JPS63236956A - Method for detecting charging rate of flux - Google Patents
Method for detecting charging rate of fluxInfo
- Publication number
- JPS63236956A JPS63236956A JP62071174A JP7117487A JPS63236956A JP S63236956 A JPS63236956 A JP S63236956A JP 62071174 A JP62071174 A JP 62071174A JP 7117487 A JP7117487 A JP 7117487A JP S63236956 A JPS63236956 A JP S63236956A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- wire
- filling rate
- circuit
- electric coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title description 4
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 230000005291 magnetic effect Effects 0.000 claims abstract description 30
- 230000001360 synchronised effect Effects 0.000 abstract description 10
- 229910000831 Steel Inorganic materials 0.000 abstract description 6
- 230000035515 penetration Effects 0.000 abstract description 6
- 239000010959 steel Substances 0.000 abstract description 6
- 230000005284 excitation Effects 0.000 abstract description 3
- 239000003973 paint Substances 0.000 abstract description 3
- 230000007812 deficiency Effects 0.000 abstract description 2
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 8
- 238000005491 wire drawing Methods 0.000 description 7
- 230000010363 phase shift Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、フラックスを充填した鋼管を伸線機によっ
て線径としたフラックス入りワイヤの、フラックス充填
率の検出に関し、特に、所定充填率未満のワイヤ部位の
検出に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the detection of the flux filling rate of a flux-cored wire whose wire diameter is made from a flux-filled steel pipe using a wire drawing machine. Detection of wire sites.
例えば自動溶接に用いられるフラックス入りワイヤは、
軟鋼管の内部にフラックスを充填しこれを伸線機によっ
て細線とすることにより製造される。このように製造す
る過程において、フラックスの量が減少してフラックス
充填率が低下した部分を生ずることがある。For example, flux-cored wire used for automatic welding is
It is manufactured by filling a soft steel pipe with flux and drawing it into a thin wire using a wire drawing machine. In this manufacturing process, the amount of flux may decrease, resulting in areas where the flux filling rate is reduced.
フラックス充填率が低いワイヤを用いて溶接を行なうと
、溶接が不完全となるため、伸線後にフラックス充填率
が低い部分を除去する必要があり、フラックス充填率の
検出が必要である。この検出には、X線や超音波などを
用いた非破壊検査法を応用することが考えられるが、い
ずれも実時間処理(製造中の検出)が困難である。これ
は、伸線速度が例えば800醜/分と高速であり、高速
のワイヤに対して非接触で検査を行えないからである。If welding is performed using a wire with a low flux filling rate, the welding will be incomplete, so it is necessary to remove the portion with a low flux filling rate after wire drawing, and it is necessary to detect the flux filling rate. For this detection, non-destructive inspection methods using X-rays, ultrasonic waves, etc. may be applied, but real-time processing (detection during manufacturing) is difficult for either method. This is because the wire drawing speed is as high as 800/min, for example, and high-speed wire cannot be inspected without contact.
そこで、電気コイルにフラックス入りワイヤを通し、該
電気コイルに所定周波数の脈動電圧を印加し、該フラッ
クス入りワイヤの内部のフラックスの充填率に応じた該
電気コイルのインピーダンスを電流、電圧等の電気信号
に変換してフラックス入りワイヤのフラックス充填率を
検出する。渦流試験法と呼ばれる検出法がある(例えば
特開昭61−8656号公報および特開昭61−475
54号公報)。Therefore, a flux-cored wire is passed through an electric coil, a pulsating voltage of a predetermined frequency is applied to the electric coil, and the impedance of the electric coil is determined according to the filling rate of flux inside the flux-cored wire. The flux filling rate of the flux-cored wire is detected by converting it into a signal. There is a detection method called the eddy current test method (for example, JP-A-61-8656 and JP-A-61-475).
Publication No. 54).
この種の検出法の概要をここで第5図を参照して説明す
る。フラックス入りワイヤ1を電気コイル4に通して、
ffi気コ気層イル4定周波数の脈動電圧(通常交番電
圧)を印加して電気コイル4のインピーダンスを検出す
る。この検出では、つまる所、インピーダンスを電流又
は電圧などの電気イコ号に変換し、この電気信号よりフ
ラックス充填率の適否を判定する。フラックス3の充填
率が高い所では、ワイヤ軟@2が薄いので電気コイル4
は低インピーダンスとなり、フラックス3の充填率が低
い所ではワイヤ軟鋼2が厚いので電気コイル4は高イン
ピーダンスとなる。An overview of this type of detection method will now be described with reference to FIG. Pass the flux-cored wire 1 through the electric coil 4,
The impedance of the electric coil 4 is detected by applying a constant frequency pulsating voltage (usually an alternating voltage). In this detection, impedance is converted into an electric signal such as current or voltage, and the appropriateness of the flux filling rate is determined from this electric signal. In places where the filling rate of flux 3 is high, the wire soft @ 2 is thin, so the electric coil 4
has a low impedance, and since the wire mild steel 2 is thick where the filling rate of the flux 3 is low, the electric coil 4 has a high impedance.
〔発明が解決しようとする問題点〕
ところで、フラックス入りワイヤ1の軟鋼2は強磁性で
あり、電気コイル4に印加する交番電圧の周波数が高く
なる程、表皮効果が大きく現われ電磁界が表面に集中し
、電気コイル4が発生する交番磁界の、ワイヤ1内部へ
の浸透が浅くなる。[Problems to be Solved by the Invention] By the way, the mild steel 2 of the flux-cored wire 1 is ferromagnetic, and the higher the frequency of the alternating voltage applied to the electric coil 4, the greater the skin effect appears, and the electromagnetic field increases to the surface. The alternating magnetic field generated by the electric coil 4 concentrates and penetrates into the inside of the wire 1 shallowly.
すなわち磁束が軟@2の外表面に集中し、軟鋼2の内部
のフラックスの充填率(すなわち軟鋼2の厚み)に対応
するインピーダンス変化が現われにくくなる。これは、
電気コイル4に印加する交番電圧の周波数を高くする程
検出精度が低下することを意味する。That is, the magnetic flux is concentrated on the outer surface of the soft steel 2, and impedance changes corresponding to the flux filling rate inside the soft steel 2 (that is, the thickness of the mild steel 2) are less likely to appear. this is,
This means that the higher the frequency of the alternating voltage applied to the electric coil 4, the lower the detection accuracy.
ところが、伸線機で細径のフラックス入りワイヤに引き
延ばす伸線速度が高速であるので、フラックス入りワイ
ヤ各部のフラックス充填率を、ワイヤの長さ方向で細か
く検出しようとすれば、伸線速度に対応して、電気コイ
ル4に印加する交番電圧の周波数を高くしなければなら
ない。これは前述の検出精度の低下をもたらす。However, since the wire drawing machine draws the wire into a small diameter flux-cored wire at a high speed, it is difficult to precisely detect the flux filling rate of each part of the flux-cored wire along the length of the wire. Correspondingly, the frequency of the alternating voltage applied to the electric coil 4 must be increased. This results in the aforementioned decrease in detection accuracy.
このように従来においては、フラックス入りワイヤのフ
ラックス充填率を検出するには、電気コイル4に印加す
る交番電圧を低くしなければならないが、このようにす
ると伸線機による高速の加工には適用できないという問
題があった。Conventionally, in order to detect the flux filling rate of a flux-cored wire, it is necessary to lower the alternating voltage applied to the electric coil 4, but this method is applicable to high-speed processing using a wire drawing machine. The problem was that I couldn't do it.
本発明は、高速のフラックス入りワイヤのフラックス充
填率を、該ワイヤの長さ方向の分解能を格別に低下する
ことなく検出すること、すなわち。The present invention is to detect the flux filling rate of a high-speed flux-cored wire without significantly reducing the longitudinal resolution of the wire.
電気コイルに印加する電圧の周波数を格別に低くするこ
となく可及的に高い精度でフラックス充填率を検出する
こと、を目的とする。The purpose of this invention is to detect the flux filling rate with as high accuracy as possible without particularly lowering the frequency of the voltage applied to the electric coil.
本発明では、フラックス入りワイヤに直流磁界を与えて
、フラックス充填率検出用の電気コイルによりフラック
ス入りワイヤに作用する磁界の浸透を深くする。In the present invention, a direct current magnetic field is applied to the flux-cored wire, and the penetration of the magnetic field acting on the flux-cored wire is deepened by an electric coil for detecting the flux filling rate.
フラックス入りワイヤに直流磁界を作用させると、該直
流磁界のワイヤ軟鋼は、磁気的な飽和状態になり、ある
いは飽和状態に近づき、その比透磁率が非磁性材料の値
である1に近づく0強磁性体材料の特性としてこれは良
く知られていることである。このような状態で、フラッ
クス充填率検出用の電気コイルの交番磁界がワイヤ軟鋼
に作用すると、そのときの交番磁界の浸透深さは、通常
の軟鋼の比透磁率は100〜数百であるので、直流磁界
が作用していないときのlO〜数十倍となる。When a DC magnetic field is applied to a flux-cored wire, the soft steel wire in the DC magnetic field enters or approaches a magnetic saturation state, and its relative magnetic permeability approaches 1, which is the value of non-magnetic materials. This is a well-known characteristic of magnetic materials. In such a state, when the alternating magnetic field of the electric coil for detecting the flux filling rate acts on the wire mild steel, the penetration depth of the alternating magnetic field at that time is as follows: The relative magnetic permeability of normal mild steel is 100 to several hundreds. , is 10 to several tens of times higher than when no DC magnetic field is applied.
このように交番磁界の浸透深さが大きくなるので、直流
磁界を加えない場合と同一の浸透深さを得るのであれば
、交番磁界の周波数を高くし得る。Since the penetration depth of the alternating magnetic field increases in this way, the frequency of the alternating magnetic field can be increased if the same penetration depth as when no direct current magnetic field is applied is to be obtained.
したがって、本発明によれば、フラックス入りワイヤの
移動速度に対応した、該ワイヤの長さ方向各部のフラッ
クス充填率を、所要の分解能(長さ方向の充填率適否区
分精度)で得る周波数で電気コイルを付勢し、かつ、所
要の精度(充填率適否検出精度)でフラックス充填率を
検出できる。Therefore, according to the present invention, the flux filling rate of each part in the length direction of the flux-cored wire corresponding to the moving speed of the wire can be determined electrically at a frequency that can be obtained with the required resolution (accuracy in classifying the suitability of the filling rate in the length direction). The coil is energized and the flux filling rate can be detected with the required accuracy (filling rate suitability detection accuracy).
以下、図面を参照して本発明の、好ましい実施態様を説
明する。Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
第1図および第2図に、本発明を一態様で実施する装置
構成を示す、この実施態様では、直流励磁用の電気コイ
ル5でフラックス入りワイヤ1の軟鋼2を磁気飽和状態
にする。直流電源8は電気コイル5に流す電流値を調整
できるものであり。FIGS. 1 and 2 show an apparatus configuration for carrying out one embodiment of the present invention. In this embodiment, the mild steel 2 of the flux-cored wire 1 is brought into magnetic saturation by an electric coil 5 for direct current excitation. The DC power supply 8 can adjust the value of the current flowing through the electric coil 5.
軟鋼2を磁気飽和にする電流値は、この例では1A以上
であるが、0.12Aで0.8の飽和度(飽和:1.0
)となる。フラックス充填率検出用の電気コイル4は平
衡回路9に接続されており、この回路9を介して電気コ
イル4の一端に1発振器6が発生する交番電圧(32に
■Z:零位相電圧)が印加される。The current value that magnetically saturates the mild steel 2 is 1A or more in this example, but the saturation level is 0.8 at 0.12A (saturation: 1.0
). The electric coil 4 for detecting the flux filling rate is connected to a balance circuit 9, and an alternating voltage (Z: zero phase voltage) generated by the first oscillator 6 is applied to one end of the electric coil 4 via this circuit 9. applied.
平衡回路9.同期検波回路10および移相回路11は、
いわゆるインピーダンス測定用の回路として公知のもの
であり、平衡回路9は5電気コイル4の他端の電圧より
所定のフラックス充填率に対して発生する不平tfFi
電圧を除去し、フラックス充填率の変化に対応する電気
コイルのインピーダンスの変化分のみを抽出し、これを
同期検波回路10に与える。すなわちその振巾と位相が
電気コイルのインピーダンスに対応する交番電圧が同期
検波回路10に与えられる。発振器6の出力交流はまた
移相回路11に与えられ、ここで任意の遅延を受けて同
期検波回路10に与えられる。Balanced circuit9. The synchronous detection circuit 10 and the phase shift circuit 11 are
This circuit is known as a so-called impedance measurement circuit, and the balance circuit 9 is designed to measure the imbalance tfFi that occurs for a predetermined flux filling rate from the voltage at the other end of the five electric coils 4.
The voltage is removed, and only the change in impedance of the electric coil corresponding to the change in flux filling factor is extracted and provided to the synchronous detection circuit 10. That is, an alternating voltage whose amplitude and phase correspond to the impedance of the electric coil is applied to the synchronous detection circuit 10. The output AC of the oscillator 6 is also applied to a phase shift circuit 11, where it is given an arbitrary delay and is applied to a synchronous detection circuit 10.
同期検波回路10は、平衡回路から与えられろ交番電圧
のうち、移相回路11から与えられる交番電圧と同位相
の成分に対応する整流波を発生する。The synchronous detection circuit 10 generates a rectified wave corresponding to a component of the alternating voltage applied from the balanced circuit that has the same phase as the alternating voltage applied from the phase shift circuit 11.
この整流波が電気コイルのインピーダンスの変化に対応
する。すなわち、移相回路11の移相量を調節すること
により、フラックス充填率の変化に対する感度を最良の
状態に合わせることができる。This rectified wave corresponds to changes in the impedance of the electric coil. That is, by adjusting the phase shift amount of the phase shift circuit 11, sensitivity to changes in flux filling rate can be adjusted to the best condition.
第3a図〜第3d図に、同期検波回路10の出力電圧を
示す。これらの電圧は、伸線速度700m/分。3a to 3d show the output voltage of the synchronous detection circuit 10. These voltages were applied at a wire drawing speed of 700 m/min.
電気コイル4付勢周波数32Kllzおよび電気コイル
5付勢電流0.12A (飽和度略o、8)のときのも
のであり、第3a図はフラックス充填率が12%のとき
を、第3b図はフラックス充填率が10%のときを、第
3c図はフラックス充填率が8%のときを、また、第3
d図はフラックス充填率が6%のときを示す。This is when the electric coil 4 energizing frequency is 32 Kllz and the electric coil 5 is energizing current 0.12 A (saturation degree o, 8). Fig. 3a shows the case when the flux filling rate is 12%, and Fig. 3b shows the case when the flux filling rate is 12%. Figure 3c shows the case when the flux filling rate is 10%, and Figure 3c shows the case when the flux filling rate is 8%.
Figure d shows the case when the flux filling rate is 6%.
同期検波回路10の発生電圧は、判定回路12に与えら
れる0判定回路12では、波形整形回路12aが、同期
検波回路1oが与える差電圧整流波を所定の時定数で平
滑化して直流変換しがっ所定の増幅率で反転増幅する。The voltage generated by the synchronous detection circuit 10 is applied to the judgment circuit 12. In the 0 judgment circuit 12, the waveform shaping circuit 12a smoothes the differential voltage rectified wave provided by the synchronous detection circuit 1o with a predetermined time constant and converts it into DC. It is inverted and amplified at a predetermined amplification factor.
増幅電圧は比較器12bで、可変抵抗VRIで設定され
た基準電圧(フラックス充填率の許容下限値に対応)と
比較される。該増幅電圧が基準電圧を越えるとき(フラ
ックス充填率が許容下限値より低のとき)には高レベル
H(フラックス不足)の、また増幅電圧が基準電圧以下
のときには低レベルL(フラックス適)の、フラックス
充填率適否検出信号である2値信号を、比較器12bが
発生する。この2値信号は遅延回路12cに与えられる
。The amplified voltage is compared by the comparator 12b with a reference voltage (corresponding to the allowable lower limit value of the flux filling rate) set by the variable resistor VRI. When the amplified voltage exceeds the reference voltage (when the flux filling rate is lower than the allowable lower limit value), the high level H (flux deficiency) is set, and when the amplified voltage is below the reference voltage, the low level L (flux suitable) is set. , the comparator 12b generates a binary signal which is a flux filling rate adequacy detection signal. This binary signal is applied to the delay circuit 12c.
遅延回路12cは、この例では、シフトレジスタと1周
波数が可調整のパルス発振器で摺成されており、該2値
信号がシフトレジスタに入力され。In this example, the delay circuit 12c is composed of a shift register and a pulse oscillator whose frequency is adjustable, and the binary signal is input to the shift register.
該シフトレジスタのシフト段数と該パルス発振器の発振
周期で定まる遅延時間の後に、遅延回路12cからマー
キング装置13に与えられる。遅延回路12cは、充填
率検出用の電気コイル4からマーキング装置13までに
ワイヤが移動する時間分の遅延を、前記フラックス充填
率適否検出信号(2値信号)に与えるためのものであり
、この遅延時間が、可変抵抗vR2(これにより発振パ
ルス周期が変わる)で調整される。After a delay time determined by the number of shift stages of the shift register and the oscillation period of the pulse oscillator, the signal is applied from the delay circuit 12c to the marking device 13. The delay circuit 12c is for giving the flux filling rate suitability detection signal (binary signal) a delay corresponding to the time required for the wire to move from the electric coil 4 for filling rate detection to the marking device 13. The delay time is adjusted by a variable resistor vR2 (which changes the oscillation pulse period).
マーキング装置13は、フラックス充填率適否を示す2
値信号がLからH(フラックス不足)になったときにワ
イヤに向けての塗料の噴射を開始し、Hからしになった
ときに噴射を停止する。これにより、フラッグス入りワ
イヤの、フラックス不足部位には、塗料が付されること
になる。The marking device 13 has a marking device 2 that indicates whether or not the flux filling rate is appropriate.
When the value signal changes from L to H (flux shortage), spraying of paint toward the wire is started, and when it becomes H, the spraying is stopped. As a result, paint is applied to the flux-deficient portions of the flag-cored wire.
上記実施態様では、フラックス入りワイヤに直流磁界を
作用する手段として、2個の電気コイル5を用いている
が、これを1個としてもよく、またリング状の永久磁石
としてもよい、永久磁石を用いる場合は、第4図に示す
ように、フラックス充填率検出用の電気コイル4を包囲
する磁性体円筒5Sの両端にリング状の永久磁石5Mを
接合してフラックス入りワイヤ1を直流磁化するのが好
ましい、フラックス充填率検出用の電気コイル4に対し
て、磁性体円筒5Sが磁気シールドとして、また磁気ル
ープとして作用するので、ノイズ磁界が遮断されかつ電
気コイル4のインピーダンスが高くなり、充填率検出精
度が高くなる。In the embodiment described above, two electric coils 5 are used as means for applying a DC magnetic field to the flux-cored wire, but these may be one, or a permanent magnet may be used, which may be a ring-shaped permanent magnet. When used, as shown in FIG. 4, ring-shaped permanent magnets 5M are joined to both ends of a magnetic cylinder 5S surrounding the electric coil 4 for detecting the flux filling rate, and the flux-cored wire 1 is magnetized with direct current. is preferable, since the magnetic cylinder 5S acts as a magnetic shield and as a magnetic loop for the electric coil 4 for detecting the flux filling rate, the noise magnetic field is blocked and the impedance of the electric coil 4 becomes high, and the filling rate is increased. Detection accuracy increases.
以上説明したように、本発明では、フラックス入りワイ
ヤに直流磁界を印加して、フラックス充填率検出用の電
気コイルの脈動磁界のワイヤ内浸透を深くするので、該
脈動磁界の周波数を高くして移動速度が高いワイヤのフ
ラックス充填率を高精度かつ高分解能で検出し得る。As explained above, in the present invention, a DC magnetic field is applied to the flux-cored wire to deepen the penetration of the pulsating magnetic field of the electric coil for detecting the flux filling rate into the wire, so the frequency of the pulsating magnetic field is increased. The flux filling rate of a wire moving at high speed can be detected with high precision and high resolution.
第1図は本発明を一態様で実施する検出コイル組体7と
フラックス入りワイヤ1との関係を示す縦断面図、第2
図は検出コイル組体7と共にフラックス充填率の適否を
検出する装置構成の一つを示すブロック図である。
第3a図、第3b図、第3c図および第3d図は、第2
図に示す同期検波回路IOの出力信号を示すグラフであ
る。
第4図は本発明をもう1つの態様で実施する検出コイル
部の構成を示す縦断面図である。
第5図は、従来のフラックス充填率検出法で用いられる
電気コイル4とフラックス入りヮイヤ1との関係を示す
縦断面図である。
1ニブラックス入りワイヤ 2:軟鋼3ニブラツクス
4:電気コイル5:直流励磁用の電気コ
イル5G:永久磁石5S:磁性体円筒 7:
電気コイル組体12a:波形整形回路 12b:比
較器特許出願人日鐵溶接工業株式会社
・(・(コFIG. 1 is a longitudinal sectional view showing the relationship between a detection coil assembly 7 and a flux-cored wire 1 that implement the present invention in one embodiment, and FIG.
The figure is a block diagram showing one of the configurations of a device for detecting the suitability of the flux filling rate together with the detection coil assembly 7. Figures 3a, 3b, 3c and 3d show the second
It is a graph which shows the output signal of the synchronous detection circuit IO shown in the figure. FIG. 4 is a longitudinal cross-sectional view showing the configuration of a detection coil section implementing another embodiment of the present invention. FIG. 5 is a longitudinal sectional view showing the relationship between the electric coil 4 and the flux-cored wire 1 used in the conventional flux filling rate detection method. 1 Wire with Nibrax 2: Mild steel 3 Nibrax 4: Electric coil 5: Electric coil for DC excitation 5G: Permanent magnet 5S: Magnetic cylinder 7:
Electric coil assembly 12a: Waveform shaping circuit 12b: Comparator Patent applicant: Nippon Steel Welding Industry Co., Ltd.
Claims (1)
ルに所定周波数の脈動電圧を印加し、該フラックス入り
ワイヤの内部のフラックスの充填率に応じた該電気コイ
ルのインピーダンスを電流、電圧等の電気信号に変換し
てフラックス入りワイヤのフラックス充填率を検出する
フラックス充填率の検出において: フラックス入りワイヤに直流磁界を与えて前記電気コイ
ルによりフラックス入りワイヤに作用する磁界の浸透を
深くすることを特徴とするフラックス充填率検出法。[Claims] A flux-cored wire is passed through an electric coil, a pulsating voltage of a predetermined frequency is applied to the electric coil, and the impedance of the electric coil is changed according to the filling rate of flux inside the flux-cored wire as a current. Detecting the flux filling rate of a flux-cored wire by converting it into an electrical signal such as a voltage: Applying a DC magnetic field to the flux-cored wire and causing the electric coil to deeply penetrate the magnetic field acting on the flux-cored wire. A flux filling rate detection method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62071174A JPS63236956A (en) | 1987-03-25 | 1987-03-25 | Method for detecting charging rate of flux |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62071174A JPS63236956A (en) | 1987-03-25 | 1987-03-25 | Method for detecting charging rate of flux |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63236956A true JPS63236956A (en) | 1988-10-03 |
Family
ID=13453032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62071174A Pending JPS63236956A (en) | 1987-03-25 | 1987-03-25 | Method for detecting charging rate of flux |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63236956A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289558A (en) * | 1990-04-06 | 1991-12-19 | Benkan Corp | Apparatus for measuring inserting amount of connecting pipe |
NL1008770C2 (en) * | 1997-03-31 | 2003-09-19 | Kobe Steel Ltd | Apparatus for detecting the charged flux status for a flux-cored wire. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5958303A (en) * | 1982-08-04 | 1984-04-04 | ピ−エ−・インコ−ポレイテイド | Method and device for detecting wall thickness characterist-ic of ferromagnetic material element |
JPS618656A (en) * | 1984-06-22 | 1986-01-16 | Hara Denshi Sokki Kk | Method and device for detecting flux filling state |
JPS6147554A (en) * | 1984-08-13 | 1986-03-08 | Kobe Steel Ltd | Detection of variations in flux filling rate |
-
1987
- 1987-03-25 JP JP62071174A patent/JPS63236956A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5958303A (en) * | 1982-08-04 | 1984-04-04 | ピ−エ−・インコ−ポレイテイド | Method and device for detecting wall thickness characterist-ic of ferromagnetic material element |
JPS618656A (en) * | 1984-06-22 | 1986-01-16 | Hara Denshi Sokki Kk | Method and device for detecting flux filling state |
JPS6147554A (en) * | 1984-08-13 | 1986-03-08 | Kobe Steel Ltd | Detection of variations in flux filling rate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289558A (en) * | 1990-04-06 | 1991-12-19 | Benkan Corp | Apparatus for measuring inserting amount of connecting pipe |
NL1008770C2 (en) * | 1997-03-31 | 2003-09-19 | Kobe Steel Ltd | Apparatus for detecting the charged flux status for a flux-cored wire. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4303883A (en) | Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression | |
US4954777A (en) | Device for defect testing of non-ferromagnetic test samples and for ferromagnetic inclusions | |
EP0332048A3 (en) | Multiple coil eddy current probe and method of flaw detection | |
EP0196020A3 (en) | Pig for the electromagnetic testing of the walls of steel pipes, and method of performing it | |
JP2639264B2 (en) | Steel body inspection equipment | |
WO2017082770A1 (en) | Method for eddy-current testing of electrically conductive objects and device for realizing said method | |
US5391988A (en) | Method and apparatus for detecting flaws within a conductive object while cancelling the effects of variation in distance between the detection apparatus and the conductive object | |
US4058762A (en) | Method and apparatus for magnetic inspection through adjustable pulsed alternating and direct current magnetic fields | |
JPS6352345B2 (en) | ||
JPS63236956A (en) | Method for detecting charging rate of flux | |
US3526829A (en) | Pulsed eddy current apparatus for nondestructive testing of resistance type welds | |
JPH05264508A (en) | Method and apparatus for nondestructive measurement of quenched and hardened range | |
JPH0353155A (en) | Detector for internal defect or damage for steel material | |
JP2018169392A (en) | Method and device for detecting metallic residues in metallic pipes | |
JPH0784021A (en) | Very weak magnetism measuring apparatus and non-destructive inspection method | |
US4835470A (en) | Magnetizer having a main electromagnet and leakage flux reducing auxiliary electromagnets for magnetographic inspection | |
JP2617615B2 (en) | Magnetic measurement method and device | |
JPS6345555A (en) | Inspection method for pitting corrosion of steel tube | |
JPH0843358A (en) | Eddy-current flaw detecting method for steel pipe | |
JP3223991U (en) | Nondestructive inspection equipment | |
JPH0439031B2 (en) | ||
CN111868515B (en) | Method and device for detecting metal residues in resistance welded steel pipe | |
SU121280A1 (en) | Apparatus for detecting defects in a product made of ferromagnetic materials | |
SU1310619A1 (en) | Method of measuring thickness of surface of processed layers of ferromagnetic electroconductive articles | |
JPS6110753A (en) | Measurement of flux packing rate |