JPS61106735A - Manufacture of permanent magnet alloy - Google Patents

Manufacture of permanent magnet alloy

Info

Publication number
JPS61106735A
JPS61106735A JP59228655A JP22865584A JPS61106735A JP S61106735 A JPS61106735 A JP S61106735A JP 59228655 A JP59228655 A JP 59228655A JP 22865584 A JP22865584 A JP 22865584A JP S61106735 A JPS61106735 A JP S61106735A
Authority
JP
Japan
Prior art keywords
powder
gas
permanent magnet
rare earth
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59228655A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Harutaka Shibusawa
渋沢 治孝
Hiroyuki Tobe
戸部 博之
Takayoshi Sato
隆善 佐藤
Kinya Ishihara
石原 欣弥
Kimio Uchida
内田 公穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59228655A priority Critical patent/JPS61106735A/en
Publication of JPS61106735A publication Critical patent/JPS61106735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture at a low cost a permanent magnet alloy which is excellent in its magnetic characteristic by mixing a powdery rare earth oxide, a granular reducing agent, and an Fe metallic powder, etc., and executing successively their heating, reducing diffusion and cooling under a specified condition. CONSTITUTION:A powdery rare earth oxide centering around Sm, Ce and Pr, granular reducing agent Ca, and a metallic powder of Fe, Co, Cu and M (one kind or two kinds or more of Si, Ti, Ni, Cr, Zr and Hf) or its oxide powder are mixed. This mixture powder is treated in an inert gas (Ar gas) atmosphere of a normal pressure or above at an ordinary temperature through 1,000 deg.C. Also, a temperature is raised and its reducing diffusion is executed in a reducing gas (H2 gas) of a normal pressure or above within a temperature range of 1,000-1,300 deg.C. Subsequently, its cooling is executed in an inert gas (Ar gas) atmosphere of a normal pressure or above at <=1,000 deg.C. In this way, a permanent magnet alloy shown by R(Co1-X-Y-ZFeXCuYMZ)A (R denotes a rare earth metal, 0.10<=X<=0.35, 0.02<=Y<=0.10, and 0.005<=Z<=0.10) is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCu置換型希土類金属間化合物いわゆるR*C
O+v系永久磁石合金の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to Cu-substituted rare earth intermetallic compounds, so-called R*C
The present invention relates to a method for manufacturing an O+v permanent magnet alloy.

〔従来の技術〕[Conventional technology]

希土類コバルト磁石は大別して、RCow系およびCu
置換型のR*CO+v系の2種類があシ、RCo5系永
久磁石(例えば、特開昭46−65056504および
6505号参照)は最初に実用化された磁石として知ら
れている。その後高性能化は、RtCO+i系にて検討
され、Coの一部をFe 、 CuおよびM (81,
TI、Zr、V。
Rare earth cobalt magnets are roughly divided into RCow and Cu.
There are two types of substitution type R*CO+v type permanent magnets, and RCo5 type permanent magnets (see, for example, Japanese Patent Application Laid-open Nos. 46-65056504 and 6505) are known as the first magnets to be put into practical use. Afterwards, high performance was investigated in the RtCO+i system, and part of the Co was replaced with Fe, Cu and M (81,
T.I., Zr., V.

Nb 、 Cr 、 Mo 、 Hf 、 Ni等)で
置換することが必須の条件となることが公知である。(
例えば特開昭53−106624号、特開昭56−11
2455号)このよりなRmCO+y系の多元系永久磁
石の製造方法としては、希土類金属、Co 、 Fe 
、 CuおよびM金属などの合金構成成分の高純度金属
を出発原料とし、ルツボ中不活性雰囲気下において溶解
、鋳造する方法が最も一般的である。しかしながら、希
土類金属は一般に高価であることから、上述した溶解法
では、原料コストが高く、このことが製造コストを上げ
る要因となっている。
It is known that substitution with Nb, Cr, Mo, Hf, Ni, etc.) is an essential condition. (
For example, JP-A-53-106624, JP-A-56-11
No. 2455) As a manufacturing method of this more RmCO+y-based multi-component permanent magnet, rare earth metals, Co, Fe
The most common method is to use high-purity alloy constituent metals such as Cu and M metals as starting materials and melt and cast them in a crucible under an inert atmosphere. However, since rare earth metals are generally expensive, the above melting method requires high raw material costs, which is a factor that increases manufacturing costs.

そこで溶解法の上記欠点を改善するために安価な希土類
酸化物を原料として、還元剤(CaL 、 Ca 。
Therefore, in order to improve the above-mentioned drawbacks of the dissolution method, reducing agents (CaL, Ca) are used using inexpensive rare earth oxides as raw materials.

Mg)を用いて、還元拡散反応(以下RD反応という)
により、合金化する方法が提案されている。
Mg) using reduction diffusion reaction (hereinafter referred to as RD reaction)
proposed an alloying method.

例えば特公昭49−7296号ではH,あるいはAr雰
囲気中でのCaLによる製造方法が開示され、特公昭5
3−16798号では減圧下でのC&蒸気による製造力
゛法が開示されている。さらに、特公昭55−3057
5号では、Ar雰囲気中でのMgによる製造方法が特公
昭55−27602号では、1000℃以下のAr雰囲
気中でのCaによる製造方法が開示されている。しかし
ながら従来の上記方法では、溶解法によるものよシ、磁
気特性が劣っているなどの問題があった。
For example, Japanese Patent Publication No. 49-7296 discloses a production method using CaL in an H or Ar atmosphere;
No. 3-16798 discloses a C&steam production process under reduced pressure. In addition,
No. 5 discloses a manufacturing method using Mg in an Ar atmosphere, and Japanese Patent Publication No. 55-27602 discloses a manufacturing method using Ca in an Ar atmosphere at 1000° C. or lower. However, the above-mentioned conventional methods have had problems such as inferior magnetic properties compared to the melting method.

本発明の目的は、上述の従来技術の問題点を解消し、低
コストでかつ磁気特性の優れた希土類コバルト永久磁石
を得ることができる製造方法を提供することである。
An object of the present invention is to provide a manufacturing method capable of solving the above-mentioned problems of the prior art and producing a rare earth cobalt permanent magnet with excellent magnetic properties at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記公知例を参考にし、種々検討した結
果Caによる還元を1000℃以下の常圧以上のArガ
スなどの不活性ガス雰囲気中で行い、引き続き不活性ガ
ス雰囲気なHtガスなどの還元性ガス雰囲気に変更し、
1000〜1600℃の温度範囲にて拡散反応を進行せ
しめ、反応後1000℃以下を常圧以上のArガス雰囲
気で冷却することにより、磁気特性を著しく改善し、溶
解法と同レベルの磁気特性が得られることを見出したの
である。
The present inventors referred to the above-mentioned known examples, and as a result of various studies, the reduction with Ca was carried out in an inert gas atmosphere such as Ar gas at a temperature of 1000° C. or less and a pressure above normal pressure, and then an inert gas atmosphere such as Ht gas, etc. Change to a reducing gas atmosphere of
By allowing the diffusion reaction to proceed in the temperature range of 1,000 to 1,600°C, and cooling the reaction below 1,000°C in an Ar gas atmosphere above normal pressure, the magnetic properties are significantly improved, and the magnetic properties are on the same level as the melting method. I found out what I could get.

本発明の磁気特性向上の要因としては、1000〜13
00°CでのHtガス雰囲気による活性化された反応が
進行したことに起因すると考えられる。即ち、本発明は
s R(Cot −x−y−zFexcuyMz)人(
ここでRはSm 、 Ce 、 Prを中心とした希土
類金属の1種又は2種以上の組み合せであ)Mは、81
.Ti、Ni。
Factors for improving the magnetic properties of the present invention include 1000 to 13
This is thought to be due to the progress of a reaction activated by the Ht gas atmosphere at 00°C. That is, the present invention provides s R (Cot -x-y-zFexcuyMz) people (
Here, R is one kind or a combination of two or more kinds of rare earth metals mainly Sm, Ce, and Pr) M is 81
.. Ti, Ni.

Cr、Zr、Hfの内の1種又は2種以上の組み合せ、
  1α10≦X≦0.35  、  α02≦Y≦0
.10  、 0.005≦2≦0.10  。
One or a combination of two or more of Cr, Zr, Hf,
1α10≦X≦0.35, α02≦Y≦0
.. 10, 0.005≦2≦0.10.

5≦A≦8.5)で示される組成を有する永久磁石合金
の製造方法において、粉末状希土類酸化物と粒状還元剤
CaとFe 、 Co 、 Cu 、 M の金属粉ま
たはその酸化物粉を混合し、得られた混合物粉を常温か
ら、1000℃迄を常圧以上のArガスなどの不活性ガ
ス雰囲気中で処理し、さら1こ昇温し、1000〜13
00℃の温度範囲を常圧以上のHtガスなどの還元性ガ
ス雰囲気中で還元拡散し、1000℃以下を常圧以上の
Arガスなどの不活性ガス雰囲気中で冷却することを特
徴とするものである。なお雰囲気圧力を常圧以上した理
由は、常圧以下の場合設備費などの費用が高くなるため
である。詳述すると、希土類酸化物(例えばSmHO*
 )と粒状Caと他の金属粉(もしくはそれらの一部又
は全部の酸化物)を混合し、ついで1000℃の温度ま
で昇温して還元反応を行なう。この昇温の過程では液相
状態になったCa(融点800°C位)がS ms O
sを還元(Sm*Os + 3Ca−+28m +3C
aO)するため、雰囲気はArガスでよい。またCaに
よ多金属酸化物の一部も還元される。次に、1000℃
以上の温度に保持すると、還元されたSmがFe 、 
Co 、 Cuなどと相互拡散して合金化が進む。
5≦A≦8.5) In a method for producing a permanent magnet alloy having a composition expressed as Then, the obtained mixture powder was treated from room temperature to 1000°C in an inert gas atmosphere such as Ar gas above normal pressure, and the temperature was further increased by 1°C to 1000°C to 13°C.
The temperature range of 00°C is reduced and diffused in a reducing gas atmosphere such as Ht gas at normal pressure or above, and the temperature range below 1000°C is cooled in an inert gas atmosphere such as Ar gas at normal pressure or above. It is. The reason why the atmospheric pressure is set above normal pressure is that if the atmospheric pressure is below normal pressure, costs such as equipment costs will be high. In detail, rare earth oxides (e.g. SmHO*
), granular Ca, and other metal powders (or oxides of some or all of them) are mixed, and then the temperature is raised to 1000° C. to perform a reduction reaction. During this temperature raising process, Ca (melting point around 800°C) in a liquid phase becomes S ms O
Reduce s (Sm*Os + 3Ca-+28m +3C
aO), the atmosphere may be Ar gas. In addition, a part of the multimetal oxide is also reduced by Ca. Next, 1000℃
When maintained at a temperature above, the reduced Sm becomes Fe,
It interdiffuses with Co, Cu, etc. and alloying progresses.

この場合反応をH,ガス雰囲気中で行なうと、全部の金
属酸化物が還元されかつSmを含む還元された各合金元
素の表面はLガスによシ活性化されるので、拡散反応は
速やかに進行し、1〜3hの短時間の保持で優れた磁気
特性を得ることができる。保持温度は1000℃以上で
あればよいが、Smの融点が1052℃であることから
、Smの融点より十分に高い温度(1100℃)とする
と、Smは液相状態になって他の金属表面を濡らして十
分なる反応が行なわれる。ただし保持温度は高すぎ゛て
も反応の進行に殆んど寄与しないので、1300℃以下
であれば十分である。
In this case, if the reaction is carried out in an H gas atmosphere, all the metal oxides will be reduced and the surface of each reduced alloy element including Sm will be activated by the L gas, so the diffusion reaction will occur quickly. It progresses and excellent magnetic properties can be obtained by holding for a short time of 1 to 3 hours. The holding temperature may be 1000°C or higher, but since the melting point of Sm is 1052°C, if the temperature is sufficiently higher than the melting point of Sm (1100°C), Sm will enter a liquid phase and form a liquid on other metal surfaces. A sufficient reaction can be carried out by wetting the material. However, even if the holding temperature is too high, it hardly contributes to the progress of the reaction, so a holding temperature of 1300° C. or lower is sufficient.

そして反応終了後の冷却は再びArガス雰囲気中で行な
えばよい。
After the reaction is completed, cooling may be performed again in an Ar gas atmosphere.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

比較例1 金属Sm 、 Co 、 Fe 、 Cuおよびスボン
ヂZrを用いて真空溶解Rpを用いてAr中で溶解し、
得られたインゴットを公知の粉砕機(ショークラッシャ
ー)で粗粉砕を行い、さらにジェット・ミルにて平均粒
度3.4μm (F、S、S、S )に微粉砕を行った
。得られた微粉砕粉を試料/161とし、表1にその分
析値を示す。
Comparative Example 1 Metals Sm, Co, Fe, Cu and sponge Zr were melted in Ar using vacuum melting Rp,
The obtained ingot was coarsely pulverized with a known pulverizer (show crusher), and further finely pulverized with a jet mill to an average particle size of 3.4 μm (F, S, S, S). The obtained finely pulverized powder was designated as Sample/161, and Table 1 shows its analytical values.

次に、微粉砕粉を磁場強度7KOe、成形圧4@A−d
の条件にてプレス成形し、その成形体をH!ガス中にて
、11811℃X1hの焼結を行った。焼結後Ar中に
て、1160℃X2hの保持後常温迄急冷し、再度、8
00℃X6hの保持後、常温迄1℃層の冷却速度で徐冷
し、磁気特性の測定に供した。磁気特性を表2に示す。
Next, the finely pulverized powder was mixed with a magnetic field strength of 7KOe and a molding pressure of 4@A-d.
The molded product was press-formed under the conditions of H! Sintering was performed at 11,811° C. for 1 hour in gas. After sintering, it was held at 1160°C for 2 hours in Ar, then rapidly cooled to room temperature, and then heated again at 8
After holding at 00°C for 6 hours, the sample was gradually cooled to room temperature at a cooling rate of 1°C, and the magnetic properties were measured. The magnetic properties are shown in Table 2.

比較例2 SmtO,粉2650? 、 Co粉4040f 、 
Fe粉1110f。
Comparative Example 2 SmtO, powder 2650? , Co powder 4040f,
Fe powder 1110f.

Cu粉700r 、 zrα粉19(1、Ca粒133
0 PをV型混合機にて50分混合後、反応容器中にセ
ットし、常圧以上のArガス雰囲気中にて1000℃迄
に4hで昇温し、そのまi Arガス雰囲気中にて11
90℃X2hの条件でRD反応を進行せしめ、反応終了
後、常温i、、:、  迄冷却した。得られた反応ケー
キを水中に投じ繰シ返し洗浄し、さらに酸洗、水洗およ
び脱水乾燥し、磁性粉を得た。得られた磁性粉をジェッ
トミルにて微粉砕(平均粒度3.4μF7りシ、実施例
1と同様の条件で成形、焼結、熱処理を施し、磁気特性
の測定に供した。本実施例の微粉砕後の組成および磁気
特性を表1および表2に試料/I62として表示した。
Cu powder 700r, zrα powder 19 (1, Ca grain 133
After mixing 0 P in a V-type mixer for 50 minutes, set it in a reaction vessel, raise the temperature to 1000 °C for 4 hours in an Ar gas atmosphere above normal pressure, and continue to heat it in an Ar gas atmosphere. 11
The RD reaction was allowed to proceed at 90° C. for 2 hours, and after the reaction was completed, it was cooled to room temperature. The obtained reaction cake was washed repeatedly by pouring it into water, and was further pickled, washed with water, dehydrated and dried to obtain magnetic powder. The obtained magnetic powder was finely pulverized with a jet mill (average particle size: 3.4μF7), molded, sintered, and heat treated under the same conditions as in Example 1, and subjected to measurement of magnetic properties. The composition and magnetic properties after pulverization are shown in Tables 1 and 2 as sample/I62.

比較例3 還元拡散反応の条件1190°CX2hを1000°C
X2hに変更した以外は、全て比較例2と同様の条件で
磁石合金を得た。その場合の試料を扁5とした。
Comparative Example 3 Reduction-diffusion reaction conditions 1190°CX2h to 1000°C
A magnet alloy was obtained under all the same conditions as in Comparative Example 2 except that the material was changed to X2h. The sample in this case was designated as Flat 5.

実施例1 比較例2と同様に原料を配合し、混合体を常圧以上のA
rガス雰囲気中にて1000℃迄に4hで昇温し、以後
、Arガス雰囲気を常圧以上のH1ガス雰囲気に変更し
、1190℃X2hの条件でRD反応を進行せしめ、反
応終了後1000℃以下を常圧以上のArガス雰囲気中
にて冷却した。得られた反応ケーキを比較例2と同様の
条件で処理して磁性粉を得た。
Example 1 The raw materials were blended in the same manner as in Comparative Example 2, and the mixture was heated to A above normal pressure.
The temperature was raised to 1000°C in 4 hours in an r gas atmosphere, and then the Ar gas atmosphere was changed to an H1 gas atmosphere above normal pressure, and the RD reaction was allowed to proceed under the conditions of 1190°C x 2 hours, and after the reaction was completed, the temperature was raised to 1000°C. The following was cooled in an Ar gas atmosphere at normal pressure or higher. The obtained reaction cake was treated under the same conditions as in Comparative Example 2 to obtain magnetic powder.

さらに得られた磁性粉を比較例2と同様0条件で   
1・成形、焼結、熱処理を施し、磁気特性の測定に供し
た。本実施例の微粉砕後の組成および熱処理の特性を表
1および表2に試料A4として表示した。
Furthermore, the obtained magnetic powder was treated under 0 conditions as in Comparative Example 2.
1. Molding, sintering, and heat treatment were performed, and the magnetic properties were measured. The composition and heat treatment characteristics of this example after pulverization are shown in Tables 1 and 2 as sample A4.

比較例4 金属Sm 、 Co 、 Co 、 Fe 、 Cuお
よびスボンヂZrを用いて、真空溶解炉を用いてAr中
で溶解し、得られたインゴットを公知の粉砕機(ショー
クラッシャー)で粗粉砕を行い、さらにジェットミルに
て平均粒度&7μm (F、S、S、S )に微粉砕を
行った。得られた微粉砕粉を試料/I65として表3に
その分析値を示す。次tこ得られた微粉砕粉を磁場強度
7KOe。
Comparative Example 4 Metals Sm, Co, Co, Fe, Cu and sponge Zr were melted in Ar using a vacuum melting furnace, and the obtained ingot was coarsely crushed using a known crusher (show crusher). The mixture was further pulverized using a jet mill to an average particle size of &7 μm (F, S, S, S). The obtained finely pulverized powder was designated as sample/I65, and its analytical values are shown in Table 3. Next, the obtained finely pulverized powder was subjected to a magnetic field strength of 7 KOe.

成形圧4ン堀の条件にてプレス成形し、その成形体をH
,ガス中にて、1165℃xihの焼結を行った。
Press molding was carried out under the conditions of a molding pressure of 4 mm, and the molded product was
Sintering was performed at 1165° C. xih in a gas atmosphere.

焼結後、Ar中ガスにて、1140’CX 2Hrの保
持後、常温まで急冷し、再度、770°cxshの保持
後常温迄り℃/分の冷却速度で徐冷し、磁気特性の測定
に供した。磁気特性を表4(試料/l65)に示す。
After sintering, it was held at 1140°CX 2Hr in Ar gas, then rapidly cooled to room temperature, and again held at 770°Cxsh, slowly cooled to room temperature at a cooling rate of °C/min, and used for measuring magnetic properties. provided. The magnetic properties are shown in Table 4 (sample/l65).

実施例2 Sm雪0自粉1270 f 、 Cede粉155(I
F 、 Co粉390(1。
Example 2 Sm snow 0 own powder 1270 f, Cede powder 155 (I
F, Co powder 390 (1.

Fe粉1080P 、 Cu粉6801 、 ZrO*
粉180F、およびCa粒154(lを■型混合機にて
30分混合後、反応容器中にセットし、常圧以上のAr
ガス雰囲気中にて1000℃迄に4hで昇温し、以後A
rガス雰囲気を常圧以上のHaガス雰囲気に変更し、1
170℃X2hの条件のRD反応を進行せしめ、反応終
了後、1000℃以下を常圧以上のArガス雰囲気中に
て冷却した。得られた反応ケーキを水中に投じ、繰プ返
し洗浄を行い、さらに酸洗、水洗および脱水乾燥し、磁
性粉を得た。得られた磁性粉をジェット・ミルにて微粉
砕(平均粒度5.7ttmSF、S、S、S) L、比
較例4と同様の条件で成形、焼結、熱処理を施し、磁気
特性の測定に供した。本実施例の微粉砕後の組成および
熱処理後の磁気特性を試料、466として、表3および
表4に表示した。
Fe powder 1080P, Cu powder 6801, ZrO*
After mixing 180F powder and 154L of Ca grains in a type mixer for 30 minutes, set it in a reaction container and heat it with Ar at above normal pressure.
The temperature was raised to 1000℃ in a gas atmosphere for 4 hours, and then A
Change the r gas atmosphere to a Ha gas atmosphere above normal pressure, and
The RD reaction was allowed to proceed at 170° C. for 2 hours, and after the reaction was completed, it was cooled to 1000° C. or lower in an Ar gas atmosphere at normal pressure or higher. The resulting reaction cake was poured into water and washed repeatedly, followed by pickling, water washing, and dehydration drying to obtain magnetic powder. The obtained magnetic powder was finely pulverized with a jet mill (average particle size 5.7ttm SF, S, S, S), molded, sintered, and heat treated under the same conditions as in Comparative Example 4, and used for measuring magnetic properties. provided. The composition of this example after pulverization and the magnetic properties after heat treatment are shown in Tables 3 and 4 for sample 466.

表2の/164および表4の腐6に見られる如く、本発
明によシ得られた磁石合金の磁気特性は、従来法による
もの/%2./165に比較して優れておりさらに、溶
解法での/I61および腐5と同じレベルであることが
わかる。
As seen in /164 in Table 2 and 6 in Table 4, the magnetic properties of the magnet alloy obtained by the present invention are as follows: /%2. It can be seen that it is superior to /165 and is also at the same level as /I61 and Fu5 in the dissolution method.

表1 分析値   (wtチ) 表2 磁気特性 表3 分析値  (Wtチ) 表4 磁気特性 実施例6〜5 H,ガス雰囲気中での保持条件を変えた以下は実施例1
と同様の条件で581類の磁石合金を得た。
Table 1 Analysis values (wt) Table 2 Magnetic properties Table 3 Analysis values (wt) Table 4 Magnetic properties Examples 6 to 5 The following is Example 1 with different holding conditions in H, gas atmosphere
A class 581 magnet alloy was obtained under the same conditions as above.

これらの合金の組成を表5ζこ、磁気特性を表6に示す
The compositions of these alloys are shown in Table 5ζ, and the magnetic properties are shown in Table 6.

表5 分析値     (wtチ) 表6 磁気特性 実施例6〜8 Lガス雰囲気中での保持条件を変えた以外は実  ・施
例2と同様の条件で6種類の磁石合金を得た。
Table 5 Analysis values (wt) Table 6 Magnetic properties Examples 6 to 8 Six types of magnet alloys were obtained under the same conditions as Example 2, except that the holding conditions in the L gas atmosphere were changed.

これらの合金の組成を表7に、磁気特性を表8に示す。The compositions of these alloys are shown in Table 7, and the magnetic properties are shown in Table 8.

表7 分析値     (w1%ン f18 磁気特性 し発明の効果〕 以上に記述の如く本発明方法によシ得た磁石合金の磁気
特性は、高価な希土類金属を使用する溶解法での磁気特
性と同レベルであシ、その工業的価値は極めて大である
Table 7 Analysis Values (W1%-F18 Magnetic Properties and Effects of the Invention) As described above, the magnetic properties of the magnetic alloy obtained by the method of the present invention are different from those obtained by the melting method using expensive rare earth metals. At the same level, its industrial value is extremely large.

手続補正書(自発] 1□15?・12.、.17 、。Procedural amendment (voluntary) 1□15?・12. ,.. 17.

昭和59年持許願第228655号 発明の 名称 永久磁石合金σノ極造方法補正をする者 代  ノin   j可  野    典  夫代  
 理   人 及び「発明の詳細な説明jの欄 補正の内容 L 明細書の特許請求の範囲を次のように訂正する0 「L  R(001−X−y−zアexouyMz)A
(ここでRはSm。
Title of invention No. 228655 filed in 1980 Name of the person who amends the permanent magnet alloy σ pole manufacturing method
"L R (001-X-y-z aexouyMz) A
(Here, R is Sm.

QezPre中心とした希土類金属の1種又は2種以上
の組合せであり、MはSi、T1、N1.0rSZrH
fの内の1種又、は2種以上の組合せ。α10≦X≦0
.35.0.02≦Y <A20.0.005≦Z W
、10.5≦A≦&5)で示される組成ン有する永久磁
石合金の製造方法において、粉末状希土類酸化物と、粒
状還元剤OaとIFe、 Co、Ou%Mの金属粉また
はその酸化物粉を混合し、得られた混合物粉に常温から
1000℃迄を常圧以上の不活性ガス雰FI!i気中で
処理し、さらに昇温し1000〜1300°C0)温度
範囲を常圧以上の還元性ガス雰囲気中で還元拡散し、1
000℃以下夕常圧以上の不活性ガス雰囲気中で、((
冷却することを特徴とする永久磁石合金の製造方法。
QezPre is one kind or a combination of two or more kinds of rare earth metals, and M is Si, T1, N1.0rSZrH
One type or a combination of two or more types of f. α10≦X≦0
.. 35.0.02≦Y <A20.0.005≦Z W
, 10.5≦A≦&5) A method for producing a permanent magnet alloy having a composition represented by: a powdered rare earth oxide, a granular reducing agent Oa, and a metal powder or oxide powder of IFe, Co, Ou%M. The resulting mixture powder is heated from room temperature to 1000°C under an inert gas atmosphere above normal pressure FI! i Treated in air, further heated to 1000-1300°C0), reduced and diffused in a reducing gas atmosphere at normal pressure or higher,
(((
A method for producing a permanent magnet alloy, which includes cooling.

かゝ 2 不活性ぐスがArガスで、かつ、還元性ガスがH2
ガスである特許請求の範囲第1項記載り永久磁石合金の
製造方法。」 2 同書第4頁第18行の「α02≦Y邸10」とある
のy 7coz≦Y $20Jと訂正する。
Ka2 The inert gas is Ar gas, and the reducing gas is H2.
A method for producing a permanent magnet alloy according to claim 1, wherein the permanent magnet alloy is a gas. ” 2. On page 4, line 18 of the same book, the statement “α02≦Y residence 10” is corrected to y 7coz≦Y $20J.

& 同書第7頁第3行の「θ/♂」とあるのt「t/α
1」と訂正する。
& On page 7, line 3 of the same book, “θ/♂” means t “t/α.”
1”, corrected.

4 同−iF第11頁の表2のrLaaJとあるのを1
”工HoJと訂正する。
4 Replace rLaaJ in Table 2 on page 11 of the same iF with 1
``Corrected as Engineering HoJ.

5、 同曹第11頁の表4の「IHo」とあるのを「1
顯」と訂正する。
5. Replace “IHo” with “1” in Table 4 on page 11.
"I corrected myself."

已 同IIF第12頁の表6のrgHoJとあるの乞「
1句」と訂正する。
已 rgHoJ and a certain request in Table 6 on page 12 of IIF.
1 phrase,” he corrected.

7、 同書第13頁の表8のrIHoJとあるの乞「工
期」と訂正する。
7. The term rIHoJ in Table 8 on page 13 of the same book has been corrected to read "construction period."

以  上 1′that's all 1′

Claims (1)

【特許請求の範囲】 1、R(Co_1_−_X_−_Y_−_ZFe_XC
u_YM_Z)_A(ここでRはSm、Ce、Prを中
心とした希土類金属の1種又は2種以上の組合せであり
、MはSi、Ti、Ni、Cr、Zr、Hfの内の1種
又は2種以上の組合せ。 0.10≦X≦0.35、0.02≦Y≦0.10、0
.005≦Z≦0.10、5≦A≦8.5)で示される
組成を有する永久磁石合金の製造方法において、粉末状
希土類酸化物と、粒状還元剤CaとFe、Co、Cu、
Mの金属粉またはその酸化物粉を混合し、得られた混合
物粉を常温から1000℃迄を常圧以上の不活性ガス雰
囲気中で処理し、さらに昇温し1000〜1300℃の
温度範囲を常圧以上の還元性ガス雰囲気中で還元拡散し
、1000℃以下を常圧以上の不活性ガス雰囲気中で冷
却することを特徴とする永久磁石合金の製造方法。 2、不活性ガスがArガスで、かつ、還元性ガスがH_
2ガスである特許請求の範囲第1項記載の永久磁石合金
の製造方法。
[Claims] 1, R(Co_1_-_X_-_Y_-_ZFe_XC
u_YM_Z)_A (here, R is one kind or a combination of two or more rare earth metals mainly Sm, Ce, and Pr, and M is one kind or a combination of two or more kinds of rare earth metals, mainly Sm, Ce, and Pr. Combination of two or more types. 0.10≦X≦0.35, 0.02≦Y≦0.10, 0
.. 005≦Z≦0.10, 5≦A≦8.5) In a method for producing a permanent magnet alloy having a composition represented by: powdery rare earth oxide, granular reducing agent Ca, Fe, Co, Cu,
M metal powder or its oxide powder is mixed, and the resulting mixture powder is treated from room temperature to 1000°C in an inert gas atmosphere above normal pressure, and then further heated to a temperature range of 1000 to 1300°C. A method for producing a permanent magnet alloy, which comprises reducing and diffusing in a reducing gas atmosphere at atmospheric pressure or higher, and cooling to 1000° C. or lower in an inert gas atmosphere at atmospheric pressure or higher. 2. The inert gas is Ar gas, and the reducing gas is H_
2. The method for producing a permanent magnet alloy according to claim 1, wherein the method uses two gases.
JP59228655A 1984-10-30 1984-10-30 Manufacture of permanent magnet alloy Pending JPS61106735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228655A JPS61106735A (en) 1984-10-30 1984-10-30 Manufacture of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228655A JPS61106735A (en) 1984-10-30 1984-10-30 Manufacture of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS61106735A true JPS61106735A (en) 1986-05-24

Family

ID=16879733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228655A Pending JPS61106735A (en) 1984-10-30 1984-10-30 Manufacture of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS61106735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931776A (en) * 2016-05-31 2016-09-07 宁波宁港永磁材料有限公司 High-performance samarium cobalt permanent magnet preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931776A (en) * 2016-05-31 2016-09-07 宁波宁港永磁材料有限公司 High-performance samarium cobalt permanent magnet preparation method
CN105931776B (en) * 2016-05-31 2017-09-08 宁波宁港永磁材料有限公司 A kind of preparation method of high-performance samarium cobalt permanent magnet body

Similar Documents

Publication Publication Date Title
CN109108273B (en) Preparation method of NbZrTiTa refractory high-entropy alloy powder and NbZrTiTa refractory high-entropy alloy powder
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPS61295308A (en) Production of alloy powder containing rare earth metal
JPH0322457B2 (en)
CN111676409B (en) Preparation method of low-density low-cost Fe-Mn-Al-C intermediate entropy alloy
US2763918A (en) Process of making a ferroalloying material and product obtained thereby
JPS61106735A (en) Manufacture of permanent magnet alloy
WO2019056643A1 (en) Method for producing neodymium-iron-boron composite magnetic material
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JPH04371536A (en) Production of tial intermetallic compound powder
JPS60125338A (en) Production of permanent magnet alloy
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JPS62262406A (en) Manufacture of powder for permanent magnet alloy
JPS6358802A (en) Manufacture of rare earth magnet
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPS6160809A (en) Production of rare earth alloy powder
JPS61106734A (en) Manufacture of permanent magnet alloy
JPS59154004A (en) Manufacture of permanent magnet
JPH06179901A (en) Production of alnico magnetic alloy powder for resin magnet
JPS60228649A (en) Manufacture of permanent magnet alloy
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet
JPS63227740A (en) Production of alloy for permanent magnet
JPS60121239A (en) Manufacture of permanent magnet alloy