JP2526247B2 - Thermopile - Google Patents

Thermopile

Info

Publication number
JP2526247B2
JP2526247B2 JP62152950A JP15295087A JP2526247B2 JP 2526247 B2 JP2526247 B2 JP 2526247B2 JP 62152950 A JP62152950 A JP 62152950A JP 15295087 A JP15295087 A JP 15295087A JP 2526247 B2 JP2526247 B2 JP 2526247B2
Authority
JP
Japan
Prior art keywords
temperature
substrate
cold junction
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62152950A
Other languages
Japanese (ja)
Other versions
JPS63318175A (en
Inventor
正典 宿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP62152950A priority Critical patent/JP2526247B2/en
Publication of JPS63318175A publication Critical patent/JPS63318175A/en
Application granted granted Critical
Publication of JP2526247B2 publication Critical patent/JP2526247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Si基板上に薄膜技術により形成されたサー
モパイルに関し、特に、サーモパイル自体の温度変化を
補償する温度素子を備えたサーモパイルに関するもので
ある。
TECHNICAL FIELD The present invention relates to a thermopile formed on a Si substrate by a thin film technique, and more particularly to a thermopile provided with a temperature element that compensates for temperature changes of the thermopile itself. is there.

[従来の技術] 従来、この種のサーモパイルとしては、例えば特開昭
61−259580号に開示のものが知られている。このもの
は、第4図に示すように、ガラス,セラミック,高分子
フィルム等よりなる絶縁性の基板1上に放射状に形成さ
れたBi−Sb等の複数の熱電対7,8と、これらを覆う絶縁
膜4上の中心部分に形成された黒化膜5と、基板1の表
面又は裏面上で熱電対の冷接点の近傍に形成された温度
補償用薄膜サーミスタ6とから構成されている。
[Prior Art] Conventionally, as a thermopile of this type, for example, JP-A-
The one disclosed in 61-259580 is known. As shown in FIG. 4, this is composed of a plurality of thermocouples 7 and 8 such as Bi—Sb radially formed on an insulating substrate 1 made of glass, ceramic, polymer film, etc. It is composed of a blackening film 5 formed in the central portion on the insulating film 4 to cover, and a temperature compensating thin film thermistor 6 formed on the front surface or the back surface of the substrate 1 in the vicinity of the cold junction of the thermocouple.

[解決すべき問題点] しかしながら、上記温度補償用薄膜サーミスタを備え
たサーモパイルにあっては、次の問題点がある。
[Problems to be Solved] However, the thermopile provided with the temperature compensation thin film thermistor has the following problems.

熱電対7,8は基板1上に直接形成されているため、黒
体部5から受けた温接点部の熱は基板1を介してヒート
シンクされ易く、逆に、基板1はガラス,セラミック,
高分子フィル等の絶縁体であることから、熱伝導性が劣
り、冷接点部のヒートシンクが悪い。したがって、特に
低温領域測定の場合には、温接点部と冷接点部の温度差
が現れにくく、熱電対起電力が僅少な値で、感度が低
い。
Since the thermocouples 7 and 8 are directly formed on the substrate 1, the heat of the hot junction portion received from the black body portion 5 is easily dissipated through the substrate 1, and conversely, the substrate 1 is made of glass, ceramic,
Since it is an insulator such as a polymer fill, the thermal conductivity is poor and the heat sink at the cold junction is bad. Therefore, particularly in the low temperature region measurement, the temperature difference between the hot junction portion and the cold junction portion hardly appears, the thermoelectromotive force is a small value, and the sensitivity is low.

温度補償用薄膜サーミスタ6は冷接点部の近傍に形成
されているが、サーミスタ6には定電流が常時流れてい
るので、サーミスタ6自体が熱放射体として作用し、こ
れを冷接点部に近接しすぎると、冷接点部のそのものの
温度を測定せんとするサーミスタ6がむしろその温度を
擾乱させてしまう。サーミスタ6の温度を上げるために
は、印加電流値を上げる必要があるが、上げれば上げる
ほど、冷接点部の温度を乱し、測定精度の劣化を招く。
The temperature compensating thin film thermistor 6 is formed in the vicinity of the cold junction part. However, since a constant current constantly flows in the thermistor 6, the thermistor 6 itself acts as a heat radiator, and this is close to the cold junction part. If done too much, the thermistor 6, which measures the temperature of the cold junction itself, rather disturbs the temperature. In order to increase the temperature of the thermistor 6, it is necessary to increase the applied current value. However, the higher the temperature, the more the temperature of the cold junction portion is disturbed and the measurement accuracy deteriorates.

[発明の目的] 本発明は、上記問題点を解決するものであり、その目
的は、熱電対の温接点部の冷接点部との間の温度差が現
われ易く、且つ温度補償用抵抗膜の配置等を工夫するこ
とによって、冷接点部の環境温度を乱すことなくそのま
ま測定し得るサーモパイルを提供することにある。
[Object of the Invention] The present invention is to solve the above-mentioned problems, and an object of the present invention is to make a temperature difference between a hot junction portion and a cold junction portion of a thermocouple easily appear, and to provide a temperature compensation resistance film. It is to provide a thermopile that can be measured as it is without disturbing the environmental temperature of the cold junction by devising the arrangement and the like.

[問題点を解決手段] 上記目的を達成するため、本発明に係るサーモパイル
の達成は、次の〜の構成要件を有するものである。
[Means for Solving Problems] In order to achieve the above object, the achievement of the thermopile according to the present invention has the following constituent requirements.

穴を有する矩形Si基板があること。Have a rectangular Si substrate with holes.

該穴を閉塞して該Si基板表面に形成された絶縁膜があ
ること。
There is an insulating film formed on the surface of the Si substrate by closing the hole.

該穴領域内で該絶縁膜上に形成された黒体部があるこ
と。
There is a black body portion formed on the insulating film in the hole region.

該穴領域内で該黒体部に近接する温接点部及び該穴領
域外に位置する冷接点部とを該絶縁膜上に具える直列接
続の複数の熱電対があること。
There are a plurality of thermocouples connected in series, each having a hot junction located in the hole region in proximity to the black body and a cold junction located outside the hole region on the insulating film.

外熱電対の一方の熱電対線薄膜材料を以て該冷接点部
側で該Si基板の隅部における該絶縁膜上に形成された温
度補償用抵抗膜があること。
There is a resistance film for temperature compensation formed on the insulating film at the corner of the Si substrate on the cold junction side using one of the thermocouple wire thin film materials of the outer thermocouple.

[作用] かかる構成のサーモパイルによれば、黒体部はSi基板
の穴領域内で宙吊り状態にあることから、黒体部の熱容
量が僅少であり、応答特性が改善されることは勿論、熱
電対の温接点部が穴領域内にあることから、黒体部から
受ける僅かな熱量の逃げを少なくすることができると共
に、一方その冷接点部は穴領域外のSi基板上に位置して
おり、Si基板のヒートシンク効果によって冷接点部の受
ける熱は速やかにSi基板内へ散逸され、温接点部と冷接
点部の温度勾配を従来に比し高くとることができる。ま
た、温度補償用抵抗膜は薄い絶縁膜を介してデッドスペ
ースとして熱容量が大で熱伝導性が比較的高いSi基板の
隅部上に形成されていることから、上記抵抗膜が冷接点
部に近接していても、抵抗膜より発生する熱が該隅部内
へより多く散逸されるため、冷接点部への悪影響を抑制
することができる。
[Operation] According to the thermopile having such a configuration, since the black body portion is suspended in the hole area of the Si substrate, the heat capacity of the black body portion is small, and the response characteristics are improved, as well as the thermoelectricity. Since the pair of hot junctions are in the hole area, it is possible to reduce the escape of a slight amount of heat received from the black body, while the cold junction is located outside the hole area on the Si substrate. , The heat received by the cold junction is rapidly dissipated into the Si substrate due to the heat sink effect of the Si substrate, and the temperature gradient between the hot junction and the cold junction can be made higher than before. Further, since the temperature compensating resistance film is formed on the corner of the Si substrate having a large heat capacity and a relatively high thermal conductivity as a dead space through the thin insulating film, the resistance film is used as a cold junction part. Even if they are close to each other, the heat generated from the resistive film is dissipated more into the corners, so that the adverse effect on the cold junction can be suppressed.

[実施例] 次に、本発明に係るサーモパイルの一実施例を添付図
面に基づいて説明する。
[Embodiment] Next, an embodiment of a thermopile according to the present invention will be described with reference to the accompanying drawings.

第1図(A)は、本発明に係るサーモパイルの一実施
例を示す拡大平面図である。第1図(B)は、同実施例
を示す縦断面図である。
FIG. 1 (A) is an enlarged plan view showing an embodiment of the thermopile according to the present invention. FIG. 1 (B) is a vertical sectional view showing the same embodiment.

図中、10は矩形のSi基板で、その中央には穴10aが形
成されている。11は穴10aを閉塞しつつSi基板10の表面
に形成された絶縁膜で、窒化膜,酸化膜,及び窒化膜の
3層構造として形成されている。絶縁膜11上の穴領域S
内の中央には金黒などの受光部としての黒体部12が形成
されている。この黒体部12の周囲には多数の熱電対13が
直列に接続されている。各熱電対13はTeの熱電対線13a
とInSbの熱電対線13bとから構成され、放射状に配設さ
れており、穴領域S内で黒体部12の近傍には温接点部13
cが位置し、穴領域S外には冷接点部13dが位置してい
る。14a,14bは直列接続の熱電対13の両端に接続するボ
ンディングパッドである。
In the figure, 10 is a rectangular Si substrate, and a hole 10a is formed in the center thereof. An insulating film 11 is formed on the surface of the Si substrate 10 while closing the hole 10a, and has a three-layer structure of a nitride film, an oxide film, and a nitride film. Hole area S on insulating film 11
A black body portion 12 as a light receiving portion of gold or the like is formed in the center of the inside. A large number of thermocouples 13 are connected in series around the black body portion 12. Each thermocouple 13 is a Te thermocouple wire 13a
And a thermocouple wire 13b of InSb, which are arranged radially and have a hot junction 13 near the black body 12 in the hole region S.
c is located, and the cold junction 13d is located outside the hole area S. 14a and 14b are bonding pads connected to both ends of the thermocouple 13 connected in series.

15は一方の熱電対線13aの構成材料で穴領域S外に形
成されたサーミスタとしての温度補償用抵抗膜であり、
冷接点部13d側の近傍で、矩形Si基板10上のデッドスペ
ースとしての隅部10b(想像線で示す部分)上に形成さ
れている。この抵抗膜15の両端にはボンディングパッド
15a,15bが接続形成されており、抵抗膜15に定電流を流
す電極部として用いられる。なお、16は保護膜である。
Reference numeral 15 is a temperature compensating resistance film as a thermistor formed outside the hole region S by the constituent material of one thermocouple wire 13a,
It is formed on the corner 10b (portion shown by an imaginary line) as a dead space on the rectangular Si substrate 10 in the vicinity of the cold junction 13d side. Bonding pads are provided on both ends of the resistive film 15.
15a and 15b are connected and formed, and are used as an electrode portion for flowing a constant current through the resistance film 15. Incidentally, 16 is a protective film.

かかる構成のサーモパイル20は、第2図に示す如く、
基台21の上に銀ペースト,シリコン樹脂によって取付け
られ、赤外線フィルタ窓23を有する遮光キャップ24で覆
われており、チップ20上のボンディングパッドとピン22
はボンディングワイヤの金線によって接続され、出力電
圧はピン22を通って外部に取出される。
As shown in FIG. 2, the thermopile 20 having the above structure is
It is mounted on the base 21 with silver paste or silicon resin, and is covered with a light-shielding cap 24 having an infrared filter window 23.
Are connected by the gold wire of the bonding wire, and the output voltage is taken out through the pin 22 to the outside.

サーモパイル20における黒体部12は側温対象から放射
された熱線により加熱され、側温対象の温度の4乗にほ
ぼ比例したエネルギを享受して温度変化を起こすが、こ
の黒体部12は穴領域S内の薄い絶縁膜11上に形成されて
いることから、黒体部12の接触体としての絶縁膜11の熱
容量が従来に比し非常に小さいので、熱量の逃げを極力
抑制でき、熱電対13の感度の向上に寄与する。また、熱
電対13の温接点部13cは穴領域Sの薄い絶縁膜11上にあ
ることから、黒体部12から受けた熱量の散逸を抑えるこ
とが可能である。一方、冷接点部13dは穴領域S内では
なく、絶縁膜11より厚く熱容量が大であり、しかも熱伝
導性が高いSi基板10上に形成されているから、冷接点部
13dのヒートシンクが大となり、冷接点部13dの温度はSi
基板10の温度(環境温度)とほぼ等しい状態となる。し
たがって、各熱電対13の温接点部13cの温度は黒体部12
の温度にほぼ等しく追従すると共に、冷接点部13dの温
度は環境温度にほぼ等しく追従するので、従来に比べ、
温接点部13cと冷接点部13dの温度差が顕在化し、低温領
域測定の場合であっても熱電対起電力を高めることがで
きる。
The black body portion 12 of the thermopile 20 is heated by the heat rays radiated from the side temperature object, and receives energy almost proportional to the fourth power of the temperature of the side temperature object to cause a temperature change. Since it is formed on the thin insulating film 11 in the region S, the heat capacity of the insulating film 11 as the contact body of the black body portion 12 is much smaller than the conventional one, so that the escape of heat can be suppressed as much as possible, and It contributes to the improvement of the sensitivity of 13 pairs. Further, since the hot junction portion 13c of the thermocouple 13 is on the thin insulating film 11 in the hole area S, it is possible to suppress the dissipation of the amount of heat received from the black body portion 12. On the other hand, the cold junction portion 13d is not formed in the hole region S but is formed on the Si substrate 10 which is thicker than the insulating film 11 and has a large heat capacity and high thermal conductivity.
The heat sink of 13d becomes large, and the temperature of the cold junction 13d is
The state is substantially equal to the temperature of the substrate 10 (environmental temperature). Therefore, the temperature of the hot junction 13c of each thermocouple 13 is
Since the temperature of the cold junction part 13d follows the ambient temperature almost equally as well as the temperature of the
The temperature difference between the hot junction portion 13c and the cold junction portion 13d becomes apparent, and the thermocouple electromotive force can be increased even in the case of measurement in the low temperature region.

また、抵抗膜15はSi基板10の隅部10b上に形成されて
いるから、ヒートシンク効果があり、冷接点部13dの近
傍に配置されているものの、抵抗膜15の発熱による輻射
熱は冷接点部13dにまで波及せず、薄い絶縁膜11を介し
て厚いSi基板10内へ散逸するので、冷接点部13dの温度
を乱すことなく、その温度を測定することが可能であ
る。換言すれば、温度補償を行なうべく、冷接点部13d
の温度をサーミスタとしての抵抗膜を以て直接測定せん
とすればするほど、その抵抗膜の発熱による冷接点部13
dの温度が乱されてしまうが、冷接点部13dの温度を熱伝
導率が高く熱容量の大きなSi基板10の温度と等しくする
ことによって、抵抗膜15を冷接点部13dに近接せずに、
比較的高い電流を抵抗膜15に印加せしめた場合であって
も、環境温度の正確な測定ができる。つまり、中間媒体
である熱溜めとして作用するSi基板10の隅部10bを利用
して冷接点部13dの温度を乱すことなくその間接的測定
を実現するものである。半導体としてのSi基板10は絶縁
体に比し熱伝導性が高く、絶縁体を中間媒体として用い
る場合より有利である。なお、絶縁膜11は抵抗膜15,熱
電対13とSi基板10との導通を防止するものであるが、本
実施例ではその膜厚は約6μmであり、Si基板10の厚さ
200μmに比し非常に薄くしてあるので、熱的な作用の
面では無視できる。
Further, since the resistance film 15 is formed on the corner portion 10b of the Si substrate 10, it has a heat sink effect and is arranged in the vicinity of the cold junction portion 13d. Since it does not spread to 13d and is dissipated into the thick Si substrate 10 through the thin insulating film 11, it is possible to measure the temperature of the cold junction 13d without disturbing it. In other words, the cold junction 13d should be used for temperature compensation.
The more directly the temperature of is measured with a resistive film as a thermistor, the colder the contact point 13 due to the heat generated by the resistive film.
Although the temperature of d is disturbed, by making the temperature of the cold junction portion 13d equal to the temperature of the Si substrate 10 having a high thermal conductivity and a large heat capacity, the resistance film 15 is not brought close to the cold junction portion 13d,
Even when a relatively high current is applied to the resistance film 15, the environmental temperature can be accurately measured. That is, the indirect measurement is realized without disturbing the temperature of the cold junction portion 13d by utilizing the corner portion 10b of the Si substrate 10 which acts as a heat reservoir as an intermediate medium. The Si substrate 10 as a semiconductor has higher thermal conductivity than an insulator and is more advantageous than the case where an insulator is used as an intermediate medium. The insulating film 11 is for preventing conduction between the resistance film 15, the thermocouple 13 and the Si substrate 10, but in this embodiment, the film thickness is about 6 μm, and the thickness of the Si substrate 10 is about 6 μm.
Since it is very thin compared to 200 μm, it can be ignored in terms of thermal action.

この抵抗膜15は熱電対線13aの構成材料Teを以て構成
されている。Teは第3図に示す如く高い抵抗率ρを有
し、温度T対抵抗率ρの特性は、ほぼ直線状の特性であ
ることから、サーミスタ材料として利用でき、一方の熱
電対線13aと同一材料であることから、熱電対線13aの形
成プロセスと同時に形成することができるので、従来に
比し、製造工数の削減を図ることができ、低コストのサ
ーモパイルを提供できる。
The resistance film 15 is composed of the constituent material Te of the thermocouple wire 13a. Te has a high resistivity ρ as shown in FIG. 3, and since the characteristic of temperature T vs. resistivity ρ is a substantially linear characteristic, it can be used as a thermistor material and is the same as one thermocouple wire 13a. Since it is a material, it can be formed at the same time as the process of forming the thermocouple wire 13a, so that the number of manufacturing steps can be reduced and a low-cost thermopile can be provided as compared with the conventional case.

[発明の効果] 以上説明したのように、本発明に係るサーモパイル
は、Si基板の穴領域に宙吊り状態の黒体部を形成し、こ
れに近接する温接点部と穴領域外に位置する冷接点部と
を有する熱電対を形成し、Si基板の隅部に温度補償用抵
抗膜を形成したものであるから、次の効果を奏する。
[Advantages of the Invention] As described above, the thermopile according to the present invention forms a suspended black body portion in the hole area of the Si substrate, and the hot junction portion adjacent to this and the cold body located outside the hole area. Since the thermocouple having the contact portion is formed and the temperature compensation resistance film is formed at the corner portion of the Si substrate, the following effects can be obtained.

黒体部及び温接点部は熱の逃げが起こりにくく、これ
らに接触する絶縁膜の熱容量は非常に小さく、一方、冷
接点部は熱伝導生及び熱容量の大なるSi基板によって良
好にヒートシンクされるので、温接点部と冷接点部の温
度勾配を従来に比し大きくすることができる。
The black body part and the hot contact part are less likely to release heat, and the heat capacity of the insulating film contacting them is very small. On the other hand, the cold contact part is satisfactorily heat-sinked by the Si substrate with large heat conduction and heat capacity. Therefore, the temperature gradient between the hot junction portion and the cold junction portion can be increased as compared with the conventional case.

Si基板隅部のデッドスペースを熱溜めとして有効利用
し、この部分の温度を環境温度とすべく、この上に冷接
点部及び温度補償用抵抗膜が形成されているため、冷接
点部に対して悪影響を及ぼさずに抵抗膜を配置すること
が可能となり、抵抗膜の定電流を大きくとり、高感度で
温度補償を行なう場合でも、抵抗膜の発熱による冷熱接
点部の温度変動を防止でき、環境温度即ち冷接点部の温
度を正確に測定することができる。
The dead space at the corners of the Si substrate is effectively used as a heat reservoir, and the cold junction and temperature compensation resistance film are formed on this to make the temperature of this portion the ambient temperature. It is possible to dispose the resistive film without adversely affecting the temperature of the resistive film, and even if the constant current of the resistive film is large and temperature compensation is performed with high sensitivity, it is possible to prevent the temperature fluctuation of the cold / hot contact point due to the heat generation of the resistive film. The environmental temperature, that is, the temperature of the cold junction can be accurately measured.

更に、抵抗膜は一方の熱電対線の構成材料で形成され
ているため、その熱電対線の形成プロセス中に同時形成
が可能となり、Si基板を母材とする半導体製造プロセス
の薄膜形成と相まって、製造コスト低廉のサーモパイル
を実現できる。
Further, since the resistance film is formed of the constituent material of one thermocouple wire, it is possible to form it simultaneously during the formation process of that thermocouple wire, which is coupled with the thin film formation of the semiconductor manufacturing process using the Si substrate as the base material. A thermopile with low manufacturing cost can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は、本発明に係るサーモパイルの一実施例
を示す拡大平面図である。 第1図(B)は、同実施例に示す拡大縦断面図である。 第2図は、同実施例を外囲器に組込んだ完成品を示す縦
断面図である。 第3図は、同実施例における温度補償用低抗体の形成材
料に係るTeの温度T対抵抗率ρの特性を示すグラフ図で
ある。 第4図(A)は、従来のサーモパイルの一例を示す平面
図で、第4図(B)はその縦断面図である。 2……サーモパイル、10……穴を有するSi基板、10a…
…穴、S……穴領域、10b……隅部、11……絶縁膜、12
……黒体部、13……熱電対、13a,13b……熱電対線、13c
……温接点部、13d……冷接点部、15……温度補償用抵
抗膜、14a,14b,15a,15b……ボンディングパッド、16…
…保護膜。
FIG. 1 (A) is an enlarged plan view showing an embodiment of the thermopile according to the present invention. FIG. 1 (B) is an enlarged vertical sectional view showing the same embodiment. FIG. 2 is a vertical sectional view showing a completed product in which the same embodiment is incorporated in an envelope. FIG. 3 is a graph showing the characteristics of the temperature T vs. resistivity ρ of Te relating to the material for forming the low antibody for temperature compensation in the same Example. FIG. 4 (A) is a plan view showing an example of a conventional thermopile, and FIG. 4 (B) is a longitudinal sectional view thereof. 2 ... Thermopile, 10 ... Si substrate with holes, 10a ...
… Hole, S …… Hole area, 10b …… Corner, 11 …… Insulating film, 12
...... Black body part, 13 ...... Thermocouple, 13a, 13b ...... Thermocouple wire, 13c
...... Hot junction, 13d ...... Cold junction, 15 ...... Resistance film for temperature compensation, 14a, 14b, 15a, 15b ...... Bonding pad, 16 ...
…Protective film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】穴を有する矩形Si基板と、該穴を閉塞して
該Si基板表面に形成された絶縁膜と、該穴領域内で該絶
縁膜上に形成された黒体部と、該穴領域内で該黒体部に
近接する温接点部及び該穴領域外に位置する冷接点部と
を該絶縁膜上に具える直列接続の複数の熱電対と、該熱
電対の一方の熱電対線薄膜材料を以て該冷接点部側で該
Si基板の隅部における該絶縁膜上に形成された温度補償
用抵抗膜とを有することを特徴とするサーモパイル。
1. A rectangular Si substrate having a hole, an insulating film formed on the surface of the Si substrate by closing the hole, a black body portion formed on the insulating film in the hole region, A plurality of thermocouples connected in series, each having a hot junction close to the black body in the hole region and a cold junction located outside the hole on the insulating film, and one of the thermocouples. On the cold junction side with a pair of thin film materials,
A thermopile having a temperature compensation resistance film formed on the insulating film at a corner of a Si substrate.
JP62152950A 1987-06-19 1987-06-19 Thermopile Expired - Lifetime JP2526247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152950A JP2526247B2 (en) 1987-06-19 1987-06-19 Thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152950A JP2526247B2 (en) 1987-06-19 1987-06-19 Thermopile

Publications (2)

Publication Number Publication Date
JPS63318175A JPS63318175A (en) 1988-12-27
JP2526247B2 true JP2526247B2 (en) 1996-08-21

Family

ID=15551704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152950A Expired - Lifetime JP2526247B2 (en) 1987-06-19 1987-06-19 Thermopile

Country Status (1)

Country Link
JP (1) JP2526247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713669B2 (en) 2000-10-19 2004-03-30 Murata Manufacturing Co., Ltd. Thermoelectric conversion component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432549U (en) * 1990-07-13 1992-03-17
DE19732078C1 (en) * 1997-07-25 1999-01-07 Inst Physikalische Hochtech Ev Miniaturised thermoelectric thin film detector
JP2001194228A (en) * 1999-12-29 2001-07-19 Nippon Ceramic Co Ltd Arrangement structure of thermocouple temperature contact of thermopile type infrared sensor
DE10009593A1 (en) * 2000-02-29 2001-09-13 Bosch Gmbh Robert Structural body, used as infrared sensor, comprises supporting body connected to structuring layer having micro-component and recess filled with hardened liquid functional material
JP3463657B2 (en) * 2000-07-24 2003-11-05 株式会社村田製作所 Infrared sensor
DE10320357B4 (en) * 2003-05-07 2010-05-12 Perkinelmer Optoelectronics Gmbh & Co.Kg Radiation sensor, wafer, sensor array and sensor module
JP2006047086A (en) * 2004-08-04 2006-02-16 Denso Corp Infrared sensor
JP4749794B2 (en) * 2005-08-05 2011-08-17 川惣電機工業株式会社 Temperature measuring method and apparatus
EP2355692A1 (en) * 2008-11-11 2011-08-17 Koninklijke Philips Electronics N.V. Medical device comprising a probe for measuring temperature data in a patient's tissue
CN104089717A (en) * 2014-07-23 2014-10-08 电子科技大学 Thermopile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713669B2 (en) 2000-10-19 2004-03-30 Murata Manufacturing Co., Ltd. Thermoelectric conversion component

Also Published As

Publication number Publication date
JPS63318175A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
US5056929A (en) Temperature compensation type infrared sensor
JP4619499B2 (en) Infrared sensor capable of stabilizing temperature and infrared thermometer having this type of sensor
US4456919A (en) Thermopile type detector with temperature sensor for cold junction
JP2526247B2 (en) Thermopile
JP4511676B2 (en) Thermopile type infrared sensor and manufacturing method thereof
JPS6151419B2 (en)
US20070034799A1 (en) Infrared sensor having thermo couple
JPH0197144A (en) Charge completion detector
US20220252442A1 (en) Flow sensor chip
JP3463657B2 (en) Infrared sensor
US6476455B2 (en) Infrared sensor
US6242738B1 (en) Structurally stable infrared bolometer
US6201244B1 (en) Bolometer including an absorber made of a material having a low deposition-temperature and a low heat-conductivity
JP2811709B2 (en) Infrared sensor
JPH11258055A (en) Thermopile type temperature sensor
EP1161660B1 (en) Bolometer with a zinc oxide bolometer element
JP3388207B2 (en) Thermoelectric sensor device and method of manufacturing the same
JPH0227570Y2 (en)
JP2856753B2 (en) Infrared sensor
JP3584918B2 (en) Thermoelectric conversion element and method of manufacturing the same
JPH09113353A (en) Infrared detection element
JPH046424A (en) Infrared sensor
JP2001203399A (en) Infrared ray sensor
CN1359009A (en) Microbridge structured thermalcouple type microwave power sensor