JPS61105551A - Photoconductor - Google Patents

Photoconductor

Info

Publication number
JPS61105551A
JPS61105551A JP22599084A JP22599084A JPS61105551A JP S61105551 A JPS61105551 A JP S61105551A JP 22599084 A JP22599084 A JP 22599084A JP 22599084 A JP22599084 A JP 22599084A JP S61105551 A JPS61105551 A JP S61105551A
Authority
JP
Japan
Prior art keywords
layer
gas
photoreceptor
germanium
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22599084A
Other languages
Japanese (ja)
Inventor
Hidekazu Kaga
英一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22599084A priority Critical patent/JPS61105551A/en
Publication of JPS61105551A publication Critical patent/JPS61105551A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Abstract

PURPOSE:To enable optional and dynamic variation of absorption wavelength region by forming a photosensitive layer contg. a binary amorphous material made of C and Ge on a conductive substrate, and changing these contents. CONSTITUTION:The binary amorphous material made of C and Ge without using Si can be dynamically changed in the absorption ends of the absorption wavelength region by changing the content ratio of C to Ge. Since the amorphous Ge carbide can be generally changed by 1-3.5eV as the optical forbidden band width, the whole wavelength region necessary for the photosensitive material from the near 1R rays to the near UV rays can be covered. When the photosensitive body 21 is formed in a CVD device 9, a conductive substrate 11 cleaned of grease with trichloroethylene is placed on a susceptor 13 in a reactor 10, electric discharge is caused in an atm. of argon fed from a gas feed system 17 to deposit a carrier injection barrier layer 22, and then, to form a carrier generating layer 23 and a carrier transfer layer 24, and finally a surface layer 25, in succession.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電子写真装置等において静電潜像が形成され
る光導電体く関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photoconductor on which an electrostatic latent image is formed in an electrophotographic device or the like.

〔発、明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年電子写真装置等の画像形成装置JC6っては、その
多様化に伴い感光体材料として、非晶質−シン。非晶質
セレン・テルル合金、非晶質セレン・ヒ素合金、酸化亜
鉛樹脂分散系、硫化カドミウム樹脂分散系、非晶質シリ
コン等の無機材料、ポリビニルカルバゾール、ポリビニ
ルカルバゾール/トリニトロフルオレノン、有機顔料樹
脂分散系等の有機材料等積々のものが開発されている。
In recent years, image forming devices such as electrophotographic devices (JC6) have been using amorphous thin film as a photoreceptor material due to diversification. Amorphous selenium/tellurium alloy, amorphous selenium/arsenic alloy, zinc oxide resin dispersion system, cadmium sulfide resin dispersion system, inorganic materials such as amorphous silicon, polyvinyl carbazole, polyvinyl carbazole/trinitrofluorenone, organic pigment resin A wide variety of organic materials such as dispersion systems have been developed.

一方電子写真装置等の感光体としては光吸収能、光励起
キャリア輸送能、帯電能の三機能が最低限要求されるが
、近年画像形成装置の多様化により、特に光吸収能が重
要視されている。即ち例えばレーザプリンタへの適用の
ためKは近赤外の長波長に感度を有する材料が要求され
、又カラー複写機への適用のためカラー再現性を持たせ
るために、可視域の任意の波長に吸収端を設定できる材
料が要求され、更に主として感光体の表面層に使用され
る窓材に適用するものとしては、可視光をほぼ完全に透
過するよう近紫外領域に吸収端をもつ材料が要求される
等している。そしてこれ等積々の要求に対しては、近赤
外の長波長から近紫外の短波長まで広範囲の波長領域の
任意の波長に吸収端を持たせる事が出来る感光体材料が
要求されている。
On the other hand, photoreceptors for electrophotographic devices and the like are required to have at least three functions: light absorption ability, photoexcited carrier transport ability, and charging ability, but in recent years, with the diversification of image forming devices, light absorption ability has become particularly important. There is. In other words, for application to laser printers, for example, a material sensitive to long wavelengths of near-infrared rays is required, and for application to color copying machines, a material sensitive to any wavelength in the visible range is required to ensure color reproducibility. Materials that can set an absorption edge in the near-ultraviolet region are required, and materials that are mainly applied to window materials used in the surface layer of photoreceptors are materials that have an absorption edge in the near-ultraviolet region that almost completely transmits visible light. I am doing what is requested. To meet these ever-increasing demands, there is a need for photoreceptor materials that can have an absorption edge at any wavelength in a wide range of wavelengths, from long wavelengths in the near-infrared to short wavelengths in the near-ultraviolet. .

しかしながら前記感光体材料のうち赤外光にも感度を有
する有機顔料樹脂分散系のものを除いては、いずれも光
の吸収端が可視領域内に限定されており、いずれも上記
感光体材料としての要求を満す事が出来ないという問題
を有している。更には前記感光体材料のうち非晶質シリ
コンを除いては、機械的強度や熱的安定性に劣るという
欠点を有している。
However, with the exception of organic pigment resin dispersion systems that are sensitive to infrared light, all of the above-mentioned photoreceptor materials have light absorption edges that are limited to the visible region. The problem is that it is not possible to meet the requirements of Furthermore, among the above-mentioned photoreceptor materials, except for amorphous silicon, they have the disadvantage of being inferior in mechanical strength and thermal stability.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情にもとづいてなされたもので、近赤
外の長波長から近紫外の短波長まで吸収波長域を任意に
選択可能であり更には機械的強度及び熱的安定性に優れ
た光導電体を提供することを目的とする。
This invention was made based on the above circumstances, and it is possible to arbitrarily select the absorption wavelength range from the long wavelength of the near-infrared to the short wavelength of the near-ultraviolet, and furthermore, it provides light with excellent mechanical strength and thermal stability. The purpose is to provide an electrical conductor.

〔発明の概要〕[Summary of the invention]

この発明は上記目的を達成するため、導電性基板上に炭
素及びゲルマニウムの二元系非晶質材料を用いて感光層
を形成し、更には炭素とゲルマニウムの含有量を変える
事により、吸収波長領域を任意かつダイナミックに変動
出来、多様化される感光体用途への適用を容易に図ろう
とするものである。
In order to achieve the above object, this invention forms a photosensitive layer using a binary amorphous material of carbon and germanium on a conductive substrate, and furthermore, by changing the content of carbon and germanium, the absorption wavelength is It is intended that the area can be arbitrarily and dynamically changed, and it can be easily applied to diversified photoreceptor applications.

〔発明の実施例〕[Embodiments of the invention]

この発明の詳細な説明するにあたり、先ずこの発明の原
理について述べる。従来より、機械的強度及び熱安定性
に優れる非晶質シリコンは、これに水素、あるいはハロ
ゲン元素、更には水素及びハロゲン元素を含有させる事
により、良好な光導電特性を有し、これに適当な不純物
を添加する事により、画像形成装置の感光体として使用
される事が知られている。ところで、この非晶質シリコ
ンは、炭素の添加により、吸収波長領域の吸収端を短波
長側へ移動出来ると共に透明度や電気抵抗を上げられる
という特性を有する一方、ゲルマニウムの添加により、
吸収波長領域の吸収端を長波長側へ移動出来るという特
性を有している。この事から、上記特性を利用して、シ
リコンを用いずに炭、素及びゲルマニウムの二元系非晶
質材料(以下非晶質炭化ゲルマニウムと称す。)を形成
し、炭素及びゲルマニウムの含有量比を、変えれば、吸
収波長領域の吸収端をダイナミックに変える事が出来る
。しかも一般に非晶質炭化ゲルマニウムは、光学的禁制
帯幅にして1〜3.5[eV]迄、即ち吸収端波長にし
て1200〜350(nm)迄変光られるので、感光体
材料として必要な近赤外から近紫外迄の全域の波長のカ
バーが可能となる。
Before giving a detailed explanation of this invention, the principle of this invention will first be described. Conventionally, amorphous silicon, which has excellent mechanical strength and thermal stability, has good photoconductive properties by containing hydrogen or halogen elements, or even hydrogen and halogen elements, and is suitable for this purpose. It is known that by adding impurities, it can be used as a photoreceptor for image forming devices. By the way, this amorphous silicon has the property that by adding carbon, the absorption edge of the absorption wavelength region can be shifted to the shorter wavelength side, and the transparency and electrical resistance can be increased, but by adding germanium,
It has the property of being able to move the absorption edge of the absorption wavelength region to the longer wavelength side. Therefore, by utilizing the above characteristics, a binary amorphous material of carbon, element, and germanium (hereinafter referred to as amorphous germanium carbide) can be formed without using silicon, and the content of carbon and germanium can be reduced. By changing the ratio, the absorption edge of the absorption wavelength region can be dynamically changed. Moreover, in general, amorphous germanium carbide has an optical forbidden band width of 1 to 3.5 [eV], or an absorption edge wavelength of 1200 to 350 (nm), so it is necessary as a photoreceptor material. It is possible to cover a wide range of wavelengths from near-infrared to near-ultraviolet.

゛  次に上述の原理にもとづき、感光体材料として非
晶質炭化ゲルマニウムを用いるこの発明の第1の実施例
を第1図及び第2図を参照しながら説明する。プラダ−
v CVD (Chemical Vapor Dep
ositiorの略)装置(9)の反応容器1内には、
100X100X0.8〔朋〕で表面粗さ約0.3[S
]のアルミニウム板からなる導電性支持体(11)を支
持するため、ヒータ(1りを内蔵すると共に接地される
サセプタ(13が設けられている。又反応容器(11)
内のサセプタα3と対向する位置には、  13.56
(MHz)の高周波電源Iに接続される放電用電極−及
び、ゲルマンガス((ieH,)+ メタンガス[CH
,]及び、ジポラン(BzHa) 1 [vol 96
 ]含有のアルゴンガス〔A「〕を必要に応じて供給可
能なガス供給系俣ηに接続されるガス吹出四囲が設けら
れている。更に(1)は反応容器(11内の排気を行な
う排気装置である。尚Cυは感光体であり導・シ性支持
体(lD上に順次電荷注入阻止層(社)、キャリア発生
層の、キャリア翰送層勿、表面層(至)が積層されてい
る。但しここで電荷注入阻止層(社)は、感光体(21
)のコロナ帯電時、帯電々荷と逆楢性の電荷が、導電性
支持体(1υからキャリア発生層の更にはキャリア輸送
層241に注入されるのを阻止する一方、感光体c2υ
の露光時、キャリア発生層ので発生された光生成キャリ
ア対のうち、帯電々荷と同極、性の電荷を有するキャリ
アの導電性支持体αυへの流入をスムースに行なわせる
という2つの機能を有している。又、キャリア発生層の
は、所望の波長の光を吸収し、光生成キャリアを発生さ
せる機能を有し、キャリア輸送層Q4は、キャリア発生
層■で生成されたキャリアのうち、帯電々荷と逆極性の
ものを、帯電による電界で表面方向へ効率良く輸送する
機能を有すると共に、電荷保持のため暗時の比抵抗値と
して、5X10’[Ω口〕以上の高抵抗値が要求される
ものである。更に表面層(至)は表面保護及び光透過性
並びに帯電能向上を行なうものである0 しかしてプラズマCVD装置(9)で感光体(21)を
形成する場合、先ずトリクレンにより脱脂洗浄を行なっ
た導電性支持体αυをサセプタC13上に載置した後、
排気装置(2IICより反応容器H内の真空度を10−
’ CTorr )に設定すると共に、ヒータα2によ
り導電性支持体αυを230[”0)に加熱する。次い
でガス供給系(l?)により、ガス吹出孔(18よりゲ
ルマンガス1501”8CCM)、メタンガス200(
SCCM)、ジボランガスl[volチ]含有のアルゴ
ンガス10[8CCM]を反応容器H内に導入し、排気
装置−により、反応容器Q(I内の圧力を0.7[To
rrl K維持しつつ、高周波電源[4)より300(
W)の電力を導電性支持体(117及び放電用4極ue
間に約5分間供給し、導電性支持体(11)上に放電を
起して、電荷注入阻止層claの成膜を行なう。次に、
ジボランガス][vo1%]含有のアルゴンガスの導入
を停止し、反応容器Q(I内にゲルマンガス270 (
8CCM ) 、メタンガス200 [8CC’M)を
導入し、他は電荷注入阻止層c!2成膜と同一条件で4
0分間成膜を行ない、キャリア発生層のを形成する。
Next, based on the above-mentioned principle, a first embodiment of the present invention using amorphous germanium carbide as the photoreceptor material will be described with reference to FIGS. 1 and 2. prada
v CVD (Chemical Vapor Dep.
In the reaction vessel 1 of the apparatus (9),
100X100X0.8 [home], surface roughness approximately 0.3 [S
] In order to support the conductive support (11) made of an aluminum plate, a susceptor (13) containing a heater (1) and grounded is provided.
At the position facing the susceptor α3 inside, 13.56
The discharge electrode connected to the high frequency power supply I of (MHz) and the germane gas ((ieH,) + methane gas [CH
, ] and Diporan (BzHa) 1 [vol 96
] Containing argon gas [A"] is provided as needed. A gas blowout enclosure is provided which is connected to the gas supply system η, which can supply the argon gas [A"] as needed. Cυ is a photoreceptor, and a conductive support (ID) is sequentially laminated with a charge injection blocking layer, a carrier generation layer, a carrier transporting layer, and a surface layer. However, here, the charge injection blocking layer (21)
), during corona charging of the photoreceptor c2υ, while preventing the injecting of the electrical charges opposite to the charged charges from the conductive support (1υ) into the carrier generation layer and further into the carrier transport layer 241.
During exposure to light, among the photogenerated carrier pairs generated in the carrier generation layer, the carrier having the same polarity and gender as the charged charge smoothly flows into the conductive support αυ. have. In addition, the carrier generation layer has a function of absorbing light of a desired wavelength and generating photogenerated carriers, and the carrier transport layer Q4 absorbs electrical charges and charges among the carriers generated in the carrier generation layer (2). It has the function of efficiently transporting objects of opposite polarity toward the surface using the electric field generated by charging, and requires a high resistance value of 5 x 10' [Ω] or more as a specific resistance value in the dark to retain charge. It is. Furthermore, the surface layer (to) protects the surface, improves light transmittance, and improves charging ability. However, when forming the photoreceptor (21) in the plasma CVD device (9), it is first degreased and cleaned with trichlene. After placing the conductive support αυ on the susceptor C13,
Exhaust device (2IIC to reduce the degree of vacuum in reaction vessel H to 10-
'CTorr) and heat the conductive support αυ to 230["0] using the heater α2. Next, the gas supply system (l?) supplies gas blowing holes (German gas 1501"8CCM from 18), methane gas 200(
SCCM), 10 [8 CCM] of argon gas containing 1 [vol] of diborane gas was introduced into the reaction vessel H, and the pressure in the reaction vessel Q (I was reduced to 0.7 [To
300(
W) power to the conductive support (117 and 4-pole UE for discharge)
For about 5 minutes, a discharge is generated on the conductive support (11) to form a charge injection blocking layer cla. next,
The introduction of argon gas containing diborane gas] [vol 1%] was stopped, and germane gas 270 (
8CCM), methane gas 200 [8CC'M) was introduced, and the rest was a charge injection blocking layer c! 4 under the same conditions as 2.
Film formation is performed for 0 minutes to form a carrier generation layer.

続いて、反応容器部内圧力及び放電々力は前記2層(2
3,123と同一条件で、キャリア発生層のに比し炭素
原子の含有量を増加し、高抵抗にするため、ゲルマンガ
ス及びメタンガスを共に250[8CCM”1導入し、
1時間45分にわたりキャリア輸送層Q、Dの成膜を行
なう。そして最後にゲルマンガス100[8CCM] 
、メタンガス400(SCCM]を反応容器OI内に導
入し、排気装置−により反応容器(11内の圧力を1.
2〔TOr「〕に維持しつつ、高周波電源α導より15
0(W)の・シカを15分間供給し、表面層(ハ)を成
膜する。そして最後の放電終了後、ヒータα2を停止す
ると共に、ゲルマンガス及びメタンガスの導入を停止し
た後、反応容器ill内の残留ガスをチッ素ガスにより
一掃する。このようにして形成された感光体(21に、
6.5 CKV )の正コロナ帯電を行なった結果、感
光体eυは590(V)迄帯電された。又、帯電後、初
期電位540[V)の状態から感光体QυK、近赤外で
ある発掘波長790(nm)のレーザ光を照射した結果
、電位半減露光感度は0.751”μJ/d〕となり、
電位半減露光感度が2〜5〔μJ 、Icd )の従来
の非晶質シリコン等に比し、はるかに優れている事が判
明した。
Subsequently, the pressure inside the reaction vessel and the discharge force are controlled by the two layers (2
Under the same conditions as No. 3,123, germane gas and methane gas were both introduced at 250 [8 CCM"1 in order to increase the carbon atom content and make the resistance higher than that of the carrier generation layer.
The carrier transport layers Q and D were formed for 1 hour and 45 minutes. And finally German Gas 100 [8CCM]
, methane gas 400 (SCCM) was introduced into the reaction vessel OI, and the pressure inside the reaction vessel (11) was reduced to 1.
15 from the high frequency power supply α conductor while maintaining the
0 (W) was supplied for 15 minutes to form a surface layer (c). After the end of the last discharge, the heater α2 is stopped, and the introduction of germane gas and methane gas is stopped, and then the residual gas in the reaction vessel ill is wiped out with nitrogen gas. The photoreceptor (21) formed in this way,
As a result of positive corona charging of 6.5 CKV), the photoreceptor eυ was charged to 590 (V). In addition, after charging, the photoreceptor QυK was irradiated with near-infrared laser light with an excavation wavelength of 790 (nm) from an initial potential of 540 [V], and as a result, the potential half-reduction exposure sensitivity was 0.751"μJ/d] Then,
It has been found that the potential half-reduction exposure sensitivity is far superior to that of conventional amorphous silicon, etc., which has a potential half-reduction exposure sensitivity of 2 to 5 [μJ, Icd].

このように構成すれば、炭素に比しゲルマニウムが比較
的多く含まれる非晶質炭化ゲルマニウムによりキャリア
発生層(ハ)が形成されている事から、感光体I211
は近赤外である790[nm)の波長の光を充分吸収可
能であり、レーザプリンタ等への適用が充分可能となる
。又、表面層(至)には炭素が多く含まれる非晶質炭化
ゲルマニウムが用いられており、表面層(至)の透明度
が向上され、近紫外領域を充分吸収可能であゆ、可視光
をほぼ完全に透過する事から、窓材として優れており、
感光体CDの露光感度が従来に比し著しく向上される。
With this configuration, since the carrier generation layer (c) is formed of amorphous germanium carbide, which contains relatively more germanium than carbon, the photoreceptor I211
can sufficiently absorb light with a wavelength of 790 [nm], which is near infrared, and can be sufficiently applied to laser printers and the like. In addition, amorphous germanium carbide containing a large amount of carbon is used for the surface layer, which improves the transparency of the surface layer and allows for sufficient absorption of near-ultraviolet light, while almost completely absorbing visible light. Because it is completely transparent, it is excellent as a window material.
The exposure sensitivity of the photoreceptor CD is significantly improved compared to the conventional one.

次にこの発明の第2の実施例にりいて説明する。Next, a second embodiment of the present invention will be explained.

尚この第2の実施例は、前述の第1の実施例のキャリア
発生層■の成膜条件のみを変えるものであり、他は第1
の実施例の感光体(21Jと全く同じである事から、第
1の実施例の図面を参照し同一部分については同一符号
を付しその説明を省略する。
In this second embodiment, only the film forming conditions of the carrier generation layer (2) of the above-mentioned first embodiment are changed, and the other conditions are the same as in the first embodiment.
Since the photoreceptor (21J) is exactly the same as that of the first embodiment, referring to the drawings of the first embodiment, the same parts are given the same reference numerals and the explanation thereof will be omitted.

即ちこの実施例にあっては、導電性支持体αυ上に電荷
注入阻止層(20を成膜した後、ジボランガス1[vo
i%]含有のアルゴンガスの導入を停止し、反応容器へ
1内にゲルマンガス300[8CCM] 、メタンガス
150[8CCM]を導入し、排気装置(4)により反
応容1G(11内の圧力をQ、5 〔Torr ) K
維持しつつ高周波電源(14より300〔W)の電力を
供給し、キャリア発生層(図示せず)を成膜するもので
ある。そしてこの後キャリア発生層上に第1の実施例と
同様のキャリア輸送層の及び表面層重を成膜するもので
ある。このようにして形成された感光体は、炭素に対す
るゲルマニウムの含有量が第1の実施例に比し増大され
る事から、感光体の光吸収端は第1の実施例に比し、よ
り長波長領域に移動されるが、仁の感光体に第1の実施
例と同様6.5(KV)の正コロナ帯電を行なった結果
、感光体(図示せず)の表面電位は530〔v〕に達し
た。又、帯電後、初期電位500rV)の状態から、感
光体に発振波長790(nm)のレーザ光を照射した結
果、電位半減露光感度は0.70(μJ/crf)とな
り、第1の実施例に比しより良好な感度が得られた。
That is, in this example, after forming a charge injection blocking layer (20) on the conductive support αυ, diborane gas 1 [vo
i%]-containing argon gas was stopped, 300 [8 CCM] of germane gas and 150 [8 CCM] of methane gas were introduced into the reaction vessel 1, and the pressure inside the reaction volume 1 G (11) was reduced by the exhaust device (4). Q, 5 [Torr) K
A high frequency power source (300 W from 14) is supplied while maintaining the temperature, and a carrier generation layer (not shown) is formed. Thereafter, a carrier transport layer and a surface layer similar to those in the first embodiment are formed on the carrier generation layer. In the photoreceptor thus formed, the content of germanium relative to carbon is increased compared to that in the first example, so the light absorption edge of the photoreceptor is longer than that in the first example. As a result of positive corona charging of 6.5 (KV) on the photoreceptor as in the first embodiment, the surface potential of the photoreceptor (not shown) was 530 [V]. reached. Further, after charging, the photoconductor was irradiated with a laser beam having an oscillation wavelength of 790 (nm) from an initial potential of 500 rV), and as a result, the potential half-reduction exposure sensitivity was 0.70 (μJ/crf), which was the first example. Better sensitivity was obtained compared to the previous method.

このように構成すれば、第1の実施例に比し吸収波長領
域の吸収端をより長波長側に近付ける事が出来、レーザ
プリンタ等に適用する場合、レーザ光の波長領域を拡大
出来、適用範囲が拡大される。
With this configuration, compared to the first embodiment, the absorption edge of the absorption wavelength range can be brought closer to the long wavelength side, and when applied to a laser printer, etc., the wavelength range of the laser beam can be expanded, and the application The range is expanded.

尚この発明は上記実施例に限定される事無く種々設計変
更可能であり、例えば感光体を成膜する装置は光cvp
装置やスパッタリング装置等任意であるし、反応突器内
で成膜時導電性基板を回転させる等しても良い。又、非
晶質炭化ゲルマニウムの炭素とゲルマニウムの含有量は
その必要とする特性に応じて可変であり、短波長に感度
を有するものにあっては、ゲルマニウムに比し炭素の含
有ミを増大すれば良く、一般に炭素/ゲルマニウムの原
子数比は、キャリア発生層にあっては0.2〜2程度が
適当であり、キャリア輸送層では0.5〜3程度が適当
であるし、表面保護、光透過性向上あるいは帯電能向上
を目的とする表面層にあっては炭素/ゲルマニウムの原
子数比は1〜5程度が適当である。尚成膜特使用するガ
スも、炭素を含有するガスとしてはエタンガス[CtH
6] 、プロパンガスCC5Hs ) =エチレンガス
〔cA)、 アセチレンガス(C*H*L 7レオンガ
ス[C’F、)等任意であり、ゲルマニウムを含有する
ガスとしては47ツ化ゲルマニウムガス[GeF、]他
のゲルマニウム化合物等任意である。更に非晶質炭化ゲ
ルマニウムに他の添加物を加えても良く、例えば非晶質
炭化ゲルマニウムに水素又は/Sロゲン元素あるいは水
素及びノ・ロゲン元累を含有させる事により感光体の光
導電特性を向上出来るし、その他ヘリウム(He) 、
アルゴン[Ar] 、ネオン[Ne] 、等の希釈用ガ
スやモノシラン[8iH,]、  47ツ化ケイ素[8
iF4]等シリコンを含むガス、感光体の伝導型を制御
する周期律表第IIIa族元素及び周期律表第Va族元
素を含むジボランCBtHs) eホスフィン(P)1
3)、アルシン(A s H3)等のガスを加えても良
い。そして電荷注入阻止層にあっては、正極性に帯電さ
れる感光体用には周期律表第IIIa族元素を102〜
10’ (atmPPM)含有させる事により、p型あ
るいはp+型とされる非晶質炭化ゲルマニウムを使用す
る一方、負極性に帯電される感光体用には周期律表第V
a族元素を10!〜10″(atmPPM)含有させる
事によりn型あるいはn+型とされる非晶質炭化ゲルマ
ニウムを使用した9、あるいは導電性支持体との密着性
向上を図るためケイ素(8i)を含有させても良い。
The present invention is not limited to the above-mentioned embodiments and can be modified in various ways. For example, the device for forming a film on a photoreceptor may be
Any device or sputtering device may be used, and the conductive substrate may be rotated during film formation within a reactor. In addition, the carbon and germanium contents of amorphous germanium carbide can be varied depending on the required characteristics, and for those sensitive to short wavelengths, it is necessary to increase the carbon content compared to germanium. In general, the carbon/germanium atomic ratio is suitable for the carrier generation layer to be about 0.2 to 2, and for the carrier transport layer to be about 0.5 to 3. In a surface layer whose purpose is to improve light transmittance or chargeability, the carbon/germanium atomic ratio is suitably about 1 to 5. The gas specifically used for film formation is ethane gas [CtH] as a carbon-containing gas.
6], propane gas CC5Hs) = ethylene gas [cA), acetylene gas (C*H*L 7 Leon gas [C'F,), etc., and germanium-containing gas may include germanium 47tide gas [GeF, ] Other germanium compounds are optional. Furthermore, other additives may be added to the amorphous germanium carbide. For example, the photoconductive properties of the photoreceptor can be improved by incorporating hydrogen or /S rogen elements or hydrogen and /S rogen elements into the amorphous germanium carbide. It can be improved and other helium (He),
Diluent gases such as argon [Ar], neon [Ne], monosilane [8iH,], silicon 47 trouside [8
gas containing silicon such as iF4], diborane CBtHs containing elements of group IIIa of the periodic table and group Va of the periodic table that control the conductivity type of the photoreceptor ephosphine (P)1
3), a gas such as arsine (A s H3) may be added. In the charge injection blocking layer, for positively charged photoreceptors, elements from group IIIa of the periodic table are used.
Amorphous germanium carbide, which is made p-type or p+ type by containing 10' (atmPPM), is used, while germanium carbide from periodic table V is used for negatively charged photoreceptors.
10 Group A elements! 9 using amorphous germanium carbide, which is made n-type or n+-type by containing ~10'' (atmPPM), or even containing silicon (8i) to improve adhesion to the conductive support. good.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、機械的強度や熱
的安定性に優れる非晶質炭化ゲルマニウムにより感光体
を形成し、しかも非晶質炭化ゲルマニウムの炭素及びゲ
ルマニウムの含有量比を変える事により、感光体の吸収
波長領域を近紫外から近赤外迄ダイナミックに変動出来
、レーザプリンタ等への適用が可能にされる一方、感光
体の光吸収端を任意に設定出来る事からカラー再現性が
容易となり、カラー複写機への適用も可能にされる等、
多様化される画像形成装置への適用範囲を拡大出来る。
As explained above, according to the present invention, it is possible to form a photoreceptor using amorphous germanium carbide, which has excellent mechanical strength and thermal stability, and to change the content ratio of carbon and germanium in the amorphous germanium carbide. This makes it possible to dynamically change the absorption wavelength range of the photoreceptor from near-ultraviolet to near-infrared, making it possible to apply it to laser printers, etc., while improving color reproducibility because the light absorption edge of the photoreceptor can be set arbitrarily. This makes it easier to use and can be applied to color copying machines, etc.
The scope of application to increasingly diverse image forming apparatuses can be expanded.

更に非晶質炭化ゲルマニウム中の炭素及びゲルマニウム
の含有量によっては可視光を完全に透過可能な感光材料
を形成出来るのでこれを窓材として適用すれば、感光体
感度の著しい向上を図る事が出来る。
Furthermore, depending on the content of carbon and germanium in amorphous germanium carbide, it is possible to form a photosensitive material that can completely transmit visible light, so if this is applied as a window material, the sensitivity of the photoreceptor can be significantly improved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の第1の実施例を示し、第
1図はそのプラズマCVD装置を示す概略説明図、第2
図はその感光体を示す一部省略断面図である。 10・・反応容器     11・・・導電性支持体1
2・・・ヒータ      13・・サセプタ14・・
・高周波電源    16・・放電用電極17・・・ガ
ス供給系    18・・・ガス吹出孔20・・・排A
装置     21・・・感光体22・・・電荷注入阻
止層  Z3・・キャリア発生層24・・キャリア輸送
層   25・・・表面層代理人 弁理士  井  上
  −男 □第1図 第  2  図
1 and 2 show a first embodiment of the present invention, FIG. 1 is a schematic explanatory diagram showing a plasma CVD apparatus thereof, and FIG.
The figure is a partially omitted sectional view showing the photoreceptor. 10... Reaction container 11... Conductive support 1
2... Heater 13... Susceptor 14...
・High frequency power supply 16...Discharge electrode 17...Gas supply system 18...Gas blow-off hole 20...Exhaust A
Device 21...Photoreceptor 22...Charge injection blocking layer Z3...Carrier generation layer 24...Carrier transport layer 25...Surface layer agent Patent attorney Inoue - Male□Figure 1Figure 2

Claims (1)

【特許請求の範囲】 1、基板上に感光層を有するものにおいて、前記感光層
が炭素及びゲルマニウムの二元系非晶質材料からなる事
を特徴とする光導電体。 2、感光層が、基板上に順次積層される電荷注入阻止層
、キャリア発生層、キャリア輸送層及び表面層を有する
事を特徴とする特許請求の範囲第1項記載の光導電体。 3、電荷注入阻止層における炭素及びゲルマニウムの二
元系非晶質材料に、周期律表第IIIa族の元素が含有さ
れる事を特徴とする特許請求の範囲第2項記載の光導電
体。 4、電荷注入阻止層における炭素及びゲルマニウムの二
元系非晶質材料に、周期律表第Va族の元素が含有され
る事を特徴とする特許請求の範囲第2項記載の光導電体
[Scope of Claims] 1. A photoconductor having a photosensitive layer on a substrate, wherein the photosensitive layer is made of a binary amorphous material of carbon and germanium. 2. The photoconductor according to claim 1, wherein the photosensitive layer has a charge injection blocking layer, a carrier generation layer, a carrier transport layer, and a surface layer, which are sequentially laminated on the substrate. 3. The photoconductor according to claim 2, wherein the binary amorphous material of carbon and germanium in the charge injection blocking layer contains an element of group IIIa of the periodic table. 4. The photoconductor according to claim 2, wherein the binary amorphous material of carbon and germanium in the charge injection blocking layer contains an element of group Va of the periodic table.
JP22599084A 1984-10-29 1984-10-29 Photoconductor Pending JPS61105551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22599084A JPS61105551A (en) 1984-10-29 1984-10-29 Photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22599084A JPS61105551A (en) 1984-10-29 1984-10-29 Photoconductor

Publications (1)

Publication Number Publication Date
JPS61105551A true JPS61105551A (en) 1986-05-23

Family

ID=16838066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22599084A Pending JPS61105551A (en) 1984-10-29 1984-10-29 Photoconductor

Country Status (1)

Country Link
JP (1) JPS61105551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181154A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body
US6844070B2 (en) * 2002-08-30 2005-01-18 Lockheed Martin Corporation Low-temperature plasma deposited hydrogenated amorphous germanium carbon abrasion-resistant coatings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181154A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body
US6844070B2 (en) * 2002-08-30 2005-01-18 Lockheed Martin Corporation Low-temperature plasma deposited hydrogenated amorphous germanium carbon abrasion-resistant coatings
US7214406B2 (en) 2002-08-30 2007-05-08 Lockheed Martin Corporation Low-temperature plasma deposited hydrogenated amorphous germanium carbon abrasion-resistant coatings

Similar Documents

Publication Publication Date Title
US4720444A (en) Layered amorphous silicon alloy photoconductive electrostatographic imaging members with p, n multijunctions
US4755444A (en) Electrophotographic photoreceptor
US5262262A (en) Electrophotographic photoreceptor having conductive layer and amorphous carbon overlayer
US4943503A (en) Amorphous silicon photoreceptor
US4932859A (en) Electrophotographic photoreceptor having doped and/or bilayer amorphous silicon photosensitive layer
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JPS61105551A (en) Photoconductor
US5094929A (en) Electrophotographic photoreceptor with amorphous carbon containing germanium
JP2722470B2 (en) Electrophotographic photoreceptor
JPS5984254A (en) Photosensitive body
JPS6194049A (en) Electrophotographic sensitive body
JPS6194054A (en) Photoconductive member
JP2887830B2 (en) Electrophotographic photoreceptor and electrophotographic method
JPS58194732A (en) Forming method of amorphous silicon carbide layer
JPH0695214B2 (en) Electrophotographic photoconductor
JPS6261056A (en) Photoconductor
JP2887553B2 (en) Electrophotographic photoreceptor
JPS6194048A (en) Photosensitive body
US5462827A (en) Electrophotographic photoreceptor and electrophotographic process
JP2562583B2 (en) Electrophotographic photoreceptor
JPS62113156A (en) Electrophotographic sensitive body
JPH0421858A (en) Electrophotographic sensitive body
JPS62211660A (en) Photosensitive body
JPS5984256A (en) Photosensitive body
JPS61275854A (en) Electrophotographic sensitive body