JPS6110753A - Measurement of flux packing rate - Google Patents

Measurement of flux packing rate

Info

Publication number
JPS6110753A
JPS6110753A JP13140284A JP13140284A JPS6110753A JP S6110753 A JPS6110753 A JP S6110753A JP 13140284 A JP13140284 A JP 13140284A JP 13140284 A JP13140284 A JP 13140284A JP S6110753 A JPS6110753 A JP S6110753A
Authority
JP
Japan
Prior art keywords
flux
wire
coil
measured
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13140284A
Other languages
Japanese (ja)
Other versions
JPH0415904B2 (en
Inventor
Keiichiro Heishiya
平社 敬一郎
Kenji Morimoto
森元 健二
Masami Tano
田野 正己
Tadahiro Murata
村田 忠博
Toshisada Kashimura
樫村 利定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13140284A priority Critical patent/JPS6110753A/en
Publication of JPS6110753A publication Critical patent/JPS6110753A/en
Publication of JPH0415904B2 publication Critical patent/JPH0415904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable highly accurate and stable measurement, by varying impedance detected when a flux-filled wire (FW) is passed through a coil. CONSTITUTION:When a metal wire is put into a coil through which AC current flows, a sort of induced current call as eddy current is generated. This eddy current changes depending not only on the level of the current applied to the coil but also on discontinuous portions of metal and variations in the shape of a sample when the current is constant. Utilizing the nature of the eddy current, changes in the thickness of skin metal can be caught as variations in the impedance (IP). So, first, FW carried with a reference thickness is inserted into a specified coil to measure IP at a specified frequency. Then, FW to be measured is measured on the same condition as the preceding one and the resulting IP is compared with a reference IP. Thus, the thickness at the part measured is judged and moreover very accurate calculation of the ratio of the flux can be done from the unit weight of skin metal at the measured part and the total weight per unit of the wire at the measured part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラックス入りワイヤのフラックス充填率を非
破壊的に測定する方法に関し、特に測定状況の変動がな
く、常に安定して高精度に測定することのできるフラッ
クス充填率測定法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for non-destructively measuring the flux filling rate of a flux-cored wire, and in particular, the present invention relates to a method for non-destructively measuring the flux filling rate of a flux-cored wire, and in particular, it is possible to always stably and accurately measure the flux filling rate without any fluctuation in the measurement situation. The present invention relates to a flux filling rate measurement method that can be used to measure the flux filling rate.

[従来の技術] 帯鋼等を湾曲して形成される外皮金属内或はシームレス
管内にフラックスを充填して形成されたフラックス入り
ワイヤ(以下単にワイヤということがある)は、フラッ
クスの外側を外皮金属で覆っているので、フラックスの
充填状態を外側から検査することはできない、従ってフ
ラックスの充填状態を検査するに当たっては、例えば一
定長さのワイヤを切り取って外皮金属内からフラックス
を抜き出し、単位長さ当たりのワイヤ全重量に対するフ
ラックス重量を実測してフラックスの充填率(以下単に
フラックス率ということもある)を知る破壊的検査手段
も考えられるが、この様なバッチ的な検査方法はそれ自
身非能率的でしかも歩留りを考えればワイヤの途中を切
断する訳にもいかず、どうしても端部側に片寄った検査
となるので、精度的にも満足できないものとなる。そこ
でワイヤを検査するに際しては連続的にそかも非破壊的
に検査する方法の開発が待ち望まれている。即ち非破壊
検査方法としては例えば特開昭53−46450号に示
される様に、ワイヤ減径加工中におけるワイヤ引き抜き
速度を連続的に測定し、引き抜き速度がワイヤ肉厚に反
比例することを利用することによってフラックス率の変
化を推定する方法や、特開昭57−32894号に示す
様にワイヤ長手方向の任意の2点間にける電気抵抗を測
定し、測定された電気抵抗の大小によってフラックス率
の大小を測定する方法等が知られている。
[Prior Art] Flux-cored wires (hereinafter simply referred to as wires), which are formed by filling a flux into a metal sheath formed by curving a steel strip or a seamless pipe, are made by filling the outside of the flux with a sheath. Since it is covered with metal, it is not possible to inspect the flux filling condition from the outside. Therefore, when inspecting the flux filling condition, for example, cut a certain length of wire, extract the flux from the outer metal, and measure the unit length. Destructive testing methods can be considered to find out the flux filling rate (hereinafter simply referred to as flux rate) by actually measuring the weight of flux relative to the total weight of the wire, but such batch testing methods are in themselves impractical. In terms of efficiency and yield, it is not possible to cut the wire in the middle, and the inspection is inevitably biased toward the end, resulting in unsatisfactory accuracy. Therefore, there is a need for the development of a continuous, non-destructive method for inspecting wires. That is, as a non-destructive testing method, for example, as shown in Japanese Patent Application Laid-Open No. 53-46450, the wire drawing speed during wire diameter reduction processing is continuously measured, and the fact that the drawing speed is inversely proportional to the wire thickness is utilized. There is a method of estimating the change in flux rate by measuring the electrical resistance between any two points in the longitudinal direction of the wire, as shown in Japanese Patent Application Laid-Open No. 57-32894. There are known methods for measuring the magnitude of .

[発明が解決しようとする問題点] ところが上記した測定方法では以下に示す様な問題点が
ある。即ち前者の測定方法では引き抜きダイスの摩耗等
によってワイヤ径が変化することもある為、ワイヤ引き
抜き速度からの推定精度が低くなる。しかも引き抜き用
駆動モータの回転むらによっても引き抜き速度に影響が
生じるので、単に引き抜き速度の変化だけをとらえて、
その速度変化をそのままフラックス率の変化として測定
することは困難である。また後者の測定方法ではワイヤ
の外皮金属に測定機の測定端子を直接的に接触させて測
定2点間の電気抵抗を測定し、基準電気抵抗値と実測電
気抵抗値の差によってフラックス率の変化を検出する様
にしているが、外皮金属と測定端子の接触状態が常に完
全であるとは限らないから、電気抵抗値の変化だけを検
出して、そのままフラックス率の変化とすることはでき
ない。またこの測定方法では測定端子をワイヤの外皮金
属に直接々触させなければならないので、連。
[Problems to be Solved by the Invention] However, the above measurement method has the following problems. That is, in the former measurement method, the wire diameter may change due to wear of the drawing die, etc., so the accuracy of estimation from the wire drawing speed becomes low. In addition, the rotational unevenness of the pulling drive motor also affects the pulling speed, so if you simply capture the change in the pulling speed,
It is difficult to directly measure the change in velocity as a change in flux rate. In the latter measurement method, the measuring terminal of the measuring device is brought into direct contact with the outer metal of the wire to measure the electrical resistance between two measurement points, and the flux rate changes depending on the difference between the reference electrical resistance value and the measured electrical resistance value. However, since the contact between the outer metal and the measurement terminal is not always perfect, it is not possible to detect only the change in electrical resistance and directly interpret it as a change in flux rate. In addition, this measurement method requires the measurement terminal to be brought into direct contact with the outer metal of the wire.

統帥に引き抜かれているワイヤを一時的に停止させなけ
れば測定できず、生産の停止を必要とする点でも問題が
ある。
There is also a problem in that measurement cannot be performed unless the wire being pulled out by the commander is temporarily stopped, and production must be stopped.

この様に従来の測定方法では高精度の測定値が必ず得ら
れる訳ではない。精度の高い測定値を安定的に得ること
のできるフラックス充填率測定法が望まれている。
As described above, conventional measurement methods do not always provide highly accurate measurement values. A flux filling rate measurement method that can stably obtain highly accurate measurement values is desired.

[問題点を解決するための手段] 本発明は以上の様な事情に着目してなされたものであっ
て、フラックスの充填率を高精度に且つ安定的に測定で
きる測定法を提供しようとするものである。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned circumstances, and aims to provide a measuring method that can measure the filling rate of flux with high precision and stability. It is something.

即ち問題点を解決するための手段とは、コイル中にフラ
ックス入りワイヤを通過させたときに検出されるインピ
ーダンスの変化によってフラックスの充填率を測定する
ことを要旨とするものである。
That is, the means for solving the problem is to measure the flux filling rate based on the change in impedance detected when a flux-cored wire is passed through the coil.

[作用] 即ち本発明のフラックス充填率測定法は外皮金属内に充
填されたフラックス量を外皮金属の肉厚によって知ろう
とするもので、その基本的な原理は、ワイヤの外径を一
定とした場合において、外皮金属の肉厚とフラックス充
填量の間に以下に示す様な関係があることを利用するも
のである。即ち外径側を規制されつつ伸線されるワイヤ
は内径側に膨出しようという傾向をもっているから、充
填されたフラックス量が少ない場合には外皮金属の肉厚
が厚くなろうとし、また逆に7ラツクス量が多い場合に
は外皮金属が厚くなろうとしてもフラックスが障害とな
ってそれを果すことができず肉厚は薄くなる。この様に
外皮金属の肉厚がフラックスの充填量によって厚くなっ
たり薄くなったすすることを利用するものであり、この
関係をグラフに表わすと第1図に示す様になる。グラフ
゛では1.2φ、1.6φ、2.4φの各外径で形成さ
れるワイヤ(外皮金属: JIS Z 31415PC
E帯鋼サイズ:厚さ0.8 mm 、 @ 12+n+
を湾曲加工したものを使用)について、外皮金属の肉厚
とフラックス率の関係を表わした。即ちグラフからも明
らかな様に外皮金属の肉厚が厚い程フラックス車が低く
、逆に肉厚が薄い程フラックス率が高くなっており。
[Operation] That is, the flux filling rate measurement method of the present invention attempts to determine the amount of flux filled in the outer metal shell by the thickness of the outer metal shell.The basic principle is that the outer diameter of the wire is kept constant. In this case, the following relationship is used between the thickness of the outer metal shell and the amount of flux filled. In other words, a wire that is drawn while being restricted on the outside diameter side has a tendency to bulge toward the inside diameter side, so if the amount of flux filled is small, the thickness of the outer metal will tend to increase, and vice versa. If the amount of 7lux is large, even if the outer metal layer tries to become thicker, the flux becomes an obstacle and the wall thickness becomes thinner. This method utilizes the fact that the thickness of the metal shell increases or decreases depending on the amount of flux filled, and this relationship is shown in a graph as shown in FIG. In the graph, wires formed with outer diameters of 1.2φ, 1.6φ, and 2.4φ (sheath metal: JIS Z 31415PC
E band steel size: thickness 0.8 mm, @12+n+
The relationship between the thickness of the outer skin metal and the flux rate is shown for the curved material used. In other words, as is clear from the graph, the thicker the outer metal wall, the lower the flux rate, and conversely, the thinner the wall thickness, the higher the flux rate.

外皮金属の肉厚を測定するだけで容易にフラックス率を
知ることが可能となる。
It becomes possible to easily know the flux rate simply by measuring the wall thickness of the outer skin metal.

一方この様な外皮金属の肉厚を測定するに当たっては電
気的手段によって測定すれば安定的な測定結果が得られ
るということからコイル中に金属材料を通過させてコイ
ルと金属材料の間に生じる電磁誘導作用を利用する方法
に着目した。この方法によると次の様な原理で肉厚が測
定できる。
On the other hand, when measuring the wall thickness of such a metal shell, it is said that stable measurement results can be obtained by measuring by electrical means. We focused on a method that utilizes the induction effect. According to this method, wall thickness can be measured using the following principle.

即ち交流電流を流したコイル中に金属線材を入れると、
交゛流電流によって生じた交番磁束HPが金属線材中に
渦電流と称する一種を誘導電流が発生させ、この渦電流
によって二次的な磁束Hsも発生する。この磁束Hsは
先に述べた磁束Hpに対して方向が反対でこれを減少さ
せる方向に作用する為、コイルの逆起電力が低下し、見
かけ上コイルのインピーダンスが低下する。この渦電流
はコイルに加えられた電流の大小によっても変化するが
、電流を一定にしておけば金属の不連続部分や試料の形
状の変化等によっても変化する。従って上記渦電流の性
質を利用すると、外皮金属の肉厚の変化をコイルに生じ
たインピーダンスの変化としてとらえることができる。
In other words, when a metal wire is placed in a coil through which an alternating current is passed,
The alternating magnetic flux HP generated by the alternating current induces a kind of eddy current in the metal wire, and this eddy current also generates a secondary magnetic flux Hs. This magnetic flux Hs is in the opposite direction to the magnetic flux Hp mentioned above and acts in a direction to reduce it, so that the back electromotive force of the coil decreases and the apparent impedance of the coil decreases. This eddy current changes depending on the magnitude of the current applied to the coil, but if the current is kept constant, it will also change due to discontinuous parts of the metal or changes in the shape of the sample. Therefore, by utilizing the properties of the eddy current described above, changes in the thickness of the outer skin metal can be interpreted as changes in impedance occurring in the coil.

即ち外皮金属の肉厚が大きくなるとその分だけ大きな渦
電流が発生するので、コイルのインピーダンスが大巾に
低下し、逆に肉厚が小さくなるとインピーダンス低下も
小さくなる。この様にワイヤの外皮金属部分の肉厚とコ
イルインピーダンスの間には密接な関係がある。そこで
標準肉厚で掲載されたフラックス入りワイヤを特定コイ
ルに挿入し、特定周波数でコイルインピーダンスを計測
しそのインピーダンスを標準インピーダンスとする。そ
して実際に引き抜き加工されたワイヤを対象として上記
と同じ条件で測定して得た測定インピーダンスを、上記
標準インピーダンスと比較すれば、実測部分の肉厚が標
準肉厚に対してどの程度の肉厚で形成されているかを推
測することができる。即ち標準インピーダンスと実測イ
ンピーダンスとの差によって標準肉厚よりどれだけ厚い
か薄いかを知ることができる。こうして外皮金属の肉厚
が測定されると・測定箇所における外皮金属の単位重量
及び測定箇所におけるワイヤの単位当たりの全重量を知
ることができるので、測定箇所におけるフラックス率を
極めて正確に算出できる。特に本発明ではコイルを共振
回路の一部としワイヤと非接触状態に配置し、コイル内
に挿入するワイヤを電気的に且つ非接触的に測定するの
で安定した測定値を得ることができる。この場合、共振
回路にトランジスタ等を付加してコイルインピーダンス
の変化に対応して発振強度が変化するようなLC発振回
路を構成することができ、発振強度は整流回路により直
流電圧として取出すことができる。計測上重要な測定周
波数は発振周波数であり、コイルに組合せるコンデンサ
の値により調整することができる。
That is, as the thickness of the outer metal layer increases, a correspondingly larger eddy current is generated, and the impedance of the coil decreases significantly, and conversely, as the thickness decreases, the drop in impedance also decreases. In this way, there is a close relationship between the thickness of the outer metal part of the wire and the coil impedance. Therefore, a flux-cored wire with a standard wall thickness is inserted into a specific coil, the coil impedance is measured at a specific frequency, and the impedance is taken as the standard impedance. If you compare the measured impedance obtained by measuring the actually drawn wire under the same conditions as above with the standard impedance above, you can find out how much the wall thickness of the actual measured part is compared to the standard wall thickness. It can be inferred that it is formed by That is, it is possible to know how much thicker or thinner the wall is than the standard thickness based on the difference between the standard impedance and the measured impedance. When the thickness of the sheath metal is measured in this way, the unit weight of the sheath metal at the measurement location and the total weight per unit of the wire at the measurement location can be known, so the flux rate at the measurement location can be calculated extremely accurately. In particular, in the present invention, the coil is placed as part of the resonant circuit and is placed in a non-contact state with the wire, and the wire inserted into the coil is measured electrically and in a non-contact manner, so that stable measured values can be obtained. In this case, it is possible to configure an LC oscillation circuit in which the oscillation intensity changes in response to changes in coil impedance by adding a transistor or the like to the resonant circuit, and the oscillation intensity can be extracted as a DC voltage using a rectifier circuit. . The measurement frequency that is important for measurement is the oscillation frequency, which can be adjusted by the value of the capacitor combined with the coil.

尚本発明に適用される共振回路としては第2図に示す様
な並列共振回路であってもよく、或は直列共振回路であ
ってもよい。この様にコイルとコンデンサを共振回路と
した発振器の周波数についてはワイヤの断面形状や肉厚
並びにワイヤ径などによって適正な周波数を選択する必
要がある0例えば第3図に示す様なシームレスのワイヤ
で。
The resonant circuit applied to the present invention may be a parallel resonant circuit as shown in FIG. 2, or a series resonant circuit. In this way, it is necessary to select an appropriate frequency for the oscillator, which uses a coil and a capacitor as a resonant circuit, depending on the cross-sectional shape, wall thickness, and wire diameter of the wire.For example, use a seamless wire as shown in Figure 3. .

且つ外皮金属lの肉厚が0.3ram程度の場合でIよ
数KHzの周波数を利用すればフラックス率の変化を明
瞭に知り得る。また第4図に示す様なシーム有りのワイ
ヤでは外皮金属lが周方向に開口しているため渦電流が
内面に廻り込むことを考慮し、第3図の場合に比べて高
い値(10数KHz程度)を必要とする。また肉厚が厚
くなれば低周波数帯で測定し、逆に肉厚が薄いと高周波
数帯で測定すれば外皮金属の測定が極めて安定して行な
える。
In addition, when the thickness of the outer skin metal l is about 0.3 ram, changes in the flux rate can be clearly known by using a frequency of several kilohertz. In addition, in the case of a wire with a seam as shown in Fig. 4, since the outer sheath metal l is open in the circumferential direction, taking into account that eddy currents will circulate around the inner surface, the value is higher (10s) than in the case of Fig. 3. kHz) is required. Also, if the wall thickness is thick, the measurement is performed in a low frequency band, and if the wall thickness is thin, the measurement is performed in a high frequency band, and the measurement of the outer metal can be carried out extremely stably.

[実施例] 本発明に係る測定法によってフラックス入りワイヤを測
定すると以下に示す様な結果が得られ。
[Example] When a flux-cored wire was measured using the measuring method according to the present invention, the following results were obtained.

た。Ta.

条件 外皮金属: JIS Z 31415PCE (元サイ
ズ) Q、8 rmva厚X12履lII!1g測定ワ
イヤ径 : 1.6mm◆ ワイヤ断面形状:第3図 フラックス種類:チタニア系 検出コイル:内径6IIIlφ、幅10m厘。
Conditions Outer metal: JIS Z 31415PCE (original size) Q, 8 rmva thickness x 12 shoes lII! 1g measurement wire diameter: 1.6mm ◆ Wire cross-sectional shape: Figure 3 Flux type: Titania type Detection coil: Inner diameter 6IIIlφ, width 10m.

0.08m■φポリウレタン銅線 2000回巻回 発振回路:第2図 上記条件において測定したところ第5図のグラフに示す
様な結果が得られた。
Oscillation circuit with 2000 turns of 0.08 m x φ polyurethane copper wire: Figure 2. When measured under the above conditions, results as shown in the graph of Figure 5 were obtained.

[発明の効果] 本発明は以上の様に構成されているので、ワイヤを破壊
することなく外部から電気的に測定することができ、し
かもワイヤと測定端子とを接触させる必要がなく安定的
且つ高精度に制定できる。
[Effects of the Invention] Since the present invention is configured as described above, electrical measurement can be performed from the outside without destroying the wire, and there is no need to make contact between the wire and the measurement terminal, making it possible to perform stable and reliable measurement. Can be established with high precision.

その結果ワイヤ加工装置を停止させることなく?イヤを
走行させたままでも連続的に測定すること外 が可能となり、生産性が高まり歩留りが良くな 皮る。
As a result, without stopping the wire processing equipment? This makes it possible to perform continuous measurements even when the ear is running, increasing productivity and improving yield.

                      金属                       

【図面の簡単な説明】[Brief explanation of the drawing]

肉 第1図は外皮金属の肉厚とフラックス率との関 厚係を
示すグラフ、第2図は本発明に適用される共 −胃茸 振回路を示す説明図−第3図及び第4図はグラフ 8ク
ス入りワイヤの断面説明図、第5図は実験結果を示すグ
ラフである。 l・・・外皮金属
Fig. 1 is a graph showing the relationship between the thickness of the outer skin metal and the flux rate, and Fig. 2 is a graph showing the relationship between the thickness of the outer skin metal and the flux rate. is a graph illustrating a cross section of a wire with 8 squares, and FIG. 5 is a graph showing experimental results. l...Sheath metal

Claims (2)

【特許請求の範囲】[Claims] (1)コイル中にフラックス入りワイヤを通過させたと
きに検出されるインピーダンスの変化によって、フラッ
クスの充填率を測定することを特徴とするフラックス充
填率測定法。
(1) A flux filling rate measuring method characterized by measuring the flux filling rate based on the change in impedance detected when a flux-cored wire is passed through a coil.
(2)LC発振回路のコイル中にフラックス入りワイヤ
を通過させたときに検出されるコイルインピーダンスを
発振出力として検知しフラックス率を電気信号として測
定することを特徴とするフラックス充填率測定法。
(2) A flux filling rate measuring method characterized in that the coil impedance detected when a flux-cored wire is passed through the coil of an LC oscillation circuit is detected as an oscillation output, and the flux rate is measured as an electric signal.
JP13140284A 1984-06-25 1984-06-25 Measurement of flux packing rate Granted JPS6110753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13140284A JPS6110753A (en) 1984-06-25 1984-06-25 Measurement of flux packing rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13140284A JPS6110753A (en) 1984-06-25 1984-06-25 Measurement of flux packing rate

Publications (2)

Publication Number Publication Date
JPS6110753A true JPS6110753A (en) 1986-01-18
JPH0415904B2 JPH0415904B2 (en) 1992-03-19

Family

ID=15057134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13140284A Granted JPS6110753A (en) 1984-06-25 1984-06-25 Measurement of flux packing rate

Country Status (1)

Country Link
JP (1) JPS6110753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153098U (en) * 1987-03-26 1988-10-07
US5069870A (en) * 1989-03-06 1991-12-03 Sumitomo Metal Industries, Ltd. High-strength high-cr steel with excellent toughness and oxidation resistance
NL1008770C2 (en) * 1997-03-31 2003-09-19 Kobe Steel Ltd Apparatus for detecting the charged flux status for a flux-cored wire.
KR100473686B1 (en) * 2000-12-22 2005-03-07 주식회사 포스코 On-line flux rate detect system for flux cord wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618656A (en) * 1984-06-22 1986-01-16 Hara Denshi Sokki Kk Method and device for detecting flux filling state

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618656A (en) * 1984-06-22 1986-01-16 Hara Denshi Sokki Kk Method and device for detecting flux filling state

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153098U (en) * 1987-03-26 1988-10-07
US5069870A (en) * 1989-03-06 1991-12-03 Sumitomo Metal Industries, Ltd. High-strength high-cr steel with excellent toughness and oxidation resistance
NL1008770C2 (en) * 1997-03-31 2003-09-19 Kobe Steel Ltd Apparatus for detecting the charged flux status for a flux-cored wire.
KR100473686B1 (en) * 2000-12-22 2005-03-07 주식회사 포스코 On-line flux rate detect system for flux cord wire

Also Published As

Publication number Publication date
JPH0415904B2 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
JP4809039B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JPH0781811B2 (en) Method for detecting wall thickness change of hollow body conducting electricity
JPS6110753A (en) Measurement of flux packing rate
JP4101110B2 (en) Eddy current flaw detection sensor
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2001318080A (en) Detection coil and inspecting device using the same
JPH05149923A (en) Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JPS6147554A (en) Detection of variations in flux filling rate
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
Grimberg et al. Calculation of the induced electromagnetic field created by an arbitrary current distribution located outside a conductive cylinder
JPH05281063A (en) Measuring device for tension of steel material
JPH09133504A (en) Method for detecting corrosion of piping
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JP3189136B2 (en) Method and apparatus for measuring material deterioration
JP2000329858A (en) Magnetic sensor having tuning circuit
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JP3223991U (en) Nondestructive inspection equipment
JP3091556B2 (en) Method and apparatus for measuring conductor thickness
Li et al. A dual-frequency electromagnetic sensor for non-contact dilution evaluation in laser cladding and alloying processes
Gu et al. The principle and application of a new technique for detecting wire rope defects
RU2399870C1 (en) Method for continuous control of thickness and continuity of bimetal layer joints
JPS63236956A (en) Method for detecting charging rate of flux