JPS61101426A - Production of light transmission glass material having refractive index gradient - Google Patents

Production of light transmission glass material having refractive index gradient

Info

Publication number
JPS61101426A
JPS61101426A JP22104684A JP22104684A JPS61101426A JP S61101426 A JPS61101426 A JP S61101426A JP 22104684 A JP22104684 A JP 22104684A JP 22104684 A JP22104684 A JP 22104684A JP S61101426 A JPS61101426 A JP S61101426A
Authority
JP
Japan
Prior art keywords
refractive index
gel
glass
wet gel
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22104684A
Other languages
Japanese (ja)
Inventor
Kazuo Shingyouchi
新行内 和夫
Shigeru Kashiwazaki
柏崎 茂
Yukio Shimazaki
島崎 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22104684A priority Critical patent/JPS61101426A/en
Publication of JPS61101426A publication Critical patent/JPS61101426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stably and easily light transmission glass having refractive index gradient, by adding a metal alkoxide to raise refractive index to a specific silicon alkoxide solution to give wet gel, and immersing the gel in a metal- containing solution to reduce refractive index. CONSTITUTION:At least one of a metal alkoxide of elements of Ge, P, Al, etc. to raise refractive index of transparent quartz glass to a solution of a silicon alkoxide shown by the formula Si(OR)4 (R is alkyl group), which is hydrolyzed to give wet gel with a given shape. Then, the wet gel is immersed in a solution of a B-containing compound (B2O3, H3BO3, etc.) or a F-containing compound (NH4HF2, NaHF2, etc.) to reduce refractive index of transparent quartz glass. After the wet gel is provided with refractive index distribution, it is processed into dry gel, by a given method and made into glass by calcination. Consequently, light transmission glass material having refractive index continuously reducing from the center towards the peripheral direction is produced.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、光伝送ガラス体特にガラスの屈折率゛が先の
進行すべき方向を横切る方向に次第に変化する屈折率勾
配を有する光伝送ガラス体の製造方法に関するものであ
る。
Detailed Description of the Invention [Background and Objects of the Invention] The present invention relates to a light transmission glass body, particularly a light transmission glass having a refractive index gradient in which the refractive index of the glass gradually changes in a direction transverse to the direction in which the glass should travel. The present invention relates to a method of manufacturing a body.

ガラス内部屈折率が中心から周表面に向って連続的に減
少する光伝送ガラス体の製造方法として、例えば、特公
昭47−816号公報に示しであるように、タリウムを
含むガラス棒をアルカリ金屑の溶融、塩と接触させ、ガ
ラス棒の表面に近いタリウムイオンはどより多(のアル
カリ全屈イオンと置換して所要の屈折率勾配を得る方法
が知られているが、この方法は、イオン交換処理に時間
がかかり、耐候性に劣るなどの欠点がある。また、屈折
率付与が目的でないが、特開昭58−9842号公報に
示しであるように、シリコンアルコキシド溶液に透明石
英ガラスの屈折率を変化せしめる添加元素のアルコキシ
ドを含む溶液を有機溶媒に浸して焼結ガラス化する方法
が知られているが、この方法は、充分な屈折率分布を付
与するためには多聞に添加することが必要になる。一般
に金属アルコキシドは加水分解速度が異なるため、多回
に添加すると、焼結ガラス化する工程において発泡クラ
ックを生じ、実用化するには改良すべき点が残っている
As a method for manufacturing a light transmitting glass body in which the internal refractive index of the glass decreases continuously from the center toward the peripheral surface, for example, as shown in Japanese Patent Publication No. 47-816, a glass rod containing thallium is heated with alkali metal. A method is known in which the glass rod is melted and brought into contact with salt, and the thallium ions near the surface of the glass rod are replaced with more alkali total ions to obtain the required refractive index gradient. There are drawbacks such as ion exchange treatment taking time and poor weather resistance.Also, although imparting a refractive index is not the purpose, as shown in Japanese Patent Application Laid-open No. 58-9842, transparent quartz glass is added to a silicon alkoxide solution. A known method is to sinter and vitrify a solution containing an alkoxide, an additive element that changes the refractive index, in an organic solvent. In general, metal alkoxides have different hydrolysis rates, so if they are added multiple times, foaming cracks will occur during the sintering and vitrification process, and there are still points that need to be improved for practical use.

本発明の目的は、上記した従来技術の欠点を解消し、ガ
ラス内部屈折率が周表面に向って連続的に減少する屈折
率勾配を有する光伝送ガラス体の製造方法を提供するこ
とにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method for manufacturing a light transmitting glass body having a refractive index gradient in which the internal refractive index of the glass decreases continuously toward the peripheral surface.

[発明の概要] 本発明の特徴は、Rをアルキル基としたとき一般式Si
(OR)aで示されるシリコンアルコキシドの溶液に透
明ガラスの屈折率を高める金属アルコキシドを添加して
加水分解して所定形状の湿潤ゲルを生成し、この湿潤ゲ
ルを透明石英ガラスの屈折率を低下させる金属を含む溶
液に浸漬し、上記湿潤ゲル中の屈折率を高める添加金属
を屈折率を低下させる金属で交換することにより屈折率
が中心より周表面に向って連続的に減少する光伝送ガラ
ス体を製造するようにした点にある。
[Summary of the invention] The feature of the present invention is that when R is an alkyl group, the general formula Si
(OR) Add a metal alkoxide that increases the refractive index of transparent glass to a solution of silicon alkoxide represented by a, hydrolyze it to produce a wet gel of a predetermined shape, and use this wet gel to lower the refractive index of transparent quartz glass. A light transmitting glass whose refractive index continuously decreases from the center toward the peripheral surface by immersing it in a solution containing a metal that increases the refractive index and replacing the added metal that increases the refractive index in the wet gel with a metal that decreases the refractive index. The point is that the body was manufactured.

ここに、一般式Si(OP)aで示されるシリコンアル
コキシドとしては、S ! (OCH3)4 。
Here, as the silicon alkoxide represented by the general formula Si(OP)a, S! (OCH3)4.

S  !   (OCZ   Ha   )4  、 
  S  !   (OC3FIT   )a  等が
あり、これらの溶液に透明石英ガラスの屈折率を高める
Ge、P、All、Sb、Ti、Zr、Sn、To、N
b、Goなどの元素よりなる金属アルコキシドより選択
した少なくとも一種を添加して所定の形状の湿潤ゲルを
作り、この湿潤ゲルを透明石英ガラスの屈折率を低下さ
せるBを含む化合物やFを含む化合物の溶液に浸漬する
。Bを含む化合物トシテハ、8203 、H3[303
、HBOz  (NHa )BOz 、KBOz 、N
aBOz 。
S! (OCZ Ha)4,
S! (OC3FIT)a, etc., and these solutions contain Ge, P, All, Sb, Ti, Zr, Sn, To, and N, which increase the refractive index of transparent quartz glass.
A wet gel of a predetermined shape is created by adding at least one selected from metal alkoxides consisting of elements such as B and Go, and this wet gel is mixed with a B-containing compound or a F-containing compound that lowers the refractive index of transparent quartz glass. Soak in a solution of Compounds containing B Toshiteha, 8203, H3[303
, HBOz (NHa)BOz, KBOz, N
aBOz.

BBr3.’B 13 、B6Hs等を使用できる。F
を含む化合物トシテハ、BrF3.NHa HF2 。
BBr3. 'B 13 , B6Hs, etc. can be used. F
Compounds containing Toshiteha, BrF3. NHaHF2.

NaHFz 、KHFz等が使用できる。このようにし
て湿潤ゲルに屈折率分布を付与した後は、白根等のJ、
Mat、Sc、13 (1978)内の参考文献中に示
されている方法により乾燥ゲルとする工程およびこの乾
燥ゲルを焼結してガラス化する工程により目的とする光
伝送ガラス体を製造するようにしである。
NaHFz, KHFz, etc. can be used. After imparting a refractive index distribution to the wet gel in this way, Shirane et al.
Mat, Sc, 13 (1978), the process of forming a dry gel and sintering the dry gel to make it vitrified produced the desired light transmitting glass body. It's Nishide.

[実施例] 以下、実施例に基づき詳細に説明する。[Example] Hereinafter, a detailed explanation will be given based on examples.

実施例1 S i (OCz Ha )40.9モルにGe (Q
CzHs)aを0.1モル添加し、4モルのCzHsO
Hを加えてマグネチックスターラでよく混合し、これに
濃度104モル/1NHaOH水溶液を4モル加えて混
合し、第1図に示すように、この加水分解溶液2を直ち
に内径10m+、長さ200Mのシリコンをコーティン
グした円筒形の成形用ガラス容器1に7割はど入れ、5
0℃に放置してゲル化し、第2 図に示すように湿潤ゲ
ル3とする。そして、湿潤ゲル3がガラス容器1から離
れた後、この湿潤ゲル3をガラス容器1から取り出し、
第3図に示すように、ガラス容器4内にて820320
%の02H508からなる溶液5中に所望の分布が得ら
れるまで浸漬する。この場合、浸漬時間を短縮するため
、70℃まで加熱することは有効である。
Example 1 Ge (Q
Add 0.1 mol of CzHs)a, add 4 mol of CzHsO
Add H and mix well with a magnetic stirrer, add and mix 4 mol of 104 mol/1N HaOH aqueous solution, and as shown in Fig. Pour 70% into a silicone-coated cylindrical molding glass container 1,
The mixture is left to stand at 0°C to gel, forming a wet gel 3 as shown in FIG. After the wet gel 3 is separated from the glass container 1, the wet gel 3 is taken out from the glass container 1,
820320 in the glass container 4 as shown in FIG.
% 02H508 until the desired distribution is obtained. In this case, heating to 70° C. is effective in shortening the immersion time.

浸漬後、湿潤ゲル3を取り出し、再び元のガラス容器1
に入れ、初期重量に対してQ、5wt%/dayの割合
で蒸発させ、乾燥を行う。次に、この湿潤ゲル3を02
中で700℃まで昇温し、その後、HCを含む雰囲気で
焼結して透明ガラス体とする。
After soaking, take out the wet gel 3 and put it back into the original glass container 1.
It is evaporated at a rate of Q, 5 wt%/day based on the initial weight, and dried. Next, apply this wet gel 3 to 02
The temperature is raised to 700° C. in the chamber, and then sintered in an atmosphere containing HC to form a transparent glass body.

このようにして、得られた予備成形分の添加分布は、ガ
ラス体の軸を横切って切断し、断面を通常の手段によ゛
り完全に透明になるまで研磨する。
The dosing profile of the preform thus obtained is cut transversely to the axis of the glass body and the cross-section is polished by conventional means until completely transparent.

次いで薄いカーボン膜を上記研磨面上に蒸着させ、被覆
面をX線分析可能な走査型電気顕微鏡で分析した。
A thin carbon film was then deposited on the polished surface, and the coated surface was analyzed using a scanning electric microscope capable of X-ray analysis.

Geの濃度は中心部で濃厚であり、外周部で希薄となっ
ており、逆にBの濃度は中心部にはほとんどなく、外周
部で濃厚となっていた。
The concentration of Ge was high at the center and low at the periphery, and conversely, the concentration of B was almost non-existent at the center and high at the periphery.

実施例2 S i (OCH3)a 0.9モルにGe (OCH
3)4を0.1モル添加し、4モルのCH308を加え
てマグネチックスターラでよく混合し、これに濃度10
4モル/1のNHaOH水溶液を4モル加えて混合し、
第1図と同様、この加水分解溶液を直ちに内径10ax
、長さ200mのシリコンをコーティングした円筒形の
成形用ガラス容器1に7割はど入れ、50℃に放、置し
てゲル化させた。そして、ゲルが容器から離れた後、こ
のゲルをガラス容器1から取り出し、第3図と同様、ガ
ラス容器4内にてNHallFz10%の水溶液に所望
の分布が得られるまで浸漬する。この場合、浸漬時間を
短縮するのに加熱することは有効である。浸漬後、ゲル
を取り出し、再び元のガラス容器1に入れ、初期重量に
対して0 、514tX/dayの割合で蒸発させ、乾
燥を行う。このゲルを02中で700℃まで昇温し、そ
の後、Heを含む雰囲気で焼結して透明ガラス体とする
Example 2 Ge (OCH
3) Add 0.1 mole of 4, add 4 mole of CH308, mix well with a magnetic stirrer, and add
Add and mix 4 mol of 4 mol/1 NHaOH aqueous solution,
Similar to Figure 1, this hydrolyzed solution was immediately poured into a tube with an inner diameter of 10ax.
The mixture was placed 70% into a silicone-coated cylindrical glass container 1 with a length of 200 m, and left to stand at 50°C to gel. After the gel is separated from the container, the gel is taken out from the glass container 1 and immersed in a 10% aqueous solution of NHallFz in the glass container 4 as shown in FIG. 3 until a desired distribution is obtained. In this case, heating is effective in shortening the soaking time. After immersion, the gel is taken out, put back into the original glass container 1, and dried by evaporation at a rate of 0.514 tX/day based on the initial weight. This gel is heated to 700° C. in O2, and then sintered in an atmosphere containing He to form a transparent glass body.

このようにして得られた予備成形物の添加分布は、上記
の方法により走査型電子顕微鏡で分析した。
The addition distribution of the preform thus obtained was analyzed with a scanning electron microscope according to the method described above.

Geの濃度は中心部で濃厚であり、外周部で希薄となっ
ており、逆にFの濃度は中心部にはほとんどなく、外周
部で濃厚となっていた。
The concentration of Ge was high at the center and low at the periphery, and conversely, the concentration of F was almost non-existent at the center and high at the periphery.

実施例3 S i (OCz H5>40.9モルにTa (QC
2H6)を0.1モル添加し、2モルの02 HaOH
を加えてマグネチックスターラでよく混合し、これに濃
度0.05NのNHa OH水溶液4モルをCZ H6
082モルで希釈した加水分解水を約4時間かけて滴下
して混合した後、第1と同様直ちに内径10am、長さ
2001mのシリコンをコーティングした円筒形の成形
用ガラス容器1に7vJはど入れ、50℃に放置してゲ
ル化させた。そして、ゲルが容器から離れた後、このゲ
ルをガラス容器1から取り出し、第3図と同様ガラス容
器4内にてHBO210%水溶液に所望の分布が得られ
るまで浸漬する。この場合、浸漬時間を短縮するのに加
熱することは有効である。浸漬後、ゲルを取り出し再び
元のガラス容器1に入れ、初期重量に対して0.5Wt
X/dayの割合で蒸発させ、乾燥を行う。
Example 3 Ta (QC
2H6) and 2 moles of 02HaOH
was added and mixed well with a magnetic stirrer, and 4 mol of NHaOH aqueous solution with a concentration of 0.05N was added to the CZ H6.
Hydrolyzed water diluted with 0.082 mol was added dropwise over about 4 hours and mixed, and then immediately put into a cylindrical molding glass container 1 coated with silicone with an inner diameter of 10 am and a length of 2001 m at 7 vJ as in the first step. The mixture was allowed to stand at 50°C to form a gel. After the gel is separated from the container, the gel is taken out from the glass container 1 and immersed in a 10% HBO2 aqueous solution in the same manner as in FIG. 3 in a glass container 4 until a desired distribution is obtained. In this case, heating is effective in shortening the soaking time. After soaking, take out the gel and put it back into the original glass container 1, and add 0.5Wt to the initial weight.
Evaporate and dry at a rate of X/day.

このゲルを02中で700℃まで昇温し、その後、He
を含む雰囲気で焼結し、透明ガラス体とする。
This gel was heated to 700°C in 02, then He
It is sintered in an atmosphere containing a transparent glass body.

このようにして得られた予備成形物の添加分布は、上記
の方法により走査型電子顕微鏡で分析した。
The addition distribution of the preform thus obtained was analyzed with a scanning electron microscope according to the method described above.

Taの濃度は中心部で濃厚であり、外周部で希薄となっ
ており、逆にBの濃度は中心部にはほとんどなく、外周
部で濃厚となっていた。
The concentration of Ta was high in the center and dilute in the outer periphery, and conversely, the concentration of B was almost non-existent in the center and high in the outer periphery.

[発明の効果] 以上説明したように、本発明によれば、ガラス内部屈折
率が周表面に向って連続的に減少する屈折率勾配を有し
、かつ、光伝送ガラス体の製造方法が容易で、安定した
濃度分布のものが作成できるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, the internal refractive index of the glass has a refractive index gradient that continuously decreases toward the peripheral surface, and the method for manufacturing a light transmission glass body is easy. This has the effect of creating a stable concentration distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSi(OR)4に屈折率を高める金属アルコキ
シドを添加して加水分解したものを入れた円筒形の成形
用ガラス容器の構成図、第2図はゲルが円筒形の成形用
ガラス容器から離れた状態を示す図、第3図はゲルをゲ
ルの屈折率を下げる化合物を含む溶液に浸漬させた状態
を示す図である。 1・・・円筒形の成形用ガラス容器。 2・・・加水分解溶液、  3・・・湿潤ゲル。 4・・・ガラス容器、   5・・・溶液。 算  1  目 算 2  口 第 3 閉
Figure 1 is a configuration diagram of a cylindrical molding glass container containing Si(OR)4 hydrolyzed by adding a metal alkoxide to increase the refractive index, and Figure 2 is a cylindrical molding glass container containing gel. Figure 3 shows the gel separated from the container, and Figure 3 shows the gel immersed in a solution containing a compound that lowers the refractive index of the gel. 1... Cylindrical glass container for molding. 2... Hydrolyzed solution, 3... Wet gel. 4...Glass container, 5...Solution. Calculation 1. Calculation 2. 3rd closing

Claims (1)

【特許請求の範囲】[Claims] (1)Rをアルキル基としたとき一般式Si(OR)_
4で示されるシリコンアルコキシドの溶液に透明ガラス
の屈折率を高める金属アルコキシドを添加して加水分解
して所定形状の湿潤ゲルを生成し、該湿潤ゲルを透明石
英ガラスの屈折率を低下させる金属を含む溶液に浸漬し
、前記湿潤ゲル中の屈折率を高める添加金属を屈折率を
低下させる金属で交換することにより屈折率が中心より
周表面に向って連続的に減少する光伝送ガラス体を製造
することを特徴とする屈折率勾配を有する光伝送ガラス
体の製造方法。
(1) When R is an alkyl group, the general formula Si(OR)_
A metal alkoxide that increases the refractive index of transparent glass is added to a solution of silicon alkoxide shown in 4, and the metal alkoxide that increases the refractive index of transparent glass is hydrolyzed to produce a wet gel of a predetermined shape. manufacturing a light transmission glass body whose refractive index continuously decreases from the center toward the peripheral surface by immersing it in a solution containing the liquid and replacing the added metal that increases the refractive index in the wet gel with a metal that decreases the refractive index. 1. A method of manufacturing a light transmitting glass body having a refractive index gradient, the method comprising:
JP22104684A 1984-10-19 1984-10-19 Production of light transmission glass material having refractive index gradient Pending JPS61101426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22104684A JPS61101426A (en) 1984-10-19 1984-10-19 Production of light transmission glass material having refractive index gradient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22104684A JPS61101426A (en) 1984-10-19 1984-10-19 Production of light transmission glass material having refractive index gradient

Publications (1)

Publication Number Publication Date
JPS61101426A true JPS61101426A (en) 1986-05-20

Family

ID=16760638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22104684A Pending JPS61101426A (en) 1984-10-19 1984-10-19 Production of light transmission glass material having refractive index gradient

Country Status (1)

Country Link
JP (1) JPS61101426A (en)

Similar Documents

Publication Publication Date Title
US5250096A (en) Sol-gel method of making multicomponent glass
JPH06122530A (en) Refractive index gradient type glass and sol-gel method for manufacture thereof
JP3199354B2 (en) Antibacterial glass and method for producing the same
US5047369A (en) Fabrication of semiconductor devices using phosphosilicate glasses
JPS58145634A (en) Manufacture of doped glassy silica
CN110342812A (en) A kind of preparation method of multicomponent glass
JPS61101426A (en) Production of light transmission glass material having refractive index gradient
JPS6252136A (en) Manufacture of glass product
JPS61501320A (en) aluminosilicate optical glass
JPS61101425A (en) Production of light transmission glass material having refractive index gradient
JPH0729800B2 (en) Method for manufacturing optical glass body
JPH05306126A (en) Distributed index optical element and its production
JPH05306125A (en) Production of glass
JPH0788224B2 (en) Method of manufacturing gradient index lens
JPH0244031A (en) Production of nonlinear optical glass
JP3112473B2 (en) Method of manufacturing refractive index distribution type optical element
JPS62187131A (en) Method for preparing base material for quartz optical fiber
JPS60166240A (en) Method for controlling refractive index distrubition
JPS61256928A (en) Production of glass
CA1150737A (en) Optical waveguide and method and compositions for producing same
JPH0527575B2 (en)
JPH0465327A (en) Production of optical quartz fiber with ti doped layer
JPH0422905A (en) Production of optical wavegauide
JP2886370B2 (en) Method for manufacturing substrate with glass film
JPS62246828A (en) Production of optical glass