JPH0259615B2 - - Google Patents

Info

Publication number
JPH0259615B2
JPH0259615B2 JP58217790A JP21779083A JPH0259615B2 JP H0259615 B2 JPH0259615 B2 JP H0259615B2 JP 58217790 A JP58217790 A JP 58217790A JP 21779083 A JP21779083 A JP 21779083A JP H0259615 B2 JPH0259615 B2 JP H0259615B2
Authority
JP
Japan
Prior art keywords
marks
mark
alignment
substrates
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58217790A
Other languages
Japanese (ja)
Other versions
JPS60110119A (en
Inventor
Arinori Chokai
Kazunori Suzuki
Hiroo Katsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58217790A priority Critical patent/JPS60110119A/en
Priority to US06/672,784 priority patent/US4643579A/en
Publication of JPS60110119A publication Critical patent/JPS60110119A/en
Publication of JPH0259615B2 publication Critical patent/JPH0259615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、2つの物体の位置合わせ方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for aligning two objects.

〔従来技術〕[Prior art]

一般に透明電極は、液晶表示板をはじめとする
種々の表示板に使用されており、これら表示板の
用途は、光学機器、電子機器、時計等の文字板あ
るいは液晶テレビ大型デイスプレイ、温度計等の
広い分野にわたつている。このような表示板では
液晶等の材料を封入するために2つの基板が用い
られ、この基板にそれぞれ透明電極が形成されて
いるが、この透明電極のパターンが正確に合つて
いるかが製品の性能上重要になつてくる。
Generally, transparent electrodes are used in various display boards including liquid crystal display boards, and these display boards are used in optical equipment, electronic equipment, dials of watches, etc., large LCD TV displays, thermometers, etc. It covers a wide range of fields. In such display boards, two substrates are used to encapsulate materials such as liquid crystal, and transparent electrodes are formed on each substrate, but the performance of the product depends on whether the patterns of these transparent electrodes match accurately. It becomes important.

従来、この種の位置合わせは第1図に示すよう
に、一方の基板に位置合わせ用のマーク20を印
刷し他方の基板に同様なマーク21を印刷し、第
1図のようにマーク21がマーク20の中に入れ
ば2枚入基板の位置合わせが行なわれたと判断し
ているが、この判断は目視によつて行なつてお
り、従つて作業能率が悪く位置合わせ精度にも支
障があつた。
Conventionally, this type of alignment has been carried out by printing an alignment mark 20 on one substrate and a similar mark 21 on the other substrate, as shown in FIG. If it falls within the mark 20, it is determined that the alignment of the two boards has been completed, but this judgment is done by visual inspection, which results in poor work efficiency and a problem with alignment accuracy. Ta.

他方半導体焼付装置において、マスクの半導体
集積回路パターンをウエハ上に焼付ける前の工程
として、マスクとウエハを正確に位置合わせ(ア
ライメント)する工程がある。
On the other hand, in a semiconductor printing apparatus, as a step before printing the semiconductor integrated circuit pattern of the mask onto the wafer, there is a step of accurately aligning the mask and the wafer.

従来のアライメント工程では、マスクとウエハ
にそれぞれ予め位置合わせ用マークを形成し、こ
のマーク上をレーザビームにより走査し、マーク
からの散乱光を検出することによりウエハとマス
クの相対的な位置ずれを測定している。そしてこ
の測定された位置ずれの量だけウエハを移動し、
マスクとウエハの正確な位置合わせを行なつてい
る。しかしながらこのような散乱光を検知する方
式は、ウエハ上がフオトレジスト膜等で被覆され
るため、これらによる反射、屈折の影響を受けた
り、またマークからの散乱光間の干渉、更にゴミ
の影響を受けやすく、正確な位置合わせを行なう
ことができないという欠点があつた。
In the conventional alignment process, alignment marks are formed on the mask and wafer in advance, and the marks are scanned with a laser beam and the scattered light from the marks is detected to detect the relative positional misalignment between the wafer and the mask. Measuring. Then, move the wafer by the amount of this measured positional deviation,
The mask and wafer are precisely aligned. However, since the wafer is coated with a photoresist film, this method of detecting scattered light is affected by reflection and refraction, interference between scattered light from marks, and the influence of dust. It has the disadvantage that it is easily damaged and cannot perform accurate positioning.

〔目的〕〔the purpose〕

本発明の目的は、上述従来例の欠点を除去し、
精度の高い位置合わせ方法を提供することにあ
る。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional examples,
The purpose of the present invention is to provide a highly accurate alignment method.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例を説明す
る。第2図は、本発明の一実施例において用いら
れる位置合わせの原理を示す図であり、第2図A
には、透明電極の材料より成り、大きさの異なる
円形の位置合わせ用マーク1a,2aが、それぞ
れ形成されたガラス基板1,2の断面が一部図示
されている。マーク1a,2aは、第3図に示す
ように、照明光の波長が長くなるに従つて、その
反射率(曲線18)は漸減し、他方ガラス基板
1,2の反射率(曲線19)は漸増する。尚、本
実施例ではガラス基板1,2は、マーク1a,2
aより反射率の低いものが用いられている。ここ
で少なくともマーク1aは透光性であり、第2図
の方向から照明されると、その反射光は、第2図
Bに示すように、2つの基板1,2のマーク1
a,2aが重なる部分Cは、上の基板1のマーク
1aからの反射と下と基板2のマーク2aからの
反射が加算され最も高い光強度を示す。そして2
つの基板の一方のみにマークが形成されている
b′の部分からの基板2のみの部分a′と段階的に反
射光の強度は弱くなる(第2図C参照)。すなわ
ち2つの基板のマーク1a,2aが重なつている
Cの部分と、基板の一方にマーク2aの付いた
b′の部分と、基板のみのa′部分とを明確に区別す
ることが出来、2つのマーク1a,2aのそれぞ
れの大きさ、形、また、相対な位置も確認するこ
とが出来る。従つて観察された反射光を、第2図
Bの3の方向へビデオ信号等を介して走査し、こ
の光強度の差を検出することにより、基板1と2
の位置合わせが可能となる。以下上記の2つのマ
ークの中心が合致したときに、2つの基板の正確
な位置決めが行なわれるものとして説明する。第
4図は、本発明の一実施例に係り、図の下のガラ
ス基板1と2を位置合わせを行うための装置の概
略構成図である。ガラス基板1,2は、それぞれ
不図示のステージ機構により、お互い平行でかつ
数ミクロンの間隙をおいて保持されている。ガラ
ス基板1,2には、それぞれ透明電極の材料より
成る2つの円形の位置合わせ用のマーク1R及び
1L,2R及び2Lが形成されており、マーク1
R,1Lはそれぞれマーク2R,2Lに対応して
いる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the principle of alignment used in one embodiment of the present invention, and FIG.
2A and 2B partially illustrate cross sections of glass substrates 1 and 2 on which circular alignment marks 1a and 2a of different sizes are formed, respectively, and are made of a transparent electrode material. As shown in FIG. 3, the reflectance of the marks 1a and 2a (curve 18) gradually decreases as the wavelength of the illumination light increases, while the reflectance of the glass substrates 1 and 2 (curve 19) decreases as the wavelength of the illumination light increases. Increase gradually. Note that in this embodiment, the glass substrates 1 and 2 have marks 1a and 2.
A material with lower reflectance than a is used. Here, at least the mark 1a is translucent, and when it is illuminated from the direction shown in FIG.
The portion C where a and 2a overlap exhibits the highest light intensity due to the addition of the reflection from the mark 1a on the upper substrate 1 and the reflection from the mark 2a on the lower substrate 2. And 2
Marks are formed on only one of the two boards.
The intensity of the reflected light gradually decreases from part b' to part a' of only the substrate 2 (see FIG. 2C). In other words, the part C where marks 1a and 2a of the two boards overlap, and the part C where mark 2a is attached to one of the boards.
It is possible to clearly distinguish the part b' from the part a', which is only the substrate, and to confirm the respective sizes and shapes of the two marks 1a and 2a, as well as their relative positions. Therefore, by scanning the observed reflected light in the direction 3 in FIG. 2B via a video signal or the like and detecting the difference in light intensity, the substrates 1 and 2
positioning becomes possible. The following description will be made assuming that accurate positioning of the two substrates is performed when the centers of the two marks coincide. FIG. 4 is a schematic diagram of an apparatus for aligning the glass substrates 1 and 2 at the bottom of the figure, according to an embodiment of the present invention. The glass substrates 1 and 2 are held parallel to each other with a gap of several microns apart by a stage mechanism (not shown). Two circular alignment marks 1R and 1L, 2R and 2L made of transparent electrode material are formed on the glass substrates 1 and 2, respectively.
R and 1L correspond to marks 2R and 2L, respectively.

第4図の装置の構成を説明すると、光源9R,
9Lの光路に沿つて、それぞれ赤外光を遮断する
フイルタ10R,10L、コンデンサレンズ11
R,11L、ハーフミラー14R,14Lが配置
され、ハーフミラー14R,14Lにより反射し
た光路に沿つて、それぞれ絞り13R,13L、
結像レンズ12R,12Lが配置され、結像レン
ズ12R,12Lを透過した光束は、それぞれガ
ラス基板1,2上に結像される。尚、本実施例で
用いられるガラス基板及びマークは、第3図で示
すように、短い波長の照明光で高い反射光の光度
差を示すので、赤外光を遮断するフイルタ10
R,10Lを用いている。またこの照明系は、明
視野照明法を採つている。明視野照明とは、結像
レンズ12R,12Lの後ろ側の焦点位置に絞り
13R,13Lを置いて、照明光に対しテレセン
トリツク光学系を形成させ、照明光の正反射光に
よつて物体を観察する照明方法である。
To explain the configuration of the device shown in FIG. 4, the light source 9R,
Along the optical path of 9L, filters 10R and 10L each block infrared light, and a condenser lens 11.
R, 11L, half mirrors 14R, 14L are arranged, and along the optical path reflected by the half mirrors 14R, 14L, apertures 13R, 13L, respectively.
Imaging lenses 12R and 12L are arranged, and the light beams transmitted through the imaging lenses 12R and 12L are imaged on glass substrates 1 and 2, respectively. Note that, as shown in FIG. 3, the glass substrate and mark used in this example exhibit a high luminous intensity difference in reflected light with short wavelength illumination light, so a filter 10 for blocking infrared light is used.
R, 10L is used. Furthermore, this illumination system employs a bright field illumination method. Bright-field illumination involves placing apertures 13R and 13L at the focal positions behind the imaging lenses 12R and 12L to form a telecentric optical system for the illumination light, which illuminates objects using specularly reflected light from the illumination light. This is a lighting method for observation.

基板1,2で反射した光路に沿つて、それぞれ
ハーフミラー14R,14L、撮像管15R,1
5Lが配置され、撮像管15R,15Lにより撮
影された画像は、カメラコントロールユニツト1
6により、1つの画面が2つに分割されて、モニ
タテレビ17に撮し出される。
Along the optical paths reflected by the substrates 1 and 2, half mirrors 14R and 14L and image pickup tubes 15R and 1 are installed, respectively.
5L is arranged, and the images taken by the image pickup tubes 15R and 15L are sent to the camera control unit 1.
6, one screen is divided into two and taken out on the monitor television 17.

撮像管15R,15Lのビデオ信号は、後述す
るように基板1と2の相対的な位置検出を行う中
央処理装置(CPU)18に入力され、中央処理
装置18の演算結果に従つてモータ19が駆動さ
れ、基板1,2をそれぞれ保持する不図示のステ
ージ機構を作動して基板1と2の位置合わせを行
う。
The video signals from the image pickup tubes 15R and 15L are input to a central processing unit (CPU) 18 that detects the relative positions of the substrates 1 and 2, as will be described later, and the motor 19 is activated according to the calculation results of the central processing unit 18. The substrates 1 and 2 are aligned by driving a stage mechanism (not shown) that holds the substrates 1 and 2, respectively.

上記構成の動作を説明すると、基板1,2は、
先ず予め粗位置合わせされて、マーク1R及び2
R、マーク1L及び2Lが、それぞれ結像レンズ
12R及び12Lの投影野内に配置され、位置誤
差が生じていると、モニタテレビ17には、第5
図の上方で示すように基板1のマーク1R,1L
と基板2のマーク2R,2Lとにずれが生じて撮
し出される。以下説明の簡略化のためにマーク1
Rと2Rとの関係について述べる。
To explain the operation of the above configuration, the substrates 1 and 2 are
First, the marks 1R and 2 are roughly aligned in advance.
If the marks R, marks 1L and 2L are placed within the projection fields of the imaging lenses 12R and 12L, respectively, and a positional error occurs, the monitor television 17 will display the fifth mark.
Marks 1R and 1L on board 1 as shown in the upper part of the figure.
The image is taken with a misalignment between the marks 2R and 2L on the substrate 2. Mark 1 to simplify the explanation below
The relationship between R and 2R will be described.

上記の画像のビデオ信号の2つの走査線Sm,
Snを中央処理装置18で検出すると、第5図の
下方で示すようにそれぞれマーク1R,2Rから
の反射光の強度差に応じて所定時間に渡つて高い
電圧の信号が得られる。走査線Smにおいてマー
ク2Rのみから最初に反射される部分の距離を
l1、マーク1Rと2Rが重複している部分の距離
をl2、更にマーク2Rのみから最後に反射さる部
分の距離をl3を検出し、他方、走査線Snにおいて
も同様l′1、l′2、l′3を検出すれば、マーク1Rと2
RのX方向の位置誤差△Xr、y方向の位置誤差
△Yrは、 △Xr=l3−l1/2=l′3−l′1/2 △Yr=(M2−M′2)−(l22−l′22)/8L により求めることができる。尚、上記の式におい
て、M=l1+l2+l3、M′=l′1+l′2+l′3であり、

は走査線SmとSnの距離である。同様に基板1,
2の左側のマーク1L,2LについてもX方向の
位置誤差△XlとY方向の位置誤差△Ylを検出す
ることができる。
Two scan lines Sm of the video signal of the above image,
When Sn is detected by the central processing unit 18, a high voltage signal is obtained over a predetermined time period according to the difference in intensity of the reflected light from the marks 1R and 2R, as shown in the lower part of FIG. The distance of the first reflected part from only mark 2R on scanning line Sm is
l 1 , the distance of the overlapping part of marks 1R and 2R is l 2 , and the distance of the part finally reflected only from mark 2R is detected as l 3 , and on the other hand, similarly for the scanning line Sn, l' 1 , If l' 2 and l' 3 are detected, marks 1R and 2
The position error △Xr in the X direction and the position error △Yr in the y direction of R are as follows: △Xr=l 3 −l 1 /2=l′ 3 −l′ 1 /2 △Yr=(M 2 −M′ 2 ) −(l 2 / 2 −l′ 2 / 2 )/8L. In addition, in the above formula, M=l 1 +l 2 +l 3 , M′=l′ 1 +l′ 2 +l′ 3 ,
L
is the distance between scanning lines Sm and Sn. Similarly, substrate 1,
Regarding the marks 1L and 2L on the left side of 2, the position error ΔXl in the X direction and the position error ΔYl in the Y direction can also be detected.

次いでマーク1R,2Rと1L,2Lとの距離
をRとすれば、基板1と2との相対的な位置誤差
は、 △X=△Xr+△Xl/2 △Y=△Yr+△Yl/2 △θ=−tan-1(△Yl−△Yr)/R で検出することができる。
Next, if the distance between marks 1R, 2R and 1L, 2L is R, the relative positional error between substrates 1 and 2 is: △X=△Xr+△Xl/2 △Y=△Yr+△Yl/2 △ It can be detected by θ=−tan −1 (ΔYl−ΔYr)/R.

中央処理装置18は、上記の演算を行つて△
X、△Y、△θを検出すると、モータ19はこの
演算結果に従つて基板1,2を保持するステージ
機構を駆動し、基板1と2の正確な位置合わせを
行う。
The central processing unit 18 performs the above calculation and calculates △
When X, ΔY, and Δθ are detected, the motor 19 drives the stage mechanism that holds the substrates 1 and 2 according to the calculation results, thereby accurately aligning the substrates 1 and 2.

尚ここで、2つのマークがX方向と平行に付け
られていれば1回の位置合わせ操作で位置合わせ
が終了するが、X方向となる角度を持つ場合には
実際の駆動量と計算値に差が生じるため1回の操
作では位置合わせは完了しない。しかし同様の操
作を数回繰り返せば位置合わせは完了する。
Note that if the two marks are placed parallel to the X direction, alignment will be completed in one alignment operation, but if the two marks are at an angle that is in the X direction, the actual drive amount and calculated value may differ. Because of the difference, alignment cannot be completed in one operation. However, repeating the same operation several times completes the alignment.

前記実施例では、大きさの異なる2つの円形の
マークについて説明したが、同じ大きさのマーク
についても同様であり、更に他の形状のマークに
ついても位置合わせが可能である。第6図は、そ
れぞれ2等辺3角形のマーク(6と7)を示し、
大きい方のマーク6には、マーク6の外辺にそれ
ぞれ平行な辺を有する2等辺3角形の孔部8が開
けられている。第6図に示すマーク(6と7)の
位置誤差は、 △X=(L1−L2)+(L4−L5)/4 △Y=−(L1−L2)+(L4−L5)/4 である。
In the embodiment described above, two circular marks of different sizes have been described, but the same applies to marks of the same size, and alignment is also possible for marks of other shapes. Figure 6 shows isosceles triangle marks (6 and 7), respectively.
The larger mark 6 has an isosceles triangular hole 8 having sides parallel to the outer sides of the mark 6. The positional error of the marks (6 and 7) shown in Figure 6 is as follows: △X = (L 1 - L 2 ) + (L 4 - L 5 )/4 △Y = - (L 1 - L 2 ) + (L 4 −L 5 )/4.

更に、本発明は、半導体焼付装置において、マ
スクとウエハの位置合わせにも用いることができ
るが、この場合ウエハはほぼ鏡面であるので、第
7図で示すようにウエハ5上に反射率の低い部分
2bを形成して第7図下部に示す反射光分布を形
成することができる。尚同図において、4はマス
ク、1bは透明電極の材料で形成されるマークで
ある。
Further, the present invention can also be used for aligning a mask and a wafer in a semiconductor printing apparatus, but in this case, since the wafer has a nearly mirror surface, a layer with a low reflectance is placed on the wafer 5 as shown in FIG. By forming the portion 2b, the reflected light distribution shown in the lower part of FIG. 7 can be formed. In the figure, 4 is a mask, and 1b is a mark formed of a transparent electrode material.

〔効果〕〔effect〕

以上説明したように、本発明によればマークの
正反射光を検出することにより、2つの物体の正
確な位置合わせが可能となる。更に位置合わせに
際し、従来例と異なり、所定時間に渡つて信号が
得られるためマークの一部にゴミ等が付着しても
安定した位置合わせをすることができる。なお本
発明を走査系を用いた実施例にて説明したが走査
系を用いず、例えば重量部と非重量部につき長さ
測定を行なうにしても良い。
As described above, according to the present invention, accurate alignment of two objects is possible by detecting specularly reflected light from a mark. Further, during positioning, unlike the conventional example, a signal is obtained over a predetermined period of time, so even if dust or the like adheres to a part of the mark, stable positioning can be performed. Although the present invention has been described with reference to an embodiment using a scanning system, it is also possible to measure the lengths of the weight part and non-weight part, for example, without using the scanning system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の位置合わせを行なうためのマ
ークの平面図、第2図は、本発明の原理を示す説
明図、第3図は、本発明の一実施例で用いられる
位置合わせ用マークと基板の反射率を示すグラ
フ、第4図は、本発明の一実施例に係る位置合わ
せ装置の概略構成図、第5図は、第4図で用いら
れる位置合わせ用マークの説明図、第6図は、本
発明の他の実施例の位置合わせ用マークの説明
図、第7図は、半導体焼付装置に応用した実施例
の説明図である。 1,2……基板、1a,2a,1R,1L,2
R,2L,1C,2b,6,7……位置合わせ用
マーク。
Fig. 1 is a plan view of a conventional mark for alignment, Fig. 2 is an explanatory diagram showing the principle of the present invention, and Fig. 3 is an alignment mark used in an embodiment of the present invention. FIG. 4 is a schematic configuration diagram of an alignment device according to an embodiment of the present invention; FIG. 5 is an explanatory diagram of alignment marks used in FIG. 4; FIG. 6 is an explanatory diagram of an alignment mark according to another embodiment of the present invention, and FIG. 7 is an explanatory diagram of an embodiment applied to a semiconductor printing apparatus. 1, 2...Substrate, 1a, 2a, 1R, 1L, 2
R, 2L, 1C, 2b, 6, 7... Marks for positioning.

Claims (1)

【特許請求の範囲】 1 透光性を有する第1の物体と、第2の物体と
を照明系からの光束で照明し、両物体の相対的な
位置を光学的に検出して該両物体の位置合わせを
行なう方法において、 前記第1の物体に、透光性及び反射性を有する
第1のマークを形成し、 前記第2の物体に、反射性を有する第2のマー
クを形成し、 前記照明系側から順に前記第1の物体、第2の
物体を配置し、 前記両マークの一方からの反射光と、両マーク
の重複した部分からの反射光との光強度の差に基
づいて、第1の物体と第2の物体の相対的位置を
検出し、 前記検出された位置情報により、第1の物体と
第2の物体とを相対的に移動して位置合わせを行
なうようにしたことを特徴とする位置合わせ方
法。
[Claims] 1. A first object having translucency and a second object are illuminated with a light beam from an illumination system, and the relative positions of both objects are optically detected. In the alignment method, a first mark having translucency and reflectivity is formed on the first object, a second mark having reflectivity is formed on the second object, and The first object and the second object are arranged in order from the illumination system side, and based on the difference in light intensity between the light reflected from one of the marks and the light reflected from the overlapping part of both the marks. , the relative position of the first object and the second object is detected, and the first object and the second object are relatively moved to align the positions based on the detected position information. A positioning method characterized by:
JP58217790A 1983-11-21 1983-11-21 Position matching method Granted JPS60110119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58217790A JPS60110119A (en) 1983-11-21 1983-11-21 Position matching method
US06/672,784 US4643579A (en) 1983-11-21 1984-11-19 Aligning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217790A JPS60110119A (en) 1983-11-21 1983-11-21 Position matching method

Publications (2)

Publication Number Publication Date
JPS60110119A JPS60110119A (en) 1985-06-15
JPH0259615B2 true JPH0259615B2 (en) 1990-12-13

Family

ID=16709762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217790A Granted JPS60110119A (en) 1983-11-21 1983-11-21 Position matching method

Country Status (1)

Country Link
JP (1) JPS60110119A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241862Y2 (en) * 1986-08-26 1990-11-08
JPH06102675A (en) * 1992-09-17 1994-04-15 Kamo Denki Kenkyusho:Kk Automatic high-speed and high-accuracy punching mechanism for plate material for printing machine
JP4395796B2 (en) 2007-07-10 2010-01-13 株式会社デンソー Air conditioner for vehicles
JP2016082061A (en) * 2014-10-16 2016-05-16 トヨタ自動車株式会社 Alignment method of wafer and mask

Also Published As

Publication number Publication date
JPS60110119A (en) 1985-06-15

Similar Documents

Publication Publication Date Title
KR100420443B1 (en) Scanning type exposure apparatus
KR100471524B1 (en) Exposure method
JP3109852B2 (en) Projection exposure equipment
JP3296239B2 (en) Proximity exposure apparatus with gap setting mechanism
US4643579A (en) Aligning method
JP3513842B2 (en) Projection exposure equipment
KR20040002540A (en) Apparatus and method of detecting a mark position
US5635722A (en) Projection exposure method and apparatus capable of performing focus detection with high accuracy
JPH0571916A (en) Position detecting apparatus
JPH055085B2 (en)
JPH0259615B2 (en)
JPH09312248A (en) Exposure device
KR100405398B1 (en) Alignment method
JP3254704B2 (en) Exposure apparatus and exposure method
JPH09312251A (en) Projection aligner
JP3472078B2 (en) Exposure method and exposure apparatus
JPH01228130A (en) Process and device of exposure
JPH08339959A (en) Alignment method
JPH06291019A (en) Stage driving method
JP2004108957A (en) Substrate inspection apparatus
JP3339630B2 (en) Scanning exposure equipment
JPS60260127A (en) Mask alignment method
JPH0817725A (en) Aligner
JPH09129540A (en) Orthogonality measuring method of stage system
JPH10116769A (en) Projection aligner