JPS61107773A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61107773A
JPS61107773A JP23062384A JP23062384A JPS61107773A JP S61107773 A JPS61107773 A JP S61107773A JP 23062384 A JP23062384 A JP 23062384A JP 23062384 A JP23062384 A JP 23062384A JP S61107773 A JPS61107773 A JP S61107773A
Authority
JP
Japan
Prior art keywords
region
transistor
base
diode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23062384A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yu
由宇 義珍
Yasuo Kamiya
神谷 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23062384A priority Critical patent/JPS61107773A/en
Publication of JPS61107773A publication Critical patent/JPS61107773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7302Bipolar junction transistors structurally associated with other devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce the effect of a parasitic lateral transistor generated through a compounding by forming an independent second conduction type region into a first conduction type collector region between a base region in a transistor and an anode region in a diode. CONSTITUTION:A transistor is constituted by a collector consisting of an N<+> region 1 and an N<-> type region 2 formed onto the region 1, a base composed of a P type region 3 shaped onto the region 2 and an emitter consisting of an N<+> region 4 formed into the region 3. On the other hand, a diode is organized by a cathode region composed of the N<+> region 1 and the N<-> region 2 and an anode region consisting of a P type region 5 shaped separated from the P type region 3 on the region 2. An independent P type region 11 is formed newly in the N<-> region 2 held by the base for the transistor and an anode for the diode, thus reducing the current amplification factor of a parasitic lateral transistor.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体装置、特に、ダイオードとトランジス
タが複合化された半導体装置の構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in the structure of a semiconductor device, particularly a semiconductor device in which a diode and a transistor are combined.

[従来の技術] 第3図は、従来のフライホイールダイオード複合のパワ
ートランジスタの断面構造を示す図である。第3図にお
いて、トランジスタは、N++域1およびN++域1上
に形成されるN−型領域2よりなるコレクタと、N−型
頭T42上に形成されるP型領域3からなるベースと、
PP!:!fJ域3内に形成されるN++域4かうなる
エミッタとから構成される。ダイオードは、N+型領領
域1よびN−型領域2からなるカソード領域と、N−型
領域2上にP型領域3から分離して形成されるP型領域
5からなるアノード領域とで構成される。P型領域3お
よびP型領域5からなる領域の周縁外部には高耐圧化を
図るために、P型領域6からなるガードリングが設けら
れる。N+型領領域1表面はコレクタ電極8が、N−型
領域2の表面には電極部を除いて表面保護用の絶縁膜7
が形成され、ベース領域、エミッタおよびアノ−、ド頭
域にはそれぞれベース電極9.エミッタおよび7ノード
電極10が形成される。
[Prior Art] FIG. 3 is a diagram showing a cross-sectional structure of a conventional flywheel diode composite power transistor. In FIG. 3, the transistor has a collector consisting of an N++ region 1 and an N-type region 2 formed on the N++ region 1, a base consisting of a P-type region 3 formed on an N-type head T42,
PP! :! It consists of an N++ region 4 formed within the fJ region 3 and an emitter formed in the N++ region 4. The diode is composed of a cathode region consisting of an N+ type region 1 and an N- type region 2, and an anode region consisting of a P type region 5 formed on the N- type region 2 and separated from a P type region 3. Ru. A guard ring consisting of a P-type region 6 is provided outside the periphery of the region consisting of the P-type region 3 and the P-type region 5 in order to increase the breakdown voltage. A collector electrode 8 is provided on the surface of the N+ type region 1, and an insulating film 7 for surface protection is provided on the surface of the N− type region 2, excluding the electrode portion.
are formed, and base electrodes 9. are formed in the base region, emitter, anode and dome regions, respectively. An emitter and seven node electrode 10 are formed.

従来の複合化技術においては、フライホイールダイオー
ドとトランジスタの分離は第3図に示されるように、N
−領域を挾んでベース領域3と7ノード領域5とを距離
IIMして行なわれる。この距離見に対する制約として
は、ガードリング6が不要であるような低耐圧用の複合
トランジスタの場合は、複合トランジスタが形成される
チップのサイズの許容できる範囲で決定される。また、
高耐圧用の複合トランジスタの場合は、トランジスタの
ベース領域とフライホイールダイオードの7ノードとの
間のN−領域において高耐圧印加時に形成される空乏層
が到達し得る範囲にする必要がある。従来の複合トラン
ジスタの場合は上述のような構造によりトランジスタと
ダイオードとを分離していた。
In conventional composite technology, the separation of the flywheel diode and transistor is as shown in Figure 3.
- This is carried out by setting the distance IIM between the base region 3 and the 7-node region 5 with the region in between. In the case of a low-voltage composite transistor that does not require the guard ring 6, the restriction on this distance is determined by the allowable range of the size of the chip on which the composite transistor is formed. Also,
In the case of a composite transistor for high breakdown voltage, the N- region between the base region of the transistor and the 7th node of the flywheel diode needs to be in a range that can be reached by a depletion layer formed when a high breakdown voltage is applied. In the case of conventional composite transistors, the transistor and diode are separated by the structure described above.

[発明が解決しようとする問題点] 第4図は第3図に示される半導体装置の等価回路図であ
る。第4図に破線で示されるように、ブレナタイプにて
同一チップ内にフライホイールダイオードを複合する従
来の方法においては、トランジスタのベース(第3図の
3)をコレクタとして、ダイオードのアノード(第3図
の5)をエミッタとし、トランジスタのコレクタとダイ
オードのカソードとの共通領域であるN−領域(第3図
においで2)をベースとするラテラルPNP寄生トラ−
ンジスタが形成される。このラテラルPNP寄生トラン
ジスタによる電流増幅が以下に述べるような問題点を引
き起こす。
[Problems to be Solved by the Invention] FIG. 4 is an equivalent circuit diagram of the semiconductor device shown in FIG. 3. As shown by the broken line in Figure 4, in the conventional method of combining flywheel diodes in the same chip using the Brenna type, the base of the transistor (3 in Figure 3) is used as the collector, and the anode (3 in Figure 3) is used as the collector. A lateral PNP parasitic transistor whose emitter is 5) in the figure and whose base is the N- region (2 in Figure 3), which is the common area between the collector of the transistor and the cathode of the diode.
register is formed. Current amplification by this lateral PNP parasitic transistor causes the following problems.

インダクティプ負荷においてスイッチング素子I□′ として用いる場合、ターンオフ時にエミッタビーベース
8間に逆バイアスを印加することが多い。
When used as a switching element I□' in an inductive load, a reverse bias is often applied between the emitter base 8 at turn-off.

ラテラルPNP寄生トランジスタの電流壜幅率が大きい
場合においては、エミッタビーベース8間を逆バイアス
したとき、エミッタビーベース8間のインピーダンスが
低くなり、エミッタE−ペースB間に流れる電流■ε8
が非常に大きくなる。
When the current width ratio of the lateral PNP parasitic transistor is large, when the emitter bee base 8 is reverse biased, the impedance between the emitter bee base 8 becomes low and the current flowing between the emitter E and the pace B ε8
becomes very large.

具体的な例により少し詳しく説明する。This will be explained in a little more detail using a specific example.

第5図は、3層インバータ回路の11i!分に対応する
回路の等価回路図である。第5図において、NPNI−
ランジスタTr1のエミッタとNPNトランジスタTr
2のコレクタとが接続される。トランジスタTr 1の
ベース−エミッタ間には逆バイアスが印加される。トラ
ンジスタTr2のベース−エミッタ間にこの回路の駆動
用信号が与えられる。トランジスタTr 1.Tr 2
にはそれぞれフライホイールダイオードD、、D、が接
続される。コイルしかこの回路の負荷である。トランジ
スタTr2に第5図に示すような信号が与えられると信
号レベルに応じてトランジスタTr2がオフ状態になる
。このとき負荷電流Itが図の破線で示すような方向(
トランジスタTr2のコレクタからエミッタへの方向)
へ流れて電流■。となる。次にトランジスタTr2がオ
フ状態になると、負荷電流■Lは図に実線で示されるよ
うにフライホイールダイオードD、の順方向に流れる。
Figure 5 shows 11i! of a three-layer inverter circuit. FIG. In Figure 5, NPNI-
Emitter of transistor Tr1 and NPN transistor Tr
2 collector is connected. A reverse bias is applied between the base and emitter of the transistor Tr1. A driving signal for this circuit is applied between the base and emitter of the transistor Tr2. Transistor Tr 1. Tr 2
A flywheel diode D, , D, is connected to each. The coil is the only load on this circuit. When a signal as shown in FIG. 5 is applied to the transistor Tr2, the transistor Tr2 is turned off in accordance with the signal level. At this time, the load current It is directed in the direction shown by the broken line in the figure (
(direction from collector to emitter of transistor Tr2)
Current flows to■. becomes. Next, when the transistor Tr2 is turned off, the load current ■L flows in the forward direction of the flywheel diode D, as shown by the solid line in the figure.

このことは、ラテラルPNP寄生トランジスタにおいて
、ダイオードD、のアノードがエミッタELになり1ま
たダイオードD、のカソードがベースBLとなるので、
寄生トランジスタのエミッタELからベースB、ヘキャ
リアが注入されたことになる。
This means that in the lateral PNP parasitic transistor, the anode of the diode D becomes the emitter EL, and the cathode of the diode D becomes the base BL.
This means that carriers are injected from the emitter EL of the parasitic transistor to the base B.

このとき、トランジスタのベースBがトランジスタのエ
ミッタEに対して逆バイアス状態であると、寄生トラン
ジスタのコレクタCLとエミッタELが順方向にバイア
スされた状態になり、寄生トランジスタが動作する。こ
の結果、上述のトランジスタのエミッタEからベースB
に流れる電流I=Sが増加し、トランジスタのベースB
−エミッタE間に与えられる逆バイアスが十分に印加さ
れないようになる。このことにより、トランジスタにお
いてd V/dt耐量の低下や、耐圧の低下が生じ、ま
た逆バイアス電源の損失の増加をも当然引き起こす。
At this time, if the base B of the transistor is in a reverse bias state with respect to the emitter E of the transistor, the collector CL and emitter EL of the parasitic transistor will be in a forward bias state, and the parasitic transistor will operate. As a result, from the emitter E to the base B of the transistor mentioned above,
The current I=S flowing in increases, and the base of the transistor B
- The reverse bias applied between the emitters E is not sufficiently applied. This causes a decrease in the dV/dt withstand capability and a decrease in the withstand voltage of the transistor, and also naturally causes an increase in the loss of the reverse bias power supply.

それゆえに、この発明の目的は、上述の欠点を除去し、
フライホイールダイオードとトランジスタの複合化によ
って生ずる寄生ラテラルトランジスタの効果を低減した
半導体装置を提供することである。
It is therefore an object of this invention to eliminate the above-mentioned drawbacks and
It is an object of the present invention to provide a semiconductor device in which the effect of parasitic lateral transistors caused by combining a flywheel diode and a transistor is reduced.

[問題点を解決するための手段] 奇生トランジスタによる効果を低減させるためには、ラ
テラル寄生トランジスタの電流増幅率を低減させればよ
い。そこで、この発明においては次のような手段を設け
る。すなわち、トランジスタのベース領域とダイオード
の7ノード領域との間に第1伝導型のコレクタ領域に新
たに独立の第2伝導型の@域を設ける。この独立の第2
伝導型の半導体領域は少なくとも1個でよいが、複数個
設ければ寄生トランジスタのTRF−増幅率を低減させ
るにはさらに有効な手段となる。
[Means for Solving the Problems] In order to reduce the effect of parasitic transistors, the current amplification factor of the lateral parasitic transistors may be reduced. Therefore, in the present invention, the following means are provided. That is, a new independent @ region of the second conductivity type is provided in the collector region of the first conductivity type between the base region of the transistor and the 7-node region of the diode. This second independence
At least one conductive type semiconductor region is sufficient, but providing a plurality of conductive type semiconductor regions becomes a more effective means for reducing the TRF-amplification factor of the parasitic transistor.

この独立の第2伝導型の半導体領域を形成する際の条件
として、トランジスタのエミッターコレクタ間またはダ
イオードの7ノ一ドーカソード間に逆バイアスが印加さ
れたとき各接合より延びる空乏層が到達し得る範囲に独
立の第2伝導型半導体領域を配置することが必要である
。この条件により、高耐圧トランジスタ(コレクターベ
ース間にガードリングを必要とする程度の)において、
高耐圧特性を損なうことなく目的とする効果を得ること
が可能となる。
The conditions for forming this independent semiconductor region of the second conductivity type are the range that the depletion layer extending from each junction can reach when a reverse bias is applied between the emitter-collector of a transistor or between the 7-d cathode of a diode. It is necessary to arrange an independent semiconductor region of the second conductivity type. Due to this condition, in high voltage transistors (to the extent that a guard ring is required between the collector and base),
It becomes possible to obtain the desired effect without impairing high voltage resistance characteristics.

さらに、この独立の第2伝導型の半導体領域を形成する
ことは、従来の技術で十分可能であり、特に、ガードリ
ング形成時に必要部分に同時に形成すれば工程を追加す
る必要もない。
Further, it is possible to form this independent semiconductor region of the second conductivity type using conventional techniques, and there is no need to add any additional steps, especially if it is formed in a necessary portion at the same time as forming the guard ring.

し作用] ラテラル寄生トランジスタの電流増幅率は、トランジス
タのコレクタを奇生1−ランジスタのベースとしたとき
、ダイオードのアノードである奇生トランジスタのエミ
ッタとトランジスタのベースである寄生トランジスタの
コレクタとに挾まれるラテラル寄生トランジスタのベー
ス幅Wしの二乗に大きく依存し、その関係は逆比例の関
係である。    □′したがって、この発明の特徴で
あるトランジスタのベースとダイオードのアノードとに
挾まれた第1伝導型半導体領域内に形成される独立の第
2伝導型半導体層はキャリアの流れを阻止する機能を有
するので、ラテラル寄生トランジスタのベース幅Wしを
実質的に長くすることにより寄生トランジスタの電流増
幅率を小さくすることができる。
The current amplification factor of a lateral parasitic transistor is the current amplification factor between the emitter of the parasitic transistor, which is the anode of the diode, and the collector of the parasitic transistor, which is the base of the transistor, when the collector of the transistor is the base of the parasitic transistor. It depends largely on the square of the base width W of the lateral parasitic transistor, and the relationship is inversely proportional. □'Therefore, the independent second conductivity type semiconductor layer formed within the first conductivity type semiconductor region sandwiched between the base of the transistor and the anode of the diode, which is a feature of the present invention, has the function of blocking the flow of carriers. Therefore, by substantially increasing the base width W of the lateral parasitic transistor, the current amplification factor of the parasitic transistor can be reduced.

[発明の実施例] 第1図は、この発明の特徴を最もよく示す半導体装置の
断面構造図である。第1図において、第3因の従来の装
置と同一の領域は同一の符号が付されているが、この発
明の特徴として新たに独立のP型頭域11が設けられる
[Embodiments of the Invention] FIG. 1 is a cross-sectional structural diagram of a semiconductor device that best illustrates the features of the present invention. In FIG. 1, the same regions as in the conventional device of the third factor are given the same reference numerals, but as a feature of the present invention, an independent P-shaped head region 11 is newly provided.

第5図は、この発明を高耐圧ダーリントントランジスタ
に適用した場合の半導体装置の断面構造図である。以下
、この発明の具体的効果について具体的な数字を挙げて
説明する。第5図に示されるダーリントントランジスタ
において、N″領域1は比抵抗40〜50Ω・am、厚
みはプレーナの表面より60μ、N+領域1はコレクタ
電極8に接する表面の111度はf3 x 1Q ” 
atones /c1m’以上であり、深さ150μの
拡散層、P領域はベースガードリング領域ともに表面濃
度5X10+♂atoms /c1.深さ25μの拡散
層、N”flpIl、ハ、不純物濃度1X 1Q ” 
 atoIlls /e1m2以上、深さ10μの拡散
領域である。この発明によるP領域は、トランジスタの
ベースとダイオードのアノードに挾まれるN−領域に各
々よりマスク寸法上60μIl11mlシて形成される
。従来構造の場合のトランジスタのベースと分離された
ダイオードの7ノードの端までの距離はマスク寸法上6
0μmである。回路構成を第5図に示される回路として
、負荷電流I、を15A流した場合の条件で、従来の半
導体装置と本発明による半導体装置におけるエミッター
ベース間に流れる電流II!aを比較す、る。
FIG. 5 is a cross-sectional structural diagram of a semiconductor device in which the present invention is applied to a high voltage Darlington transistor. Hereinafter, specific effects of the present invention will be explained by citing specific numbers. In the Darlington transistor shown in FIG. 5, the N'' region 1 has a resistivity of 40 to 50 Ω·am, a thickness of 60 μm from the planar surface, and the N+ region 1 has a surface contacting the collector electrode 8 at an angle of 111 degrees f3 x 1Q”.
atones /c1m' or more, and the surface concentration of both the 150μ deep diffusion layer and the base guard ring region of the P region is 5×10+♂atoms/c1. Diffusion layer with a depth of 25μ, N"flpIl, C, impurity concentration 1X 1Q"
The diffusion region is at least atoIlls/e1m2 and has a depth of 10μ. The P regions according to the present invention are formed by 60 .mu.Il11 ml larger than each of the N- regions sandwiched between the base of the transistor and the anode of the diode on the mask dimension. In the case of the conventional structure, the distance between the base of the transistor and the end of the isolated diode's 7 nodes is 6 due to the mask dimension.
It is 0 μm. With the circuit configuration shown in FIG. 5, the current II! flowing between the emitter base in the conventional semiconductor device and the semiconductor device according to the present invention is under the condition that a load current I of 15 A is applied. Compare a.

第6A図は従来の半導体装置を用いた場合の電流ICI
IEIIを示し、第6B図はこの発明による半導体装置
の電流!。、IEIIをそれぞれ示す。
Figure 6A shows the current ICI when using a conventional semiconductor device.
IEII is shown, and FIG. 6B shows the current of the semiconductor device according to the present invention! . , IEII are shown, respectively.

第6A図、第6B図から見られるように従来の半導体装
置に比べてこの発明による半導体装置においてはエミッ
ターベース間電流IεBは大幅に低減されていることが
わかる。
As can be seen from FIGS. 6A and 6B, it can be seen that the emitter-base current IεB is significantly reduced in the semiconductor device according to the present invention compared to the conventional semiconductor device.

[発明の効果] 以上のように、この発明においては、ダイオード複合ト
ランジスタにおいて、トランジスタのベース領域とダイ
オードのアノード領域との間のコレクタ領域にキャリア
阻止用の領域を新たに設けたので、汀生トランジスタの
ベース領域の幅を実質的に長くすることができる。した
がって、寄生トランジスタの電流増幅率を低減すること
ができ、ダイオード複合トランジスタの(Iv、/dt
耐吊および耐圧を高めることができる。
[Effects of the Invention] As described above, in the present invention, a carrier blocking region is newly provided in the collector region between the base region of the transistor and the anode region of the diode in the diode composite transistor. The width of the base region of the transistor can be substantially increased. Therefore, the current amplification factor of the parasitic transistor can be reduced, and (Iv, /dt
Can increase hanging resistance and pressure resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の特徴を示す半導体装置の断面MIt
造図である。第2図はこの発明の一実a例である半導体
装置の構造の断面図である。第3図は従来の半導体装置
の構造を示す断面図である。第4図は、第3図の半導体
装置の等価回路図である。 第5図は半導体装置の適用回路の動作を示すための図で
ある。第6A図は従来の半導体装置の特性を示す図であ
る。第6B図はこの発明による半導体装置の特性を示す
図である。 図において、1はN+コレクタ領域およびダイオードの
カソード領域、2はN−コレクタ@域およびダイオード
のカソード領域、3,3a 、3bはP型ベース領域、
4.4a、411.4cはN−型エミッタ領域、5はP
型アノード領域、6は高耐圧化のためのガードリング、
7は表面保護のだめの絶縁膜、8はコレクタおよびカソ
ードの電極、9はベース電極、1oはエミッタおよびア
ノードの共通の電極、11はこの発明の特徴である分離
P型領域である。 なお、図中、同符号は同一または相当部を示す。 代  理  人     大  岩  増  雄:で 乃1図 心2図 躬3図 64図     心5図 心6A図      668図 手続補正書(自発) 1.事件の表示   特願昭59−230623号2、
発明の名称 半導体装置 3、補正をする省 代表者片山仁へ部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄および図面の簡単な説明
の欄 6、補正の内容 (1) 明細書第4頁第6行ないしM7行の「ブレナ」
を「プレーナ」に訂正する。 (2)  u書16頁M12行rU方向J ’E:「逆
方向」に訂正する。 (3) 明細書第9頁第12行の「第5図」を「第2図
」に訂正する。 (4) 明細書第12頁第4行ないし第5/Iテの「N
−型エミッタ」を「N+型エミッタ」に訂正する。 以上 −A凸1
FIG. 1 shows a cross-section MIt of a semiconductor device showing the features of this invention.
It is a drawing. FIG. 2 is a sectional view of the structure of a semiconductor device which is an example of the present invention. FIG. 3 is a cross-sectional view showing the structure of a conventional semiconductor device. FIG. 4 is an equivalent circuit diagram of the semiconductor device of FIG. 3. FIG. 5 is a diagram showing the operation of the applied circuit of the semiconductor device. FIG. 6A is a diagram showing the characteristics of a conventional semiconductor device. FIG. 6B is a diagram showing the characteristics of the semiconductor device according to the present invention. In the figure, 1 is an N+ collector region and a diode cathode region, 2 is an N- collector @ region and a diode cathode region, 3, 3a, and 3b are P-type base regions,
4.4a, 411.4c are N-type emitter regions, 5 is P
type anode area, 6 is a guard ring for high voltage resistance,
7 is an insulating film for surface protection, 8 is a collector and cathode electrode, 9 is a base electrode, 1o is a common electrode for the emitter and anode, and 11 is an isolated P-type region, which is a feature of the present invention. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa: Deno 1 Zushin 2 Zuman 3 Diagram 64 Shin 5 Chushin 6A Diagram 668 Procedural Amendment (Voluntary) 1. Indication of incident Patent application No. 59-230623 2,
Name of the invention: Semiconductor device 3; Department representative Hitoshi Katayama making the amendment; Department 4; Attorney 5; Detailed explanation of the invention column and Brief explanation of drawings column 6 of the specification subject to the amendment; Contents of the amendment ( 1) “Brenna” on page 4, line 6 to line M7 of the specification
is corrected to "plana". (2) Book U, page 16, line M12, rU direction J'E: Correct to "reverse direction". (3) "Figure 5" on page 9, line 12 of the specification is corrected to "Figure 2." (4) “N” in page 12, line 4 to 5/I of the specification
- type emitter" is corrected to "N+ type emitter." Above-A convex 1

Claims (2)

【特許請求の範囲】[Claims] (1)バイポーラトランジスタとダイオードとが同一半
導体基体内に形成され、前記トランジスタのコレクタ領
域と前記ダイオードのカソード領域とが同一の第1伝導
型半導体層を共有し、前記トランジスタのベース領域と
前記ダイオードのアノード領域とが互いに独立した第2
伝導型半導体層で形成され、前記トランジスタの前記ベ
ース領域の表面部の一部に第1伝導型半導体領域からな
るエミッタ領域を有し、前記トランジスタの前記エミッ
タ領域と前記ダイオードのアノード領域とが電気的に接
続される半導体装置であつて、前記トランジスタのベー
ス領域と前記ダイオードのアノード領域とにより挾まれ
た前記トランジスタのコレクタ領域内に前記ベース領域
と前記アノード領域とから分離された第2伝導型半導体
領域が形成された、半導体装置。
(1) A bipolar transistor and a diode are formed in the same semiconductor substrate, the collector region of the transistor and the cathode region of the diode share the same first conductivity type semiconductor layer, and the base region of the transistor and the diode The anode region of the
The transistor is formed of a conductive semiconductor layer, and has an emitter region made of a first conductive semiconductor region in a part of the surface of the base region of the transistor, and the emitter region of the transistor and the anode region of the diode are electrically connected to each other. a semiconductor device of a second conductivity type separated from the base region and the anode region in the collector region of the transistor sandwiched between the base region of the transistor and the anode region of the diode; A semiconductor device in which a semiconductor region is formed.
(2)前記第1伝導型はN型であり、前記第2伝導型は
P型である、特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type.
JP23062384A 1984-10-30 1984-10-30 Semiconductor device Pending JPS61107773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23062384A JPS61107773A (en) 1984-10-30 1984-10-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23062384A JPS61107773A (en) 1984-10-30 1984-10-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61107773A true JPS61107773A (en) 1986-05-26

Family

ID=16910673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23062384A Pending JPS61107773A (en) 1984-10-30 1984-10-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61107773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480047U (en) * 1990-11-27 1992-07-13
JP2008004582A (en) * 2006-06-20 2008-01-10 Sansha Electric Mfg Co Ltd Vertical high-speed switching device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227277A (en) * 1975-08-25 1977-03-01 Origin Electric Co Ltd Darlington connction type semiconductor unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227277A (en) * 1975-08-25 1977-03-01 Origin Electric Co Ltd Darlington connction type semiconductor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480047U (en) * 1990-11-27 1992-07-13
JPH087629Y2 (en) * 1990-11-27 1996-03-04 関西日本電気株式会社 Transistor
JP2008004582A (en) * 2006-06-20 2008-01-10 Sansha Electric Mfg Co Ltd Vertical high-speed switching device

Similar Documents

Publication Publication Date Title
KR100197912B1 (en) Power ic
US4027325A (en) Integrated full wave diode bridge rectifier
JPH04233232A (en) Semiconductor device
JP3146579B2 (en) Programmable overvoltage protection circuit
US5148250A (en) Bipolar transistor as protective element for integrated circuits
JPS60240158A (en) Semiconductor circuit
JPH055383B2 (en)
JPS61107773A (en) Semiconductor device
JP3459532B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP3216315B2 (en) Insulated gate bipolar transistor
JPS6223098Y2 (en)
JP2784458B2 (en) Surge protection element
JPH01106464A (en) Latchup and electrostatic discharge protection structure
JPH027191B2 (en)
JPH0236558A (en) Semiconductor device
JPH0475371A (en) Semiconductor integrated circuit
JP3131694B2 (en) Power transistor device
JP2901275B2 (en) Semiconductor integrated circuit device
JP2557984B2 (en) Input protection circuit for semiconductor device
JPH0440272Y2 (en)
JP2953623B2 (en) Planar thyristor
JPH03108726A (en) Overcurrent limiting type semiconductor device
JPH0440273Y2 (en)
JPH06120412A (en) Protecting device of semiconductor
JPS6141247Y2 (en)