JPS61100817A - Positioning method - Google Patents

Positioning method

Info

Publication number
JPS61100817A
JPS61100817A JP59222652A JP22265284A JPS61100817A JP S61100817 A JPS61100817 A JP S61100817A JP 59222652 A JP59222652 A JP 59222652A JP 22265284 A JP22265284 A JP 22265284A JP S61100817 A JPS61100817 A JP S61100817A
Authority
JP
Japan
Prior art keywords
scanning
marks
mark
image
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59222652A
Other languages
Japanese (ja)
Inventor
Arinori Chokai
鳥海 有紀
Kazunori Suzuki
一憲 鈴木
Hiroo Katsuta
勝田 裕夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59222652A priority Critical patent/JPS61100817A/en
Priority to US06/672,784 priority patent/US4643579A/en
Publication of JPS61100817A publication Critical patent/JPS61100817A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Abstract

PURPOSE:To easily make accurate positioning, by scanning such two objects that contain the overlapped sections of their area type marks in their scanning areas by using two scanning lines. CONSTITUTION:Filters 10, condenser lenses 11, and half mirrors 14 are respectively arranged along the optical paths of lights sources 9 and diaphragms 13 and image forming lenses 12 are provided along reflecting optical paths. Luminous fluxes transmitted by the lenses illuminate two similar square marks 1R and 2R and another two similar square marks 2R and 2L on glass bases 1 and 2, respectively. Moreover, by respectively providing half mirrors 14 and image pickup tubes 15 along optical paths reflected by the bases 1 and 2, picked up images are displayed on a monitor TV 17 through camera control units 16. Therefore, picture images of the above-mentioned right and left marks 1R-2L separately taken by the image pickup tubes 15 are combined by means of a center wiper 100 and displayed in one monitor. In this case, video signals are inputted in a CPU18 and positioning is performed by performing relative position detection and driving a motor 19.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、2つの物体例えば液晶用ガラス基板の位置合
わせ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for aligning two objects, such as glass substrates for liquid crystals.

〔従来技術〕[Prior art]

一般に透明電極は、液晶表示板をはじめとする種々の表
示板に使用されており、これら表示板の用途は、光学様
器、電子機器、時計等の文字板あるいは液晶テレビ大型
ディスプレイ、温度計等の広い分野にわたっている。こ
のような表示板では液晶等の材料を封入するために2つ
の基板が用いられ、この基板にそれぞれ透明電極が形成
されているが、この透明電極のパターンが正確に合って
いるかが製品の性能上重要になってくる。
Generally, transparent electrodes are used in various display boards including liquid crystal display boards, and these display boards are used in optical devices, electronic devices, dials of watches, large LCD TV displays, thermometers, etc. covers a wide range of fields. In such display boards, two substrates are used to encapsulate materials such as liquid crystal, and transparent electrodes are formed on each substrate, but the accuracy of the pattern of these transparent electrodes determines the performance of the product. It becomes more important.

従来、この種の位置合わせは第5図に示すように、一方
の基板に位置合わせ用のマークM1を印刷し他方の基板
に同様なマークM2を印刷し、第5図のようにマークM
2がマークM1の中に入れば2枚の基板の位置合わせが
行なわれたと判断しているが、この判断は目視によって
行なってお妙、従って作業能率が悪く位置合わせ精度に
も支障があった。
Conventionally, this type of alignment has been carried out by printing an alignment mark M1 on one substrate and a similar mark M2 on the other substrate, as shown in FIG.
If 2 falls within the mark M1, it is determined that the two boards have been aligned, but this judgment is done by visual inspection, which is difficult to do, and therefore the work efficiency is low and the alignment accuracy is also hindered. .

〔目 的〕〔the purpose〕

本発明の目的は、上述従来例の欠点を除去し、精度の高
い位置合わせ方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional examples and to provide a highly accurate positioning method.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。第
1図において光源9 R,9Lの光路に沿って、それぞ
れ赤外光を遮断するフィルタ10R,IOL、コンデン
サレンズ11R,11L 、ハーフミラ−14R,14
Lが配置され、ハーフミラ−14R114Lにより反射
した光路に沿って、それぞれ絞り15R,15L、結像
レンズ12R,12Lが配置され、結像レンズ12R,
12Lを透過した光束は、それぞれガラス基板1,2上
を照明する。尚、本実施例で用いられるガラス基板及び
マークは、短い波長の照明光で高い反射光の光度差を示
すので、赤外光を遮断するフィルタ10R,10Lを用
いている。またこの照明系は、明視野照明法を採ってい
る。明視野照明とは、結像レンズ12R,12Lの後ろ
側の焦点位置に絞り15R,15Lを置いて、照明光に
対しテレセンドリンク光学系を形成させ、照明光の正反
射光によって物体を観察する照明方法である。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In FIG. 1, along the optical paths of light sources 9R and 9L, filters 10R and IOL, condenser lenses 11R and 11L, and half mirrors 14R and 14 are arranged to block infrared light, respectively.
Apertures 15R, 15L and imaging lenses 12R, 12L are arranged, respectively, along the optical path reflected by the half mirror 14R114L.
The light beams transmitted through 12L illuminate the glass substrates 1 and 2, respectively. Incidentally, since the glass substrate and mark used in this embodiment exhibit a high luminous intensity difference in reflected light with short wavelength illumination light, filters 10R and 10L that block infrared light are used. Furthermore, this illumination system employs a bright field illumination method. Bright-field illumination involves placing apertures 15R and 15L at the focal positions behind the imaging lenses 12R and 12L to form a telesend link optical system for the illumination light, and observing objects using specularly reflected light from the illumination light. It is a lighting method.

基板1,2で反射した光路に沿って、それぞれハーフミ
ラ−14R,14L、撮像管15R,15Lが配置され
、撮像管15R,15L Kより撮影された画像は、カ
メラコントロールユニット16R,16Lを介してモニ
タテレビ17に撮し出される。
Half mirrors 14R, 14L and image pickup tubes 15R, 15L are arranged along the optical paths reflected by the substrates 1, 2, respectively, and the images taken by the image pickup tubes 15R, 15LK are sent via camera control units 16R, 16L. The image is taken out on the monitor television 17.

ここで撮像管15R,15LKより別箇に撮影される左
右のマークの画像はセンタワイパ100で合成され一つ
のモニタに表示される。
Here, images of the left and right marks separately photographed by the image pickup tubes 15R and 15LK are combined by the center wiper 100 and displayed on one monitor.

カお、各マーク像に対する各2本の走査線位置は後述す
る電気処理部によりモニタ上下方向へ別箇独立に調整で
きる。
Additionally, the positions of the two scanning lines for each mark image can be adjusted separately and independently in the vertical direction of the monitor by an electrical processing section to be described later.

さて、撮像管15R,15Lのビデオ信号は、後述する
ように基板1と2の相対的な位置検出を行う中央処理装
置(cpσ)18に入力され、中央処理装置18の演算
結果に従ってモータ19が駆動され、基板1.2をそれ
ぞれ保持する不図示のステージ機構を作動して基板1と
2の位置合わせを行う。
Now, the video signals from the image pickup tubes 15R and 15L are input to a central processing unit (cpσ) 18 that detects the relative positions of the substrates 1 and 2, as will be described later, and the motor 19 is activated according to the calculation results of the central processing unit 18. The substrates 1 and 2 are aligned by operating stage mechanisms (not shown) that are driven and hold the substrates 1 and 2, respectively.

ここで上記構成の動作を説明すると、基板1.2は、先
ず予め粗位置合わせされて、互いに相似な正方形のマー
ク1R及び2R、マーク1L及び2Lが、それぞれ結像
レンズ12R及び12Lの投影野内に互いに重畳するよ
うに配置される。
Here, to explain the operation of the above configuration, the substrate 1.2 is first roughly aligned in advance, and similar square marks 1R and 2R and marks 1L and 2L are placed within the projection fields of the imaging lenses 12R and 12L, respectively. are arranged so as to overlap each other.

ここで位置誤差が生じていると、モニタテ、レビ17に
は、第1図の上方で示すように基板1のマーク像iR’
、IL’と基板2のマーク像2R’、2L’とにずれが
生じて撮し出される。以下説明の簡略化のためにマーク
像I R1と2 R’との関係について述べる。
If a positional error occurs here, the mark image iR' on the substrate 1 will appear on the monitor and review 17 as shown in the upper part of FIG.
, IL' and the mark images 2R', 2L' on the substrate 2 are photographed with a misalignment. In order to simplify the explanation, the relationship between mark images I R1 and 2 R' will be described below.

第2図(A)に示される如く画像のビデオ信号の2つの
走査線Sm 、 Snを中央処理装置1日で検出すると
、それぞれマーク像1ul 、 2 R1からの各走査
線上位置の反射光の強度差に応じて所定時間に渡って高
い電圧の信号が得られる。
As shown in FIG. 2(A), when the two scanning lines Sm and Sn of the video signal of the image are detected by the central processing unit in one day, the intensity of the reflected light at the position on each scanning line from the mark images 1ul and 2R1, respectively. Depending on the difference, a high voltage signal is obtained over a predetermined period of time.

即ち、少なくともマーク1Rは反射性且つ透光性であり
、−ガクなくともマーク1Lは反射性であり、上方向か
ら照明されると、その反射光は、2つの基板1,2のマ
ークIR,2Rが重なる部分では、上の基板1のマーク
1Rからの反射と下の基板2のマーク2Rからの反射が
加算され最も高い光強度を示す。そして2つの基板の一
方のみにマークが形成されている部分では反射光の強度
は弱くなる(第2図(Bl、(C)参照)。
That is, at least the mark 1R is reflective and translucent, and at least the mark 1L is reflective, and when illuminated from above, the reflected light reflects the marks IR and IR on the two substrates 1 and 2. In the area where 2R overlaps, the reflection from the mark 1R on the upper substrate 1 and the reflection from the mark 2R on the lower substrate 2 are added, and the highest light intensity is obtained. The intensity of the reflected light becomes weak in a portion where a mark is formed on only one of the two substrates (see FIG. 2 (Bl, (C)).

すなわち2つの基板のマークIR,2Rが重なっている
部分と、基板の一方にマーク2Rの付いた部分と、基板
のみの部分とを明確に区別することが出来、2つのマー
クIR,2Rの相対的な位置を確認することが出来る。
In other words, it is possible to clearly distinguish between the part where the marks IR and 2R on the two boards overlap, the part with the mark 2R on one side of the board, and the part with only the board, and the relative position of the two marks IR and 2R. You can check the exact location.

ここでマークIR,2Rは、第2図(Alに示す如く正
方形の形状をしており、ビデオ信号の互いに平行な走査
線Sm 、 Snと各辺が45°に交差するようになっ
ている。なお交差角が0°(又ハ90″)の場合、Y方
向の位置ずれが検出できず、それ以外の角度であれば良
いが45°であるとX方向。
Here, the marks IR and 2R have a square shape as shown in FIG. 2 (Al), and each side intersects the mutually parallel scanning lines Sm and Sn of the video signal at an angle of 45 degrees. Note that if the intersection angle is 0° (or 90''), positional deviation in the Y direction cannot be detected; any other angle is fine, but if it is 45°, it will be detected in the X direction.

Y方向の検出t#度を等しくできる。The detection t# degrees in the Y direction can be made equal.

そして、正方形の大きさは、対角方向の長さを各々2a
 、2bとして、小さい方の正方形(これは大きい正方
形と重畳する)が、固定の走査線Sm、Snに対し交差
しなくなる限界変位究をΔ、及び走査線Sm 、 Sn
の間隔21oを考慮して例えば次のように定められる。
The size of the square is 2a in each diagonal direction.
, 2b, the critical displacement at which the smaller square (which overlaps with the larger square) no longer intersects the fixed scanning lines Sm, Sn is Δ, and the scanning lines Sm, Sn
Taking into account the interval 21o, it is determined, for example, as follows.

即ち、マーク像I R’の左上方の辺が走査線amと交
差する条件として Δ=a−!!o1111・・・(1) 又、マーク像1R′の左下方の辺が走査線anと交差す
る条件として Δ=la          ・・・・・(2)又、マ
ーク像I RJが左右方向、上下方向に2Δづつ変位し
てもマーク像I L’から、はみ出ない条件として 2巧を一一−−・・・・・(6) q B (1)(2)(5)式よりa==2Δ、b=6△と設定
する。
That is, the condition that the upper left side of the mark image I R' intersects the scanning line am is Δ=a-! ! o1111...(1) Also, the condition that the lower left side of the mark image 1R' intersects the scanning line an is Δ=la...(2) Also, the mark image I RJ is in the horizontal direction and the vertical direction. As a condition that the mark image IL' does not protrude even if the mark image is displaced by 2Δ at a time, 2 degrees are calculated as follows. , b=6Δ.

さて−ここで2本の走査線Sm 、 Snにより第2図
(B> <0)に示される如く検出される距離11,1
2.Is 。
Now - now the distance 11,1 detected by the two scanning lines Sm, Sn as shown in FIG. 2 (B><0)
2. Is.

1、J、12′、lJより位置合わせ誤差ΔX、ΔY、
Δθは次のように求まる。
1, J, 12', lJ, the alignment error ΔX, ΔY,
Δθ is determined as follows.

即ち、マーク像1R’、 2R’ Ic関し、X方向、
Y方向の誤差を△XR,ΔYRとすると、 (ls −61) + (13’−11’)ΔXx= 
           ・・・(4)(A!1+ls)
  C11’+ls’)ΔYR:=□−・・・(5) 同様にマーク像I L’、 2L’に関し、X方向、Y
方向の誤差ΔXb、ΔYIJが求まるが、マークIR,
2RとIL、2Lが撮像面上に投影されたときの距離を
Rとすると、次の如くΔX、ΔY、△θが求まる。
That is, regarding mark images 1R' and 2R' Ic, in the X direction,
If the errors in the Y direction are △XR and ΔYR, (ls -61) + (13'-11') ΔXx=
...(4) (A!1+ls)
C11'+ls')ΔYR:=□-...(5) Similarly, regarding mark images I L' and 2L',
The direction errors ΔXb and ΔYIJ are found, but the marks IR,
Letting R be the distance between 2R, IL, and 2L projected onto the imaging surface, ΔX, ΔY, and Δθ are determined as follows.

ΔY==□     −Φ・・(7) 次に映像信号処理の一実格例を第3図に示す。ΔY==□   −Φ・・(7) Next, FIG. 3 shows an actual example of video signal processing.

22は左右切換スイッチで左右のマーク位置の検出を一
つの検出系で行なうだめに用いられる。
Reference numeral 22 denotes a left/right selector switch, which is used to detect the left and right mark positions with one detection system.

25はビデオアンプ、  24.25はレベルコンパレ
ータ、で第2図(B) ((1りに示すように増幅され
たビデオ信号を2値化する。
25 is a video amplifier, 24.25 is a level comparator, and the amplified video signal is binarized as shown in FIG. 2 (B).

26は同期分離回路、27はカーソルカウンタ、28は
デジタルコンパレータ、29.31 ハカーソル抽出回
路で2本の走査線Sm 、anをモニタ17上に表示す
る。すなわち、同期分離回路26へ入力された映像信号
は水平同期信号及び垂直同期信号として取出されカーソ
ルカウンタ27へ入力されて水平同期信号のパルス数が
計数される。該計数データはデジタルコンパレータ28
へ入力され予め演算処理部58より指示された走査線8
mの位置データと一致した時点で一致パルスがデジタル
コンパレータ28より出力される。カーソルA抽出回路
29はこの一致パルス発生直後の水平走査線1本をカー
ソルムの走査期間信号として出力する。又、遅延回路3
0及びカーソル抽出回路51はカーソルAよりも一定時
間遅れた時点で走査線anを表示するための走査時間信
号を出力する。
26 is a synchronization separation circuit, 27 is a cursor counter, 28 is a digital comparator, and 29.31 is a cursor extraction circuit that displays two scanning lines Sm and an on the monitor 17. That is, the video signal input to the synchronization separation circuit 26 is extracted as a horizontal synchronization signal and a vertical synchronization signal, and is input to the cursor counter 27, where the number of pulses of the horizontal synchronization signal is counted. The counting data is sent to the digital comparator 28
The scanning line 8 inputted to and instructed by the arithmetic processing unit 58 in advance
A coincidence pulse is outputted from the digital comparator 28 at the time of coincidence with the position data of m. The cursor A extraction circuit 29 outputs one horizontal scanning line immediately after the coincidence pulse is generated as a cursorm scanning period signal. Also, delay circuit 3
0 and the cursor extracting circuit 51 outputs a scanning time signal for displaying the scanning line an at a certain time later than the cursor A.

ここで基準クロック52は、そのパルス数が実際のマー
クの位置情報を表わすように周波数が設定される。例え
ば距離分解能を10μmとし、テレビカメラの撮像管に
%インチ′ぼを用いたとすればクロック周波数fは Toは有効水平走査時間で55 x T[1−6sec
であり、βは投影光学系の倍率であってβ=2.5とす
るとf”=6.6 MHzとなる。
Here, the frequency of the reference clock 52 is set so that the number of pulses represents the actual mark position information. For example, if the distance resolution is 10 μm and the image pickup tube of a television camera is % inch, then the clock frequency f is 55 x T [1-6 sec], where To is the effective horizontal scanning time.
where β is the magnification of the projection optical system, and if β=2.5, then f”=6.6 MHz.

レベルコンパレータ24 、25の各出力及びカーソル
抽出回路29.51の各出力及びクロックパルスはAN
Dゲート回路65を通って、それぞれの位置カウンタ5
4〜57に入力される。
Each output of the level comparators 24 and 25, each output of the cursor extraction circuit 29 and 51, and the clock pulse are AN
Through the D gate circuit 65, each position counter 5
4 to 57 are input.

位置カウンタ64ではカーソルAにおけるマーク像1R
′と2 R/が重複している部分の水平同期パルスから
の位置データTAH1、TiH2が得られ、位置カウン
タ35では、マーク像2 R1のみの部分の水平同期パ
ルスからの位置データTAV1.TAV2が得られ、同
様に位置カウンタ36よりTBJ 。
The position counter 64 detects the mark image 1R at the cursor A.
The position data TAH1, TiH2 from the horizontal synchronizing pulse in the portion where the mark image 2R1 and 2R/ overlap are obtained, and the position counter 35 obtains the position data TAV1. TAV2 is obtained, and TBJ is similarly obtained from the position counter 36.

TBII2 、位置カウンタ37よりTBvl、TBV
2の各データが得られる。
TBII2, TBvl, TBV from position counter 37
2 data are obtained.

これらのデータはコモンパスラインを介して演算処理部
58へ入力される。これにより前述した如き相対位置誤
差ΔX、ΔY、Δθが求まる。
These data are input to the arithmetic processing section 58 via the common path line. As a result, the relative position errors ΔX, ΔY, and Δθ as described above are determined.

ナオ、第5図中、100はセンタワイパであり、電気的
に画像をモニタ上でシフトするものであり、68は演算
処理部、59a〜59cは各々X。
In FIG. 5, 100 is a center wiper that electrically shifts the image on the monitor, 68 is an arithmetic processing section, and 59a to 59c are each X.

Y、θ軸のステッピングモータコントローラ、40a〜
40cは各々X、Y、θ軸の駆動モータである。
Y and θ-axis stepping motor controller, 40a~
40c are drive motors for the X, Y, and θ axes, respectively.

ところで上述した実施例では、走査線8m 、 anに
より位置検出をする場合、基板1,2が共に存在し同時
に走査することを示したが次のように先ず基板1を搬入
して走査し、得られる走査信号を記憶しておき、然る後
に基板2を搬入して走査し得られる走査信号と比較する
ようKしても良い。
By the way, in the above-mentioned embodiment, when detecting the position using the scanning lines 8m and 8m, it was shown that the substrates 1 and 2 exist together and are scanned at the same time. It is also possible to store the scanning signal obtained by storing the scanning signal, and then compare it with the scanning signal obtained by loading the substrate 2 and scanning it.

すなわち、ステージ機構により、まず、上の基板1が、
結像レン゛ズ12R,12Lの深度内にセットされモニ
タテレビの視野内にマークIR,ILが入り、次に下の
基板がステージで送られ、さらにステージの押し上げ機
構により結像レンズ12R、12Lの深度内にセットさ
れモニタテレビの視野内にマーク2R,2Lが入るよう
になっている。
That is, by the stage mechanism, first, the upper substrate 1 is
The marks IR and IL are set within the depth of the imaging lenses 12R and 12L, and the marks IR and IL enter the field of view of the monitor TV.Then, the lower substrate is sent on the stage, and then the imaging lenses 12R and 12L are moved by the stage's push-up mechanism. The marks 2R and 2L are placed within the field of view of the monitor television.

マークIR,ILが結侃レンズの深度内に入った後、基
板2のマーク2R,2Lが視野内に入るまでの間、マー
クIR,ILの位置情報を記憶させる。
After the marks IR and IL enter the depth of the focusing lens, the position information of the marks IR and IL is stored until the marks 2R and 2L on the substrate 2 enter the field of view.

このとき走査信号の2値化は、第2図(B) (0)に
示すスレッシュホールドレベル■でなくLで行なえる。
At this time, the scanning signal can be binarized at the threshold level L instead of the threshold level ■ shown in FIG. 2(B) (0).

基板2が搬入して走査して得られる走査信号の2値化は
、第2図(B)(C)に示す通りスレッシュホールドレ
ベルLであるため、このような時間差をつけた走査を行
なう場合、2値化するためのレベルが同一で済み、又、
レベルコンパレータH24を減らし、処理過程を簡易に
出来る上、基板1の情報と基板2の情報を別に記憶出来
る利点がある。
Since the binarization of the scanning signal obtained when the substrate 2 is carried in and scanned is at the threshold level L as shown in Fig. 2 (B) and (C), when scanning with such a time difference is performed , the level for binarization is the same, and
There are advantages in that the number of level comparators H24 can be reduced, the processing process can be simplified, and information on the substrate 1 and information on the substrate 2 can be stored separately.

たとえば、−回の処理で、位置合わせが出来ない場合で
も、基板1を固定しておき、基板2のステージを駆動さ
せ位置合わせをすれば、基板2の情報をマーク2R及び
2Lから知るのみで、2回目の位置合わせが行なえる。
For example, even if alignment is not possible during the -th cycle of processing, if substrate 1 is fixed and the stage of substrate 2 is driven and alignment is performed, information on substrate 2 can be obtained only from marks 2R and 2L. , the second alignment can be performed.

ところで以上の実施例で第1.第2の物体からの反射光
を検出する以外K、透過光を検出しても良く、更には一
方の物体を反射光で、他方の物体を透過光で検出しても
良い。なお反射光は正反射光に限らず散乱光でも良い。
By the way, in the above embodiment, the first. In addition to detecting reflected light from the second object, transmitted light may also be detected, and one object may be detected using reflected light and the other object may be detected using transmitted light. Note that the reflected light is not limited to specularly reflected light, and may be scattered light.

又、面積型のマークは正方形マークに限らず、他の多角
形水される如く第1.第2の物体に設けられる開口部の
マーク若しくはこれと等価であるがマーク部で透過し、
非マーク部で反射、吸収するようなものであっても良い
In addition, area-type marks are not limited to square marks, but also include other polygonal marks. A mark of an opening provided on the second object or equivalent thereto but transparent through the mark part,
It may be something that is reflected or absorbed in a non-marked area.

すなわち上述の実施例とネガポジ(白黒反転)の関係に
あるものでも良い。
That is, it may be in a negative/positive (black and white inversion) relationship with the above embodiment.

この場合の走査信号の出力例を第4図(B)に示す。An example of the output of the scanning signal in this case is shown in FIG. 4(B).

なお、走査はテレビ走査に限らず物体上をレーザー等で
走査しても良い。
Note that the scanning is not limited to television scanning, and the object may be scanned with a laser or the like.

又、第1.第2のマークの大小関係は、一方が大きく、
他方が小さい場合に限らず、両者が同じ大きさであって
も良い、 なお、走査線は2本に限らず6本以上であっても良い。
Also, 1st. The size relationship of the second marks is that one is larger,
It is not limited to the case where the other is small, and both may be of the same size. Note that the number of scanning lines is not limited to two, but may be six or more.

〔効 果〕〔effect〕

以上、本発明によれば少なくとも2本の走査線を用い、
2つの物体の面積型のマークの重複した部分を走査領域
に含むように2つの物体を走査して、正確な位置合わせ
を行なうことができることは勿論、面積型マークのため
粗調整も容易であり、特に正方形マークを用いれば感覚
に訴え易く粗調整が極めて容易となる。
As described above, according to the present invention, at least two scanning lines are used,
Not only can two objects be scanned so that the overlapping portions of the area-type marks on the two objects are included in the scanning area to perform accurate alignment, but since the area-type marks are area-type marks, rough adjustment is also easy. In particular, if a square mark is used, it will appeal to the senses and coarse adjustment will be extremely easy.

そして実施例で述べた如く、マーク重畳部の出力が高く
なれば重畳部にゴミ等のノイズが入って若干の出力低下
があっても安定して位置検出することができる。
As described in the embodiment, if the output of the mark superimposing section becomes high, stable position detection can be performed even if noise such as dust enters the superimposing section and the output decreases slightly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を用いた装置の一実施例の図、第2図(
A)(B)(C)は、2本の走査線を用いて位置合わせ
を行なう説明図、 第3図は、映像信号処理の一実施例の図、第4図(A)
CB)は異なる開口部マークの実施例の図、 第5図は従来例の図、 図中 1.2・・・基板 iR,2R,IL、2L 、、・マーク15R,15L
・・・撮像管 17・−・モニタ Sm 、8n・・[相]走査線 である。
Fig. 1 is a diagram of an embodiment of a device using the present invention, and Fig. 2 (
A), (B), and (C) are explanatory diagrams of alignment using two scanning lines. Figure 3 is a diagram of an example of video signal processing. Figure 4 (A)
CB) is a diagram of an example of a different opening mark, and Figure 5 is a diagram of a conventional example.
. . . Image pickup tube 17 . . . Monitor Sm, 8n . . . [Phase] scanning line.

Claims (1)

【特許請求の範囲】 1、第1の物体と第2の物体の位置合わせを行なう方法
において、 第1の物体に面積型の第1のマークを形成し、第2の物
体に面積型の第2のマークを形成し、所定方向から見た
ときの両マークの重畳部を少なくとも走査域に含むよう
な少なくとも2本の走査線で第1、第2の物体若しくは
その像を走査し、 第1の物体若しくはその像からの走査信号と、第2の物
体若しくはその像からの走査信号を検出することにより
、第1の物体と第2の物体との相対的な位置ずれを検出
することを特徴とする位置合わせ方法。 2、前記第1、第2のマークは多角形マークである特許
請求の範囲第1項記載の位置合わせ方法。 3、前記第1、第2のマークは走査線に対し45°傾い
た正方形マークである特許請求の範囲第2項記載の位置
合わせ方法。 4、第1、第2の物体若しくはその像を同時に走査する
特許請求の範囲第1項記載の位置合わせ方法。 5、第1、第2の物体若しくはその像を時間差をつけて
走査する特許請求の範囲第1項記載の位置合わせ方法。 6、第1の物体を第2の物体より先に搬入し、第1の物
体若しくはその像を予め走査し得られる走査信号を記憶
し、第2の物体が搬入されたときの走査により得られる
走査信号と比較する特許請求の範囲第5項記載の位置合
わせ方法。 7、走査信号を2値化するためのレベルが、第1の物体
若しくはその像を予め走査したときと、第2の物体が搬
入されて走査したときで同一である特許請求の範囲第6
項記載の位置合わせ方法。 8、前記走査を第1、第2の物体が映像化されるテレビ
の走査線で行なう特許請求の範囲第1項記載の位置合わ
せ方法。 9、前記第1、第2のマークの少なくとも一方は物体上
に付されるマークである特許請求の範囲第1項記載の位
置合わせ方法。 10、前記第1、第2のマークの少なくとも一方は物体
の開口部よりなるマークである特許請求の範囲第1項記
載の位置合わせ方法。 11、第1のマークは少なくとも透光性且つ反射性であ
り、第2のマークは少なくとも反射性である特許請求の
範囲第1項記載の位置合わせ方法。
[Claims] 1. In a method for aligning a first object and a second object, a first area-type mark is formed on the first object, and an area-type first mark is formed on the second object. scanning the first and second objects or their images with at least two scanning lines such that at least the scanning area includes an overlapping portion of both marks when viewed from a predetermined direction; A relative positional shift between the first object and the second object is detected by detecting a scanning signal from the object or its image and a scanning signal from the second object or its image. alignment method. 2. The alignment method according to claim 1, wherein the first and second marks are polygonal marks. 3. The positioning method according to claim 2, wherein the first and second marks are square marks inclined at 45 degrees with respect to the scanning line. 4. The alignment method according to claim 1, wherein the first and second objects or their images are simultaneously scanned. 5. The alignment method according to claim 1, wherein the first and second objects or their images are scanned with a time difference. 6. Bring in the first object before the second object, store the scanning signal obtained by scanning the first object or its image in advance, and store the scanning signal obtained by scanning when the second object is carried in. 6. The positioning method according to claim 5, wherein the positioning method is compared with a scanning signal. 7. Claim 6, wherein the level for binarizing the scanning signal is the same when the first object or its image is scanned in advance and when the second object is carried in and scanned.
Alignment method described in section. 8. The alignment method according to claim 1, wherein the scanning is performed using a scanning line of a television on which the first and second objects are imaged. 9. The alignment method according to claim 1, wherein at least one of the first and second marks is a mark placed on an object. 10. The positioning method according to claim 1, wherein at least one of the first and second marks is a mark consisting of an opening in an object. 11. The alignment method according to claim 1, wherein the first mark is at least translucent and reflective, and the second mark is at least reflective.
JP59222652A 1983-11-21 1984-10-22 Positioning method Pending JPS61100817A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59222652A JPS61100817A (en) 1984-10-22 1984-10-22 Positioning method
US06/672,784 US4643579A (en) 1983-11-21 1984-11-19 Aligning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222652A JPS61100817A (en) 1984-10-22 1984-10-22 Positioning method

Publications (1)

Publication Number Publication Date
JPS61100817A true JPS61100817A (en) 1986-05-19

Family

ID=16785806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222652A Pending JPS61100817A (en) 1983-11-21 1984-10-22 Positioning method

Country Status (1)

Country Link
JP (1) JPS61100817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149545A (en) * 1986-11-27 1988-06-22 ノキア(ドイチュラント)ゲーエムベーハー Regulator
JP2003110208A (en) * 2001-09-28 2003-04-11 Shibaura Mechatronics Corp Substrate, mechanism for overlaying substrate, and method of overlaying substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354675A (en) * 1976-10-28 1978-05-18 Nippon Telegr & Teleph Corp <Ntt> Positioning detecting method
JPS5390872A (en) * 1977-01-21 1978-08-10 Canon Inc Optical device
JPS5741714A (en) * 1980-08-27 1982-03-09 Fujitsu Ltd Position detecting and positioning method
JPS57190317A (en) * 1981-05-19 1982-11-22 Nec Corp Position mark and use thereof
JPS58182230A (en) * 1982-04-19 1983-10-25 Hitachi Ltd Positioning detection and control apparatus
JPS5963728A (en) * 1982-10-04 1984-04-11 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59172724A (en) * 1983-03-22 1984-09-29 Canon Inc Alignment and equipment for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354675A (en) * 1976-10-28 1978-05-18 Nippon Telegr & Teleph Corp <Ntt> Positioning detecting method
JPS5390872A (en) * 1977-01-21 1978-08-10 Canon Inc Optical device
JPS5741714A (en) * 1980-08-27 1982-03-09 Fujitsu Ltd Position detecting and positioning method
JPS57190317A (en) * 1981-05-19 1982-11-22 Nec Corp Position mark and use thereof
JPS58182230A (en) * 1982-04-19 1983-10-25 Hitachi Ltd Positioning detection and control apparatus
JPS5963728A (en) * 1982-10-04 1984-04-11 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59172724A (en) * 1983-03-22 1984-09-29 Canon Inc Alignment and equipment for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149545A (en) * 1986-11-27 1988-06-22 ノキア(ドイチュラント)ゲーエムベーハー Regulator
JP2003110208A (en) * 2001-09-28 2003-04-11 Shibaura Mechatronics Corp Substrate, mechanism for overlaying substrate, and method of overlaying substrate

Similar Documents

Publication Publication Date Title
US4643579A (en) Aligning method
JPH11148807A (en) Method and instrument for measuring bump height
JPH08168039A (en) Projection display system and projection position adjusting method
US4080623A (en) Color television camera with internal registration
JPS61100817A (en) Positioning method
KR101103155B1 (en) Exposure apparatus
JPH08181053A (en) Position detecting method
JP2740593B2 (en) Light transmissive liquid crystal display panel inspection equipment
JP3326444B2 (en) Positioning method and pattern joining accuracy measuring method
JP2000002664A (en) Method and apparatus for inspection of defect
JPH0259615B2 (en)
JP3849325B2 (en) Light valve positioning method
JP2001034743A (en) Method and device for comparison and checking
JPS6048683B2 (en) Object surface condition inspection method and inspection device
SU847014A1 (en) Optical tv system for mask flaw detection
JPH0359410A (en) Pattern detector
JPH05313380A (en) Aligning device
JPH0547901A (en) Alignment method of wafer
JPH05215534A (en) Adjusting method for surface inspecting camera mechanism
JPH095034A (en) Image input method and apparatus and attaching position inspecting apparatus using the same
JPH0950508A (en) Picture processor
JPH07249571A (en) Alignment mark detection optical system
JPH10132704A (en) Optical inspection device
JP2853312B2 (en) Positioning apparatus and exposure apparatus using the same
JP2002082065A (en) Defect inspecting method