JPS61107728A - Thin film forming material and manufacture therefor - Google Patents

Thin film forming material and manufacture therefor

Info

Publication number
JPS61107728A
JPS61107728A JP22766784A JP22766784A JPS61107728A JP S61107728 A JPS61107728 A JP S61107728A JP 22766784 A JP22766784 A JP 22766784A JP 22766784 A JP22766784 A JP 22766784A JP S61107728 A JPS61107728 A JP S61107728A
Authority
JP
Japan
Prior art keywords
melting point
thin film
point metal
forming
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22766784A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
英男 宮崎
Iwao Kyono
京野 巖
Nobuyuki Mori
信行 森
Yoshiharu Kato
義春 加藤
Masami Kuroki
黒木 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22766784A priority Critical patent/JPS61107728A/en
Publication of JPS61107728A publication Critical patent/JPS61107728A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To manufacture thin film forming material with a high purity, by combining appropriately a dry purifying method centering on electron beam solving and a wet purifying method using various resolving reagents. CONSTITUTION:Molybdenum powder being marketed, with a purity of 99.9% containing K of 8,600ppb, Na of 1,500ppb and U of 700ppb is solved into nitric acid and is purified by aqueous solution, and molybdic acid crystal is taken out and is hydrogen-reduced in order to make up high impurity molybdenum. Next, after this powder is sintered by a hot equalized pressure pressing method and is solved with electron beams, the produced high impurity molybdenum ingot is molded and worked, in order to manufacture molybdenum sputtering targets.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の電極あるいは回路形成用に用い
られるスパッタリングターゲットあるいは真空蒸着材料
などの薄膜形成用材とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film forming material such as a sputtering target or a vacuum evaporation material used for forming electrodes or circuits of semiconductor devices, and a method for manufacturing the same.

近年、半導体装置用電極あるいは回路にモリブデン、タ
ングステン、ニオブもしくはタンタルなどの高融点金属
、高融点金属合金あるいはそれらのシリサイドなどを用
いる試みが盛んになされている。高融点金属は、抵抗率
が低くかつ耐熱性にすぐれているため、信号の伝搬遅延
がなく、また、半導体装置製造工程中の熱処理温度に容
易に耐えるからである。
In recent years, many attempts have been made to use refractory metals such as molybdenum, tungsten, niobium, or tantalum, refractory metal alloys, or silicides thereof for electrodes or circuits for semiconductor devices. This is because high melting point metals have low resistivity and excellent heat resistance, so there is no signal propagation delay, and they easily withstand heat treatment temperatures during the semiconductor device manufacturing process.

従来の技術 しかし、現在一般だ用いられている高融点金属薄膜形成
用材は、せいぜい99.91級であ)。
2. Prior Art However, the refractory metal thin film forming materials currently in common use are of grade 99.91 at most.

半導体装置特性に悪影響を及ぼすアルカリ金属−(Li
、に、Na)が数千ppb含まれ、!た。放射性元素(
U 、 Th )も数百ppb含まれるため、このよう
な薄膜形成用材を用いて製造された半導体装置は、信頼
性に問題を残す。
Alkali metals (Li) that have an adverse effect on semiconductor device characteristics
, contains several thousand ppb of Na). Ta. Radioactive elements (
Since it also contains several hundred ppb of U, Th), semiconductor devices manufactured using such thin film forming materials have problems in reliability.

本発明とその構成 本発明者らは、この問題を解決する方策として高純度高
融点金属薄膜形成用材とその製造方法を種々検討した結
果1本発明に至った。
The present invention and its structure As a measure to solve this problem, the present inventors have conducted various studies on materials for forming high-purity, high-melting-point metal thin films and methods for manufacturing the same, and as a result, they have arrived at the present invention.

一般に高融点金属加工品の製造においては。Generally in the production of high melting point metal products.

高融点金属粉末の加圧成形、焼結、溶解造塊および成形
加工の各工程を経由するが1本発明者らは溶解造塊工程
に電子ビーム溶解法を適用すること和よって大巾な不純
物除去効果を得ることができ、就中蒸気圧の高い不純物
元素の除去率が著しいことを見出した。
Although the high-melting point metal powder passes through each process of pressure molding, sintering, melting and agglomeration, and forming processing, the present inventors applied an electron beam melting method to the melting and agglomeration process. It was found that a removal effect can be obtained, and in particular, the removal rate of impurity elements with high vapor pressure is remarkable.

電子ビーム溶解に供される焼結体は、気泡を内部しない
ことが望ましく、従ってできるだけ内部まで高密度化さ
れていることが必要である。
The sintered body subjected to electron beam melting is desirably free of bubbles, and therefore needs to be as dense as possible inside.

それゆえ熱間等圧加圧法を用いることが好適である。 
                     7しかし
ながら、更に高純度化した高融点金属薄膜形成用材を製
造するためには、高融点金属粉末自体を高純度化する必
要がある。不純物によっては真空中あるいは特定の気体
流中で加熱するという手段で金属粉から揮発除去される
場合もあるが、揮発除去の難しい不純物を除くため罠は
湿式精製しなければならない。湿式精製法においては、
高融点金属含有原料を分解して溶液化し、溶液中の不純
物を除去してから高融点金属化合物を採取し、これを還
元することによって高純度高融点金属粉を得る。上記の
分解のための試薬は、できるだけ不純物含量の少ない溶
液の得られるものを用い、用水も精製されたものを用い
ることが望ましい。
Therefore, it is preferable to use a hot isopressure method.
7 However, in order to produce a material for forming a high-melting point metal thin film with even higher purity, it is necessary to highly purify the high-melting point metal powder itself. Some impurities can be removed by volatization from the metal powder by heating in a vacuum or in a specific gas stream, but traps must be wet-refined to remove impurities that are difficult to volatilize. In the wet refining method,
A high melting point metal-containing raw material is decomposed into a solution, impurities in the solution are removed, a high melting point metal compound is collected, and this is reduced to obtain a high purity high melting point metal powder. It is desirable to use a reagent for the above-mentioned decomposition that yields a solution with as little impurity content as possible, and to use purified water as well.

一般に薄膜形成用材としては不純物含有率が低い程好ま
しいが、精製コヌトも累加的に増加するので、用途に応
じた純度のものを製造する必要がある。
In general, as a material for forming a thin film, the lower the impurity content, the better, but since the amount of refined conut increases cumulatively, it is necessary to manufacture a material with a purity appropriate to the intended use.

本発明においては、叙上のように電子ビーム溶解を中心
とする乾式精製方法と1種々の分解試薬を用いる湿式精
製法を適宜組み合せることKよシ、市販の薄膜形成用材
よシ数段高純度化されたものを製造することができ、更
に超高純度化されたものを製造することもできる。
In the present invention, as mentioned above, a dry purification method centered on electron beam dissolution and a wet purification method using various decomposition reagents are appropriately combined. Purified products can be produced, and even ultra-purified products can also be produced.

本発明は2以上の目的の実現に好適な製造方法と、その
結果得られた薄膜形成用材に関する。
The present invention relates to a manufacturing method suitable for achieving two or more objectives, and a thin film forming material obtained as a result.

以下に実施例を示す。Examples are shown below.

実施例 (実施例1) Kf:a600ppb、Naを1,500ppb、Uを
700 ppb含有した市販の99.94純度のそりプ
デ、ン粉末を硝酸溶解、水溶液精製、モリブデン醗結晶
採取および水素還元を経由して高純度   ”モリブデ
ン粉末を調製し友。この高純度モリブデン粉末を加圧成
形および焼結したのち、真空溶解してから成形加工する
ことによシ、モリブデン蒸着材を製造した。このモリブ
デン蒸着材の不純物含有率はK 30 ppb 、 N
a 20 ppb 、  Ul 0 ppbであシ、半
導体装置の電極あるいは回路の形成に使用した場合、十
分に高い信頼性のある半導体装置の製造が可能な良質な
ものであった。
Example (Example 1) A commercially available 99.94 purity powder containing 600 ppb of Kf, 1,500 ppb of Na, and 700 ppb of U was dissolved in nitric acid, purified with an aqueous solution, collected with molybdenum crystals, and reduced with hydrogen. We prepared high-purity molybdenum powder through the process.This high-purity molybdenum powder was pressure-molded and sintered, then melted in vacuum and then molded to produce a molybdenum evaporated material.This molybdenum The impurity content of the vapor deposition material is K 30 ppb, N
A20 ppb, Ul0 ppb, and when used for forming electrodes or circuits of semiconductor devices, it was of good quality, allowing manufacture of semiconductor devices with sufficiently high reliability.

(実施例2) Kt−ス800 ppb 、 Haを1,200ppb
、Uを650ppb含有した市販の99.94純度の三
酸化タングステン粉末を原料として、アンモニアによる
溶解、硝酸による酸調整、タングステン酸結晶採取およ
び水素還元を経由して高純度タングステン粉末を調製し
た。この高純度タングステン粉末を加圧成形および焼結
したのち、真空溶解してから成形加工することによシタ
ングステン蒸着材を製造した。このタングステン蒸着材
の不純物含有率はK 40 ppb、Na 50 pp
b。
(Example 2) Kt-su 800 ppb, Ha 1,200 ppb
Using a commercially available 99.94 purity tungsten trioxide powder containing 650 ppb of U as a raw material, high purity tungsten powder was prepared through dissolution with ammonia, acid adjustment with nitric acid, collection of tungstic acid crystals, and hydrogen reduction. This high-purity tungsten powder was pressure-molded and sintered, then melted in vacuum and then molded to produce a tungsten vapor-deposited material. The impurity content of this tungsten vapor deposition material is K 40 ppb, Na 50 ppb.
b.

U 10 ppbであシ、半導体装置の電極あるいは回
路の形成に使用した場合、十分に高い信頼性のある半導
体装置の製造が可能な良質なものであった。
It contained U 10 ppb and was of good quality, allowing production of sufficiently reliable semiconductor devices when used to form electrodes or circuits of semiconductor devices.

(実施例3) 実施例1と同様な市販の99.9 ’1純度のそりプデ
ン粉末を冷間等圧加圧法で加圧成形し、熱ジ 間等圧加圧法で焼結したのち電子ビーム溶解し。
(Example 3) The same commercially available 99.9'1 purity powder as in Example 1 was pressure-molded using a cold isopressure method, sintered using a hot isopressure method, and then subjected to an electron beam process. Dissolve.

生成した高純度モリブデンインゴットを成形加工するこ
と釦よりモリブデンスパッタリングターゲットを製造し
次。このモリブデンスパッタリングターゲットの不純物
含有率は、に280ppb、 Ha 150 ppb、
 U 80 ppbであシ、半導体装置の電極あるいは
回路の形成に使用した場合、十分に高い信頼性のある半
導体装置の製造が可能な良質なものであった。
The resulting high-purity molybdenum ingot is then molded into a molybdenum sputtering target. The impurity content of this molybdenum sputtering target is 280 ppb, Ha 150 ppb,
It had a U 80 ppb content and was of good quality, allowing production of sufficiently reliable semiconductor devices when used to form electrodes or circuits of semiconductor devices.

(実施例4) Kt−ス500 ppb 、 Naを1,050pp’
b、Uを750 ppb含有した市販の99.91純度
のタングステン粉末を冷間等圧加圧法で加圧成形し。
(Example 4) Kt-su 500 ppb, Na 1,050 pp'
Commercially available 99.91 purity tungsten powder containing 750 ppb of U was pressure-molded using a cold isostatic pressing method.

熱間等圧加圧法で焼結したのち電子ビーム溶解し、生成
する高純度タングステンインゴットを成形加工すること
によ)タングステンスパッタリングターゲットを製造し
た。このタングステンスパッタリングターゲットの不純
物含有率はに250ppb、Ha 120ppb、U8
0ppbであシ、半導体装置の電極あるいは回路の形成
に使用した場合、十分に高い信頼性のある半導体装置の
製造が可能な良質なものであった。
A tungsten sputtering target was manufactured by sintering using a hot isopressure method, followed by electron beam melting, and shaping the resulting high-purity tungsten ingot. The impurity content of this tungsten sputtering target is 250 ppb, Ha 120 ppb, U8
At 0 ppb, it was of good quality and enabled manufacturing of sufficiently reliable semiconductor devices when used to form electrodes or circuits of semiconductor devices.

(実施例5) 実施例1と同様な市販の99.9 %純度のモリブデン
粉末を硝酸溶解、水溶液精製、モリブデン酸結晶採取お
よび水素還元を経由して高純度モリブデン粉末を調製し
た。この高純度モリブデン粉末を冷間等圧加圧法で加圧
成形し、熱間等圧加圧法で焼結したのち電子ビーム溶解
し。
(Example 5) High purity molybdenum powder was prepared by dissolving commercially available molybdenum powder with a purity of 99.9% as in Example 1 in nitric acid, purifying an aqueous solution, collecting molybdic acid crystals, and reducing with hydrogen. This high-purity molybdenum powder was pressure-formed using a cold isopressure method, sintered using a hot isopressure method, and then electron beam melted.

生成した高純度モリブデンインゴットを成形加工するこ
とによジモリブデンスパッタリングターゲットを製造し
た。このモリブデンスパッタリングターゲットの不純物
含有率はK<10ppb。
A dimolybdenum sputtering target was manufactured by molding the resulting high-purity molybdenum ingot. The impurity content of this molybdenum sputtering target is K<10 ppb.

Ha<10 ppb 、  U 1 ppbであシ、半
導体装置の電極°あるいは回路の形成に使用した場合、
きわめて信頼性の高い半導体装置の製造が可能な極上質
のものであった。
Ha < 10 ppb, U 1 ppb, when used for forming electrodes of semiconductor devices or circuits,
It was of the highest quality and was capable of producing extremely reliable semiconductor devices.

(実施例6) 実施例2と同様な市販の99.91純度の三酸化タング
ステン粉末を原料として、アンモニアによる溶解、硝酸
による酸調整、タングステン酸結晶採取および水素還元
を経由して高純度タングステン粉末を調整した。この高
純度タングステン粉末を冷間等圧加圧法で加圧成形し、
熱間等圧加圧法で焼結したのち電子ビーム溶解し。
(Example 6) Using the same commercially available 99.91 purity tungsten trioxide powder as in Example 2 as a raw material, high purity tungsten powder was obtained through dissolution with ammonia, acid adjustment with nitric acid, collection of tungstic acid crystals, and hydrogen reduction. adjusted. This high-purity tungsten powder is pressure-molded using a cold isostatic press method.
Sintered using hot isopressure method and then electron beam melted.

生成する高純度タングステンインゴットを成形加工する
ことによりタングステンスパッタリングターゲットを製
造した。このタングステンスパッタリングターゲットの
不純物含有率は、K<10ppb、 Ha<10 pp
b、 TJ 1 pp’bであシ、半導体装置の電極あ
るいは回路の形成に使用した場合、きわめて信頼性の高
い半導体装置の製造が可能な極上質のものであった。
A tungsten sputtering target was manufactured by molding the resulting high-purity tungsten ingot. The impurity content of this tungsten sputtering target is K<10ppb, Ha<10ppb
b, TJ 1 pp'b, and was of the highest quality, allowing the production of extremely reliable semiconductor devices when used to form electrodes or circuits of semiconductor devices.

(参考例) 前記の各実施例によって得られたスパッタリングターゲ
ットを用い電極および回路の形成を行なった結果得られ
た半導体装置の性能試験結上記において、薄膜形成用材
1は実施例1によシ、薄膜形成用材2は実施例2により
製造されたものを示す。
(Reference Example) Performance test results of semiconductor devices obtained as a result of forming electrodes and circuits using the sputtering targets obtained in each of the above Examples. The thin film forming material 2 is manufactured according to Example 2.

効果 本発明によれば市販の原料から種々の純度要求に応じた
薄膜形成用材を製造することが可能である。従って、こ
れを用いて電極あるいは回路を形成して得られる半導体
装置は性能の安定した信頼性の高いものとなる。
Effects According to the present invention, it is possible to produce thin film forming materials meeting various purity requirements from commercially available raw materials. Therefore, a semiconductor device obtained by forming an electrode or a circuit using this material has stable performance and high reliability.

Claims (6)

【特許請求の範囲】[Claims] (1)半導体装置の電極あるいは回路の形成のために用
いられる高融点金属、高融点金属合金もしくはそれらの
化合物から成る薄膜形成用材であつてそのアルカリ金属
含有率が1,000ppb以下であることを特徴とする
薄膜形成用材。
(1) Thin film forming materials made of refractory metals, refractory metal alloys, or compounds thereof used for forming electrodes or circuits of semiconductor devices, and whose alkali metal content is 1,000 ppb or less. Characteristic materials for thin film formation.
(2)半導体装置の電極あるいは回路の形成のために用
いられる高融点金属、高融点金属合金もしくはそれらの
化合物から成る薄膜形成用材であつてその放射性元素含
有率が100ppb以下であることを特徴とする薄膜形
成用材。
(2) A thin film forming material made of a high melting point metal, a high melting point metal alloy, or a compound thereof used for forming electrodes or circuits of semiconductor devices, characterized by having a radioactive element content of 100 ppb or less. A material for forming thin films.
(3)半導体装置の電極あるいは回路の形成のために用
いられる高融点金属、高融点金属合金もしくはそれらの
化合物から成る薄膜形成用材であつてそのアルカリ金属
含有率が1,000ppb以下であり、かつ放射性元素
含有率が100ppb以下であることを特徴とする薄膜
形成用材。
(3) A thin film forming material made of a high melting point metal, a high melting point metal alloy, or a compound thereof used for forming electrodes or circuits of semiconductor devices, the alkali metal content of which is 1,000 ppb or less, and A thin film forming material characterized by having a radioactive element content of 100 ppb or less.
(4)高融点金属原料を湿式精製することによつて高純
度高融点金属粉を製造し、該高純度高融点金属粉を加圧
成形、焼結および溶解することによつて高純度高融点金
属塊を得、次いで該金属塊を成形加工することから成る
薄膜形成用材の製造方法。
(4) High purity high melting point metal powder is produced by wet refining high melting point metal raw material, and high purity high melting point metal powder is produced by pressure forming, sintering and melting the high purity high melting point metal powder. A method for producing a material for forming a thin film, which comprises obtaining a metal lump and then molding the metal lump.
(5)高融点金属原料粉を加圧成形、焼結および電子ビ
ーム溶解することによつて高純度高融点金属塊を得、次
いで該金属塊を成形加工することから成る薄膜形成用材
の製造方法。
(5) A method for manufacturing a material for forming a thin film, which comprises obtaining a high-purity high-melting point metal ingot by pressure forming, sintering, and electron beam melting a high-melting point metal raw material powder, and then molding the metal ingot. .
(6)高融点金属原料を湿式精製することによつて高純
度高融点金属粉を製造し、該高純度高融点金属粉を加圧
成形、焼結したのちに電子ビーム溶解することによつて
高純度精製高融点金属塊を得、次いで該金属塊を成形加
工することから成る薄膜形成用材の製造方法。
(6) Producing high-purity high-melting point metal powder by wet refining high-melting point metal raw materials, press-molding and sintering the high-purity high-melting point metal powder, and then electron beam melting. A method for producing a material for forming a thin film, which comprises obtaining a highly purified refining metal lump and then molding the metal lump.
JP22766784A 1984-10-31 1984-10-31 Thin film forming material and manufacture therefor Pending JPS61107728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22766784A JPS61107728A (en) 1984-10-31 1984-10-31 Thin film forming material and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22766784A JPS61107728A (en) 1984-10-31 1984-10-31 Thin film forming material and manufacture therefor

Publications (1)

Publication Number Publication Date
JPS61107728A true JPS61107728A (en) 1986-05-26

Family

ID=16864441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22766784A Pending JPS61107728A (en) 1984-10-31 1984-10-31 Thin film forming material and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS61107728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079039A1 (en) 2003-03-07 2004-09-16 Nikko Materials Co., Ltd. Hafnium alloy target and process for producing the same
WO2009147900A1 (en) 2008-06-02 2009-12-10 日鉱金属株式会社 Tungsten sintered material sputtering target
WO2011040400A1 (en) 2009-10-01 2011-04-07 Jx日鉱日石金属株式会社 Method for producing high-purity tungsten powder
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079039A1 (en) 2003-03-07 2004-09-16 Nikko Materials Co., Ltd. Hafnium alloy target and process for producing the same
WO2009147900A1 (en) 2008-06-02 2009-12-10 日鉱金属株式会社 Tungsten sintered material sputtering target
WO2011040400A1 (en) 2009-10-01 2011-04-07 Jx日鉱日石金属株式会社 Method for producing high-purity tungsten powder
US8764877B2 (en) 2009-10-01 2014-07-01 Jx Nippon Mining & Metals Corporation Method for producing high-purity tungsten powder
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide

Similar Documents

Publication Publication Date Title
JP4058777B2 (en) High purity ruthenium sintered compact sputtering target for thin film formation and thin film formed by sputtering the target
KR910003884B1 (en) High melting metal silicide sputtering target and process for preparing the same
EP0137166B1 (en) High-purity molybdenum target and high-purity molybdenum silicide target for lsi electrodes and process for producing the same
KR100438670B1 (en) Tantalum sputtering target and method of manufacture
JP2000034563A (en) Production of highly pure ruthenium sputtering target and highly pure ruthenium sputtering target
JP2001020065A (en) Target for sputtering, its production and high melting point metal powder material
JPH0621346B2 (en) Method for manufacturing high-purity metal tantalum target
JPH03197640A (en) High purity tantalum material and its production and tantalum target using the same
JPS61107728A (en) Thin film forming material and manufacture therefor
JPH07121807B2 (en) Method for producing high-purity ammonium paratungstate crystal
JPH05214521A (en) Titanium sputtering target
US3895671A (en) Method of manufacturing a thin sheet of beryllium or an alloy thereof
US5234679A (en) Method of refining tungsten hexafluoride containing molybdenum hexafluoride as an impurity
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH04218912A (en) Manufacture of high purity molybdenum target and high purity molybdenum silicide target for lsi electrode
JP2710049B2 (en) Method for producing high-purity ammonium molybdate crystal
JPH0227287B2 (en) KOJUNDOPARATANGUSUTENSANANMONIUMUKETSUSHONOSEIZOHOHO
JPH082920A (en) Production of tungstic acid crystal having high purity
JPH0227286B2 (en) SUIYOSEITANGUSUTENKAGOBUTSUKETSUSHOOYOBIKOJUNDOTANGUSUTENSANKETSUSHONOSEIZOHOHO
JPH05214520A (en) Sputtering target for titanium
JPS60221538A (en) Method for refining molybdenum
JPH0313192B2 (en)
JP2001081507A (en) High purity cobalt powder and method of producing the same
JPS61281831A (en) Method for refining high-purity tantalum
RU2434960C1 (en) Procedure for production of high purity tungsten for sputtering target