JPS61100953A - Package for semiconductor device - Google Patents

Package for semiconductor device

Info

Publication number
JPS61100953A
JPS61100953A JP22170884A JP22170884A JPS61100953A JP S61100953 A JPS61100953 A JP S61100953A JP 22170884 A JP22170884 A JP 22170884A JP 22170884 A JP22170884 A JP 22170884A JP S61100953 A JPS61100953 A JP S61100953A
Authority
JP
Japan
Prior art keywords
heat sink
base material
plating layer
thickness
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22170884A
Other languages
Japanese (ja)
Inventor
Shoji Hashizume
昭二 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22170884A priority Critical patent/JPS61100953A/en
Publication of JPS61100953A publication Critical patent/JPS61100953A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/047Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To obtain a package having excellent thermal conductivity and assembly operating properties without increasing heat resistance due to the cracks and voids of a semicondutor element by forming a plating layer, which consists of a base metal having thermal conductivity higher than a base material for a heat sink and has thickness of a specific value or more, to the heat sink. CONSTITUTION:A heat sink 301 is constituted in such a manner that a plating layer 301-2, which is composed of a base metal having thermal conductivity higher than a base material 301-1 such as Cu and has thickness of 10mum or more, and a Ni plating layer 304 and an Au plating 305 deposited on the layer 301-2 in succession are formed onto the base material 301-1 consisting of an alloy, such as a CuW alloy, Kovar, a FeNi alloy, etc. Accordingly, since the base material 301-1 is processed to a required shape and the Cu plating layer 301-2 can be formed on the whole surface in uniform thickness while being fast stuck to the base material 301-1, the thickness of the Cu plating layer 301-2 is brought to 10mum or more in order to prevent the warp of the heat sink 301 and stress on the processing of the heat sink 301, thus acquiring the radiator plate having low heat resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置用容器に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a container for semiconductor devices.

〔従来の技術〕[Conventional technology]

一般にt5出力の半導体装置7iJ容器は、半導体素子
を固着すると共に、半導体素子の熱放散を目的とした放
熱板を有している。この放熱板材料としては、銅、鋼−
タングステン合金、鉄−ニッケル合金、コバールなどが
匣用されており、放熱板の表面には、半導体素子固着用
ろう材の6れ性の向上、及び放熱板の防食のために、ニ
ッケルメッキを下地に施行した後、金メッキあるいは続
メッキが施行される。メッキ層のjg−さとしては、ニ
ッケルメッキ=0.5〜6μm 、金メッキ:0.1〜
10μm、銀メッキ:1〜15μmが一般であるが、特
に、金メッキ、快メッキなど燻貴金属であり、メッキ厚
が厚・くなるに従って尚価となることから、半導体装置
で要求される品質に応じて、メッキ厚はできる限り薄く
施行される。
Generally, a t5 output semiconductor device 7iJ container has a heat sink for fixing a semiconductor element and for dissipating heat from the semiconductor element. The material for this heat sink is copper, steel.
Tungsten alloy, iron-nickel alloy, Kovar, etc. are used for the casing, and the surface of the heat sink is coated with nickel plating to improve the wearability of the solder metal for bonding semiconductor elements and to prevent corrosion of the heat sink. After that, gold plating or follow-up plating is performed. The thickness of the plating layer is nickel plating = 0.5 to 6 μm, gold plating: 0.1 to 6 μm.
10 μm, silver plating: 1 to 15 μm is common, but in particular, gold plating, free plating, etc. are smoked precious metals, and as the plating thickness increases, the price increases, so it is necessary to match the quality required for semiconductor devices. Therefore, the plating thickness is made as thin as possible.

これらの半導体装置用容器に搭載されるGaAsFET
等の半導体素子としては、高集積化ろるいは高出力化に
伴ない、素子サイズの増大、及び単位面積当りの消費電
力の請人化が進んで米たのと同時に、半導体素子自体の
熱砥抗を低くする目的で、素子の薄型比が進んできた。
GaAsFET mounted in these semiconductor device containers
As semiconductor devices such as In order to lower the abrasive resistance, elements have become thinner.

このため、半導体装置用容器としては、熱伝2!本性の
向止−−目迫絡上と共に、使用される放熱板と半導体素
子の熱彰張差による、半導体素子のクラックを防止する
ことが重要な課題となりている。
Therefore, as a container for semiconductor devices, Heat Transfer 2! In addition to the real problem of direct failure, it is also an important issue to prevent cracks in semiconductor devices due to the thermal tension difference between the heat sink used and the semiconductor device.

しかるに、放熱板材料として、綱を用いた場合、熱抵抗
は小さい(熱伝導率が高い)が、銅の熱膨張係数が大き
いため、素子外形が2mm前後を越えると、素子のクラ
ックが生じ易くなる。また、放熱板材料として、コバー
ル材を用いた場合、熱ストレスによる素子のクラックの
問題はないが、コパール材の熱伝導率が低いことから、
熱抵抗が高くなってしまうという問題点を有する。これ
らの関係をわかりやすくするために、代表的放熱板材料
について、熱伝導亀・1熱膨張係数と共に表にまとめる
と、第1表のようになる。
However, when steel is used as the heat sink material, the thermal resistance is low (high thermal conductivity), but since copper has a large coefficient of thermal expansion, if the external diameter of the element exceeds about 2 mm, cracks are likely to occur in the element. Become. In addition, when Kovar material is used as the heat sink material, there is no problem of cracking of the element due to thermal stress, but due to the low thermal conductivity of Kovar material,
This has the problem of high thermal resistance. In order to make these relationships easier to understand, typical heat sink materials are summarized in a table along with their heat conduction coefficients and coefficients of thermal expansion, as shown in Table 1.

こうした半導体装置用容器の改善方法として、次に示す
方法が提案されている。
The following methods have been proposed as methods for improving such containers for semiconductor devices.

(1)熱膨張係数が小さく、熱伝導率が低い材料(例え
ば、コバール鉄−ニッケル合金等)に、Guなどの熱伝
導率の高い材料からなるディスクを、AnSn合金など
のろう材で接合し、ディスク上に半導体素子を固着する
方法。
(1) A disk made of a material with high thermal conductivity such as Gu is bonded to a material with a small thermal expansion coefficient and low thermal conductivity (for example, Kovar iron-nickel alloy, etc.) using a brazing material such as AnSn alloy. , a method of fixing semiconductor elements on a disk.

(2)  あらかじめ、熱膨張係数が小さく、熱伝導率
の低い基材KCuなどの熱伝導率の高い材料をあらかじ
め接合(圧着等による)しておき、適当な形状に加工し
、放熱板として用いる方法。
(2) A material with high thermal conductivity such as KCu, a base material with a small coefficient of thermal expansion and low thermal conductivity, is bonded (by pressure bonding, etc.) in advance, processed into an appropriate shape, and used as a heat sink. Method.

第1表 注 ◎:良好 Δ:条件によ抄不適 X:不適 第2図及び第3図(&) 、 (b)は、それぞれ従来
の半導体装置用容器の一例及び他の例を示す断面図で、
第3図(ロ)は第3図(JL)のA部分の拡大断面図で
ある。
Notes to Table 1 ◎: Good Δ: Unsuitable depending on conditions in,
FIG. 3(B) is an enlarged sectional view of part A in FIG. 3(JL).

第2図、第3図(a)Kおイテ、放熱板101,201
上に1アルミナ等から邊る側壁部材102,202を固
着し、この側壁部材102,202の上に、外部導出端
子103,203が設けられている。又放熱板101.
201の防食のために1第3図(b)に示すようfC,
Niメッキ層204を下地としたAuメッキ層205が
設けられている。
Fig. 2, Fig. 3 (a) Kite, heat sink 101, 201
Side wall members 102, 202 made of 1-alumina or the like are fixed on top, and external lead-out terminals 103, 203 are provided on these side wall members 102, 202. Also, heat sink 101.
For corrosion prevention of 201 fC, as shown in Figure 3(b),
An Au plating layer 205 is provided with a Ni plating layer 204 as a base.

なお、第3図(&) 、 (b)K示す従来の半導体装
置用容器においては、上記(2)の方法で述べた如く、
放熱板201を、熱膨張係数の小さい例えばコバール、
FeNi合金等からなる基材201−1に熱伝導率の高
い、例えばCu等の板材202を圧着等に成されている
In addition, in the conventional semiconductor device container shown in FIGS. 3(&) and (b)K, as described in method (2) above,
The heat sink 201 is made of a material having a small coefficient of thermal expansion, such as Kovar,
A plate material 202 having high thermal conductivity, such as Cu, is bonded to a base material 201-1 made of a FeNi alloy or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第λ図に示す従来の半導体装置用容器では、放熱板10
1の材料として、例えばCuW合金、コパール、FeN
i合金等を用いた場合、これらの合金は熱伝導率が小さ
いため、熱抵抗が大きくなるムする目的で、放熱板10
1の材料として、熱伝導率の高いCuを用いた場合、半
導体素子と放熱板101との熱膨張差からくる熱ストレ
スにより、素子り2ツクが生じ易いという問題点を有し
ていは、基材201−1と板材201−2の熱膨張係数
差によりそりが発生し易いとか、放熱板201の外形加
工時のストレスや、容器組立工程における熱ストレスに
より、基材201−1と板材201−2間の接合部での
はがれが生じ易くなるといった問題点を有している。
In the conventional semiconductor device container shown in FIG.
As the material of 1, for example, CuW alloy, copal, FeN
When using alloys such as i, these alloys have low thermal conductivity, so in order to increase thermal resistance, the heat sink 10
When Cu, which has a high thermal conductivity, is used as the material for the heat dissipation plate 101, there is a problem that the element tends to crack due to thermal stress caused by the difference in thermal expansion between the semiconductor element and the heat sink 101. The base material 201-1 and the plate material 201-2 tend to warp due to the difference in thermal expansion coefficient between the material 201-1 and the plate material 201-2, stress during external shaping of the heat sink 201, and thermal stress during the container assembly process. There is a problem that peeling easily occurs at the joint between the two.

父上記(1)の方法では、ろう材層にボイドを生じ、熱
抵抗が高くなるとか、部品数が多くなりコスト高になる
という問題点を有する。
The method (1) above has problems in that voids are generated in the brazing material layer, increasing thermal resistance and increasing the number of parts, resulting in high cost.

従って、本発明は、従来の半導体装置用容器のかかる問
題点をMIXし、半導体素子のり2ツク、ボイドによる
熱抵抗の増大もなく、熱伝導性が良好で、組立作業性に
優れた半導体装置用容器を提供することを目的とするも
のである。
Therefore, the present invention combines the problems of conventional containers for semiconductor devices, and provides a semiconductor device with no increase in thermal resistance due to semiconductor element glue, voids, good thermal conductivity, and excellent assembly workability. The purpose is to provide containers for

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置用容器は、放熱板を有する半導体装
置用容器において、前記放熱板が該放熱板の基材に密着
して設けられた該基材より熱伝導率の商い卑金属からな
る厚さ10μm 以上のメッキ層を有している。
The container for a semiconductor device of the present invention is a container for a semiconductor device having a heat sink, in which the heat sink is provided in close contact with a base material of the heat sink, and has a thickness made of a base metal having a higher thermal conductivity than that of the base material. It has a plating layer of 10 μm or more.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は本発明の一実施例を示す断面図、第1図
中)は第1図(a)のB部の拡大断面図である。
FIG. 1(a) is a sectional view showing one embodiment of the present invention, and FIG. 1(a) is an enlarged sectional view of section B in FIG. 1(a).

本実施例は、放熱板301は、例えばCuW合金。In this embodiment, the heat sink 301 is made of, for example, a CuW alloy.

コバール、FeNi合金等からなる基材301−1に、
基材301−1より熱伝導率の高い卑金属、例えばCu
等からなる厚さ10μm以上のメッキ層301−2と、
その上に順次堆積されたNiメッキ層304Auメツキ
305とを有することから構成される。
A base material 301-1 made of Kovar, FeNi alloy, etc.
A base metal with higher thermal conductivity than the base material 301-1, such as Cu
A plating layer 301-2 with a thickness of 10 μm or more consisting of
It is composed of a Ni plating layer 304 and an Au plating layer 305 deposited sequentially thereon.

なお、第1図(a)において、302は側壁部材、30
3d縣導出端子である。
In addition, in FIG. 1(a), 302 is a side wall member;
This is a 3D lead-out terminal.

本実施例によれば、基材301−1を必要形状に加工後
、全面に均一な厚さでCuメッキ層301−2を基材3
01−1に密着して形成できるので、放熱板301のそ
りや放熱板301の加ニストレスによるCuメッキ層3
01−2のはがれが生じることはない。更にCuメッキ
層301−2の厚さを10μm以上にしているので、第
2表に示すように低い熱抵抗の放熱板が得られる。
According to this embodiment, after processing the base material 301-1 into the required shape, the Cu plating layer 301-2 is applied to the base material 301-2 with a uniform thickness over the entire surface.
Since the Cu plating layer 3 can be formed in close contact with the heat sink 301, the warping of the heat sink 301 and the stress caused by the application of the heat sink 301 can be avoided.
No peeling of 01-2 occurs. Furthermore, since the thickness of the Cu plating layer 301-2 is set to 10 μm or more, a heat sink having a low thermal resistance as shown in Table 2 can be obtained.

第2表は、本発明の半導体装置用容器の構造を有する放
熱板で、Cuメッキ層の厚をいろいろに変えた放熱板と
、第2図に示した従来例の半導体装置用容器の放熱板の
熱抵抗と熱膨張係、紋を、基体がCuW合金及びコバー
ルの場合について示したものである。なお、数値は従来
例を基準値lθ0とした相対比で表わされている。
Table 2 shows heat sinks having the structure of the semiconductor device container of the present invention, with various thicknesses of the Cu plating layer, and heat sinks of the conventional semiconductor device container shown in FIG. The thermal resistance, thermal expansion coefficient, and pattern are shown for the case where the substrate is CuW alloy and Kovar. Note that the numerical values are expressed as relative ratios with the conventional example as a reference value lθ0.

この結果力為ら明かなとおり、熱抵抗に関しては、Cu
メッキ厚が5μm以下では全く効果が認められないのに
対し、10μm以上ではその効力は顕著である。又、熱
膨張係数については、Cuメッキ厚にはほとんど変化が
認められない。
As is clear from this result, in terms of thermal resistance, Cu
When the plating thickness is 5 μm or less, no effect is observed, whereas when the plating thickness is 10 μm or more, the effect is remarkable. Further, regarding the coefficient of thermal expansion, almost no change is observed in the Cu plating thickness.

第2表 注)比412条件 放熱板厚  :1.O(n通〕 熱源の大きさ: ’ Q、 5 (mm)外装メッキ厚
 Niメッキ:5e=1[μm〕A区メッキ:J=2C
μm] 以上本発明のCuメッキ層を用いた実施例につき説明し
たが、不発明は、半導体装置用容器の形状、放熱板基材
の材質等にかかわりなく、又、他のSn等の他の卑金属
のメッキ層にも・商用できることはいうまでもない。
Table 2 Note) Ratio 412 condition heat sink thickness: 1. O (n times) Heat source size: ' Q, 5 (mm) Exterior plating thickness Ni plating: 5e = 1 [μm] A section plating: J = 2C
[μm] Although the embodiments using the Cu plating layer of the present invention have been described above, the non-invention is applicable regardless of the shape of the semiconductor device container, the material of the heat sink base material, etc. It goes without saying that it can also be used commercially for plating layers of base metals.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、本発明によれば、放熱板の
基材に密着して設けられた、該基材よりも熱伝導率の高
い卑金属からなる厚さ10μm以上のメッキ層を有して
いるので、半導体素子のり2ツク、ボイドによる熱抵抗
の増大もなく、熱伝導性が良好で、組立作業性に優れた
#−導体装置用容器が得られる。
As described in detail above, according to the present invention, the heat sink has a plated layer having a thickness of 10 μm or more and made of a base metal having a higher thermal conductivity than the base material, which is provided in close contact with the base material of the heat sink. Therefore, it is possible to obtain a container for a #-conductor device that has good thermal conductivity and excellent assembly workability without increasing thermal resistance due to semiconductor element glue or voids.

4、図面の簡単説明 第1図(a)は本発明の一実施例を示す断面図、第1図
中)は第11d(a)のB部の拡大断面図、筒2図は従
来の半導体装置用容器の一例を示す断面図、第3図(a
)は従来の半導体装置用容器の他の例を示す断面図、第
3図(b)は第3図(a)のA部の拡大断面図である。
4. Brief explanation of the drawings Figure 1(a) is a cross-sectional view showing one embodiment of the present invention, Figure 1(a) is an enlarged cross-sectional view of section B in Figure 11d(a), and cylinder 2 is a conventional semiconductor. A sectional view showing an example of a device container, FIG.
) is a sectional view showing another example of a conventional container for semiconductor devices, and FIG. 3(b) is an enlarged sectional view of section A in FIG. 3(a).

301・・・・・・放熱板、301−1・・・・・・基
材、301−2・・・・・・Cuメッキ+1.302・
・・・・・側壁部材、303・・・・・・外部導出端子
、304・・・・・・Niメッキ%、305・・・・・
・Auメッキ層。
301... Heat sink, 301-1... Base material, 301-2... Cu plating +1.302.
...Side wall member, 303...External lead-out terminal, 304...Ni plating%, 305...
・Au plating layer.

篩−ノ $/図 卒2図 (a) (L) 第3図 一2F+8−sieve $/figure Graduation 2nd figure (a) (L) Figure 3 12F+8-

Claims (1)

【特許請求の範囲】[Claims]  放熱板を有する半導体装置用容器において、前記放熱
板が該放熱板の基材に密着して設けられた該基材より熱
伝導率の高い卑金属からなる厚さ10μm以上のメッキ
層を有することを特徴とする半導体装置用容器。
In a semiconductor device container having a heat sink, the heat sink has a plating layer with a thickness of 10 μm or more made of a base metal having a higher thermal conductivity than the base material, which is provided in close contact with the base material of the heat sink. Container for semiconductor devices with special features.
JP22170884A 1984-10-22 1984-10-22 Package for semiconductor device Pending JPS61100953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22170884A JPS61100953A (en) 1984-10-22 1984-10-22 Package for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22170884A JPS61100953A (en) 1984-10-22 1984-10-22 Package for semiconductor device

Publications (1)

Publication Number Publication Date
JPS61100953A true JPS61100953A (en) 1986-05-19

Family

ID=16771025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22170884A Pending JPS61100953A (en) 1984-10-22 1984-10-22 Package for semiconductor device

Country Status (1)

Country Link
JP (1) JPS61100953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885390B2 (en) 2011-11-15 2014-11-11 Stmicroelectronics Pte Ltd Resistor thin film MTP memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885390B2 (en) 2011-11-15 2014-11-11 Stmicroelectronics Pte Ltd Resistor thin film MTP memory

Similar Documents

Publication Publication Date Title
US5001546A (en) Clad metal lead frame substrates
US5767574A (en) Semiconductor lead frame
JP6494802B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
JPS61196564A (en) Film carrier integrated circuit and manufacture thereof
JP2005019922A (en) Lead frame for semiconductor packages
JPS61100953A (en) Package for semiconductor device
JPH04267544A (en) Semiconductor device
JPS6318648A (en) Circuit board using aluminum nitride
JPH03227621A (en) Thermally conductive composing material
JPH05206620A (en) Metallic base circuit board
EP0621982A1 (en) Lead frame and semiconductor device using same
JPH04230063A (en) Multilayer heat sink
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JPS6366958A (en) Lead frame for semiconductor and manufacture thereof
JPS592175B2 (en) semiconductor equipment
JPS6256597A (en) Method for plating electronic parts
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH04137552A (en) Lead frame
JPH02152267A (en) Lead frame parallel-connected by cu alloy/fe-ni alloy
JP2654872B2 (en) Semiconductor device
JPS6083356A (en) Semiconductor device
JP2014082350A (en) Led wafer and manufacturing method thereof
JPH01244653A (en) Semiconductor device
JPS6232622B2 (en)
JPS5890746A (en) Lead frame