Corp Temperature sensor
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137960A (en) * 1992-10-29 1994-05-20 Kyocera Corp Temperature sensor
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation

Similar Documents

Publication Publication Date Title
US4129848A (en) Platinum film resistor device
US4688949A (en) High speed response temperature sensor
JP4511676B2 (en) Thermopile type infrared sensor and manufacturing method thereof
US4160969A (en) Transducer and method of making
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPS58103654A (en) Multifunctional gas sensor
JP2526247B2 (en) Thermopile
JPH01208805A (en) Thin-film temperature sensor
JPH11354302A (en) Thin-film resistor element
JP2793615B2 (en) Infrared sensor
JPH08124658A (en) Linear heating element and its manufacture
JP3348256B2 (en) Heat removal atmosphere detector
JPH075050A (en) Temperature sensor
JPH1068659A (en) Temperature gage based on cb tunnel effect
JPH0220681Y2 (en)
JP3406690B2 (en) Method of forming temperature detecting element in line type heating element
JPH03189526A (en) Thermopile
JPH0593732A (en) Flow sensor
JPS6359083B2 (en)
JPH04218777A (en) Micro flow sensor and manufacture thereof
JP2001183202A (en) Flow sensor and its manufacturing method
JP2523856Y2 (en) Semiconductor device
KR20010045476A (en) Bolometer sensor
JP3348255B2 (en) Heat removal atmosphere detector
JPS63265125A (en) Non-contact type semiconductor temperature sensor