JPS6099494A - Welding method of thin steel sheets by laser - Google Patents

Welding method of thin steel sheets by laser

Info

Publication number
JPS6099494A
JPS6099494A JP58206930A JP20693083A JPS6099494A JP S6099494 A JPS6099494 A JP S6099494A JP 58206930 A JP58206930 A JP 58206930A JP 20693083 A JP20693083 A JP 20693083A JP S6099494 A JPS6099494 A JP S6099494A
Authority
JP
Japan
Prior art keywords
welding
laser
laser beam
butt
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58206930A
Other languages
Japanese (ja)
Inventor
Hideo Takato
高藤 英生
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58206930A priority Critical patent/JPS6099494A/en
Publication of JPS6099494A publication Critical patent/JPS6099494A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

PURPOSE:To increase the effective absorption rate of a laser beam and to perform stably and efficiently welding by shielding the upper and lower parts at a butt weld point by semispherical cavities and focusing the reflected and radiated energy from the weld point by multiple reflection to the weld point. CONSTITUTION:The upper and lower parts of the butt part 2 of thin steel sheets 1, 1 are shielded by semispherical cavities 4, 4'. A laser beam 3 is irradiated through a laser beam introducing hole 5 onto the weld point 2. The spot diameter of the beam 3 on the weld surface in the part where said beam is projected is made larger than the permissible accuracy for butting. An optical system is so set that the focal position of the beam 3 comes to the turning point of the upper cavity 4 as far as possible. When the beam 3 is irradiated in such a state, the effective absorption rate on the point 2 is increased by the multiple reflection effect of the cavities 4, 4'. The energy of the beam passing through the butt spacing is also reflected by the cavity 4' and further the energy radiated from the molten part is utilized by the multiple reflection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極薄鋼板の突合せシーム溶接に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to butt seam welding of ultra-thin steel plates.

〔従来技術〕[Prior art]

薄鋼板の連続処理ラインにおいて、先行のストリップと
後行のストリップの端部を接続して連続通板を行なうた
め、各種の溶接法が用いられているが、板厚が薄いもの
については、板の突合せの問題や、溶接速度の点で満足
な溶接法がない現状であり、これに代ってレーザ溶接法
が江[」されている。
In continuous processing lines for thin steel plates, various welding methods are used to connect the ends of the leading and trailing strips for continuous sheet threading. At present, there is no welding method that is satisfactory in terms of butting problems and welding speed, and laser welding is being considered as an alternative.

薄鋼板のレーザ溶接は例えば特開昭54−32154号
公報に開示されているように、通常、溶接す八き2端面
を突合せ、端面間中央に真」二からレーザビームを照射
する。端面が平滑で互に密着して十分な精度の突合せが
行なわれている場合は、突合せ端面の両側にレーザエネ
ルギーが吸収され、両端面が溶融されて溶接が行なわt
シる。しかし、端面の凹凸やIJJ断等で生じた曲り等
で、両端面間に隙間が生している場合、集光された1)
−ザビームは隙間を通過したり、一方の端部のみに吸収
され、完全な溶接が行なえない。
In laser welding of thin steel plates, as disclosed in, for example, Japanese Unexamined Patent Application Publication No. 54-32154, two end faces of the welding gap are usually brought into abutment, and a laser beam is irradiated from right in the center between the end faces. If the end faces are smooth and in close contact with each other, and the butting is performed with sufficient precision, the laser energy will be absorbed by both sides of the butt end faces, melting both end faces, and welding will occur.
Sill. However, if there is a gap between both end faces due to unevenness of the end face or bending caused by IJJ cutting, etc., the light will be concentrated.
- The beam passes through gaps or is absorbed only at one end, making it impossible to complete welding.

このため、端面加工の精度を高めて、両端面間の隙間を
小さくする方法があるが、特に幅広の鋼板においては、
このための設備コス)−が極めて大きくなる。
For this reason, there is a method to improve the accuracy of end face processing and reduce the gap between both end faces, but especially for wide steel plates,
The equipment cost for this becomes extremely large.

また、レーザビーム径を大きくして、若干の端面間隙間
がある場合でも、両端面を加熱溶融させ、溶接を行なう
ことも考えられるが、実際は以下に述べる理由がら安定
な溶接が難しい。
It is also conceivable to increase the diameter of the laser beam and heat and melt both end faces to perform welding even if there is a slight gap between the end faces, but in reality stable welding is difficult for the reasons described below.

いま、鋼板表面のレーザビーム吸収率を改、相手部溶融
に不要なエネルギーをP M Kwとすると、溶接に必
要なレーザパワーPKwは、 P”PM/G(・・・・・(1) となる。
Now, if the laser beam absorption rate of the steel plate surface is changed and the energy unnecessary for melting the mating part is P M Kw, the laser power PKw required for welding is P"PM/G (... (1) Become.

一般に、吸収率σは、綱板表面粗さ、被膜2表面温度、
レーザビームの波長等によって変化する。
Generally, the absorption rate σ is determined by the surface roughness of the steel plate, the surface temperature of the coating 2,
It changes depending on the wavelength of the laser beam, etc.

たとえば、現在工業的に最もよく使われているC○2レ
ーザの場合、常温において改は0.1以下であり、従っ
て溶接に最低限必要なエネルギーの10倍以上のレーザ
ビームエネルギーを投入しないと溶接が開始しない。し
かし一度表面が加熱溶融すると、吸収率σは0.9以上
になるため、溶融に必要なエネルギーの10倍のエネル
ギーが溶接部に投入される結果、溶融物落下(溶は落ち
)が起り。
For example, in the case of the C○2 laser, which is currently most commonly used industrially, the deviation is less than 0.1 at room temperature, so the laser beam energy must be input at least 10 times the minimum energy required for welding. Welding does not start. However, once the surface is heated and melted, the absorption rate σ becomes 0.9 or more, and as a result, 10 times the energy required for melting is input into the welding area, resulting in molten material falling (melt falling).

これが周期的に繰り返されてハンピング現象を生じ、安
定した溶接が行なえない。
This is repeated periodically and a humping phenomenon occurs, making it impossible to perform stable welding.

またプラズマを発生させて、安定エネルギー吸収状態に
して吸収率dを高くする方法もあるが、この場合エネル
ギー密度をブラスマ発生限界以上にする必要があるため
、現状のレーザマシンのもつ出力では、ビーム径を小さ
く集光しなけれはならず、やはり高精度の突合せを要す
る。
Another method is to generate plasma and bring it into a stable energy absorbing state to increase the absorption rate d, but in this case, the energy density needs to be higher than the plasma generation limit, so the output of current laser machines cannot be used to The light must be focused with a small diameter, and highly accurate alignment is also required.

以上説明したように、従来のレーザによる極薄板の溶接
では、溶接現象の不安定から溶は落ちやハンピングが起
り易く、またコイル突合せやレーザビームのシーム倣い
制御に極めて高い精度が要求されるという問題がある。
As explained above, in the conventional laser welding of ultra-thin plates, the welding phenomenon is unstable, making it easy for weld to drop or hump, and extremely high precision is required for coil butt control and seam tracing control of the laser beam. There's a problem.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの問題点を考慮し、レーザビーム径を
大きくした状態で、安定がっ効率よくシーム溶接が行な
える方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide a method that can stably and efficiently perform seam welding with a large laser beam diameter.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために本発明においては、溶接点の
上下部を半球状キャビティで遮蔽し、溶接点からの反射
、放射エネルギーを、キャビティ内面の多重反射により
溶接点に収束させ、溶接面におけるレーザビーム実効吸
収率を高める。
In order to achieve the above object, the present invention shields the upper and lower parts of the welding point with hemispherical cavities, and the reflected and radiant energy from the welding point is converged on the welding point by multiple reflections on the inner surface of the cavity. Increase the effective absorption rate of laser beam.

第18図に、本発明を一態様で実施する装置構成の概要
を示ず。■、1′は突合せ溶接されるべき薄鋼板、2は
突合せ部、3はレーザビーム、4゜4′ は各々上部キ
ャビティおよび下部キャビティ、5はレーザビーム導入
孔、6.6’ は雰囲気ガス入口、7,7′はキャビテ
ィ冷却水入口、8゜8′は同出口である。また、キャビ
ティ内面はたとえば鏡面仕」二の上に金メッキが施され
、極めて反射率が高い状態になっており、又、内面半球
は溶接点2が中心となるような寸法、配置となっている
FIG. 18 does not outline the configuration of an apparatus that implements the present invention in one embodiment. ■, 1' is the thin steel plate to be butt welded, 2 is the butt part, 3 is the laser beam, 4°4' is the upper cavity and lower cavity, respectively, 5 is the laser beam introduction hole, 6.6' is the atmospheric gas inlet , 7, 7' are cavity cooling water inlets, and 8° 8' is the same outlet. In addition, the inner surface of the cavity is plated with gold on top of a mirror finish, for example, making it highly reflective, and the inner hemisphere is sized and arranged so that the welding point 2 is at its center. .

この状態でレーザビームは、レンズにより集光され、溶
接点2」二に照射される。レーザビーム投射部の断面を
示す第1b図を参照すると、溶接面上のスポット径dは
、突合せ許容精度δを考えてそれより大きくなるように
し、又、レーザビーム導入孔の大きさを極力小さくする
ように、ビーム焦点位置は、出来るだけ上部キャビティ
の極点位置に来るように光学系を設定する。レーザビー
ムパワーは、溶接ビード幅b (:d) 、板厚t、溶
接速度Vからきまる溶接部溶融エネルギーPMに若干の
効率ηを考慮して設定する。
In this state, the laser beam is focused by a lens and irradiated onto the welding point 2''. Referring to Figure 1b, which shows the cross section of the laser beam projection part, the spot diameter d on the welding surface is set to be larger than that in consideration of the butt tolerance δ, and the size of the laser beam introduction hole is made as small as possible. In order to do this, the optical system is set so that the beam focal position is as close to the pole position of the upper cavity as possible. The laser beam power is set in consideration of the welding part melting energy PM determined from the welding bead width b (:d), the plate thickness t, and the welding speed V, and some efficiency η.

この状態でレーザビー11を照射すると、キャビティの
多重反射効果により、溶接点上の実効吸収率d、eはほ
ぼ1に近い値となる。
When the laser beam 11 is irradiated in this state, the effective absorption coefficients d and e on the welding point become values close to 1 due to the multiple reflection effect of the cavity.

ae=c(+(L −a)+(] +c02(i+−−
−−1・・・・・(2) また、突合せの間隙を通って下部に通過したビームエネ
ルギーも、下部キャビティで反射され、さらに溶融部か
らの放射エネルギーも同様にキャビティで多重反射され
利用される。このため、ハンピング等の不安定現象のな
い安定でかつエネルギー効率の高い溶接が可能になる。
ae=c(+(L -a)+(] +c02(i+--
−−1・・・・・・(2) In addition, the beam energy that passed through the gap between the butts to the bottom is also reflected by the lower cavity, and the radiant energy from the molten part is similarly reflected multiple times in the cavity and used. Ru. Therefore, stable and energy-efficient welding without unstable phenomena such as humping is possible.

また、実効吸収率が高くとれるため、ビーム焦点を鋼板
面から外した状態での溶接がjif能であるため、突合
せ間隙に対して余裕のある幅広ビード溶接が行なえる。
Furthermore, since the effective absorption rate can be high, welding can be performed with the beam focus removed from the steel plate surface, so wide bead welding can be performed with ample margin for the butt gap.

第2図に、本発明の詳細な説明するための図面を示す。FIG. 2 shows a drawing for explaining the invention in detail.

図において、9は較正用レーザ(例えばHe−Ne)で
あり、IOは上部キャビティlと対向して置かれたギャ
ップセンサである。
In the figure, 9 is a calibration laser (for example, He-Ne), and IO is a gap sensor placed opposite the upper cavity l.

通常、較正用レーザ9は、溶接用パワーレーザ11と同
軸に設置され、パワーレーザの光路調整用として用いら
れているが、このレーザビームを上部キャビティ1とギ
ャップセンサ10と一緒に溶接シーム上に走行させるこ
とによって突合せ面の間隙δと溶接線形状を光学的に検
知し、制御装置12に記憶する。続いて、検知された間
隙δの最大値δn1aXを考慮に入れて、鋼板上のパワ
ーレーザビーム径dを設定し、次に溶融ビード幅す。
Normally, the calibration laser 9 is installed coaxially with the welding power laser 11 and is used for adjusting the optical path of the power laser. By running it, the gap δ between the abutting surfaces and the weld line shape are optically detected and stored in the control device 12. Next, the diameter d of the power laser beam on the steel plate is set, taking into consideration the maximum value δn1aX of the detected gap δ, and then the width of the molten bead is determined.

板厚tyWj接速度V等の溶接条件から、溶接に必要な
レーザパワーPを設定し、溶接を開始する。
Laser power P required for welding is set from welding conditions such as plate thickness tyWj and contact speed V, and welding is started.

溶接中は前もって検知された溶接線形状に従って、上部
キャビティ4および下部キャビティ4′ が位置制御さ
れる。
During welding, the positions of the upper cavity 4 and the lower cavity 4' are controlled according to the previously detected weld line shape.

以上のように、キャビティを用い実効吸収率を1近くで
溶接することによって、安定でかつエネルギー効率の高
い溶接が行なえると共に、必要なビート幅の広幅溶接が
出来るため、突合せ端面の加」二に要する要求精度が緩
和され、レーザ溶接に必要な鉤仮切断装置、flit、
5i押え機構等の附帯説(i#コストが低減され、また
レーザビーム倣い制御も容易になり、自動化が可能にな
る。
As described above, by welding using a cavity with an effective absorption rate close to 1, it is possible to perform stable and highly energy-efficient welding, and it is also possible to perform welding with the necessary wide beat width, so that the butt end face can be The precision required for laser welding has been relaxed, and the hook temporary cutting device, flit,
Additional theories such as 5i presser mechanism (i#) Costs are reduced, laser beam tracing control becomes easier, and automation becomes possible.

本発明の方法では、第]、a図に示すように、キャビテ
ィ上面から雰囲気ガスをキャビティ内に導入出来るよう
になっている。このガスは通常の溶接と同様に、シール
ガスとして働く。また本発明の方法では、その特徴から
、プラズマの発生もなく、溶融部も熱伝導型に近い比較
的静かな溶接が可能で従ってスパッターは極めて少ない
が、鋼板面」二の油等の蒸発物がキャビティ内面に付着
する可能性のある場合、このガスはこれを抑える役目を
する。第3a図は、広幅ビート溶接を行なった場合に往
々に−して見られる溶接部断面形状で、溶融部重力のた
め下方に撓んだ形状となるが、下部キャビティ内ガス圧
力を上部より若干高めにすることによって、第3b図に
見ら、lLるように、平担な断面形状にすることが可能
である。
In the method of the present invention, atmospheric gas can be introduced into the cavity from the upper surface of the cavity, as shown in FIG. This gas acts as a sealing gas, similar to normal welding. In addition, due to the characteristics of the method of the present invention, there is no generation of plasma, and the molten part is able to perform relatively quiet welding, which is close to a heat conduction type, and therefore spatter is extremely small. If there is a possibility that the gas may adhere to the inner surface of the cavity, this gas serves to suppress this. Figure 3a shows the cross-sectional shape of the weld, which is often seen as a curve when wide bead welding is performed, and is bent downward due to the gravity of the molten part. By increasing the height, it is possible to obtain a flat cross-sectional shape as shown in FIG. 3b.

〔実施例〕〔Example〕

出力200WのYAGレーザを用い、半径1.0 m 
+nの金メツキ銅製、水冷のキャビネットを用い、鋼板
上ビームスボッh1mmの条件で、板厚0.2mmの薄
鋼板を溶接した場合、突合せ間隙が0.05mmあった
にもかかわらず、極めて安定なシーム溶接が行なわれ、
溶接速度は10m/minであった。
Using a YAG laser with an output of 200W, a radius of 1.0 m
When welding a thin steel plate with a thickness of 0.2 mm using a +n gold-plated copper, water-cooled cabinet with a beam boss h1 mm on the steel plate, an extremely stable seam was obtained even though the butt gap was 0.05 mm. welding is done,
The welding speed was 10 m/min.

これは同出力のYAGレーザを用いた場合の2倍の溶接
速度てあり、又CO2レーザを用いた溶接では、ハンピ
ングが生じて、安定な溶接は不可能であった。
This is twice the welding speed when using a YAG laser of the same output, and humping occurs when welding using a CO2 laser, making stable welding impossible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、レーザビーム径
を大きくした状態で効率よく安定したビーム溶接を行な
うことができるので、鋼板の突合せ面の加工精度が緩和
され、従って鋼板切断装置。
As explained above, in the present invention, efficient and stable beam welding can be performed with a large laser beam diameter, so the processing accuracy of the butt surface of the steel plate is relaxed, and therefore the steel plate cutting device is improved.

鋼板押え機構等の附帯設備コストの低減を図ることがて
き、また、レーザビーム倣い制御も容易になるので自動
化が容易である等、その効果は多大である。
The cost of ancillary equipment such as a steel plate holding mechanism can be reduced, and the laser beam tracing control is also facilitated, making automation easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は本発明を一態様で実施する装置構成の概略を
示す断面図、第1b図はレーザ照射部のみを示す断面図
である。 第2図は本発明の一実施態様での突合せ間隙および溶接
線測定装置構成を示すブロック図である。 第3a図は従来の溶接法による溶接部断面形状を示す説
明図、第3b図は本発明の一実施例での溶接部断面形状
を示す説明図である。 ]、 1’ :薄鋼板 2:突合せ部 3:レーザビーム 4:上部キャビティ4+ =下部キ
ャビティ 5:レーザビーム導入口6.6’:雰囲気ガ
ス入口 ア、7’:キャビティ冷却水入口 8.8’:キャビティ冷却水出口 d:パワーレーザビーム径 9:較正用レーザ lO:ギャップセンサ11:溶接用
パワーレーザ 12:制御装置特許出願人 新日本製鐵
株式會社 第1a図 6′ 第2図 第3a図 第3b図
FIG. 1a is a cross-sectional view schematically showing the configuration of an apparatus for carrying out one embodiment of the present invention, and FIG. 1b is a cross-sectional view showing only a laser irradiation section. FIG. 2 is a block diagram showing the configuration of a butt gap and weld line measuring device in one embodiment of the present invention. FIG. 3a is an explanatory diagram showing a cross-sectional shape of a welded part by a conventional welding method, and FIG. 3b is an explanatory diagram showing a cross-sectional shape of a welded part according to an embodiment of the present invention. ], 1': Thin steel plate 2: Butt part 3: Laser beam 4: Upper cavity 4+ = lower cavity 5: Laser beam inlet 6.6': Atmospheric gas inlet A, 7': Cavity cooling water inlet 8.8' : Cavity cooling water outlet d: Power laser beam diameter 9: Laser for calibration 1O: Gap sensor 11: Power laser for welding 12: Control device patent applicant Nippon Steel Corporation No. 1a, 6', Fig. 2, Fig. 3a Figure 3b

Claims (1)

【特許請求の範囲】 溶接点の上下部を半球状キャビティで遮蔽し。 溶接点からの反射、放射エネルギーを、キャビティ内面
の多重反射により溶接点に収束させ、溶接面におけるレ
ーザビーム実効吸収率を高めるようにしたことを特徴と
するレーザによる薄鋼板の溶接法。
[Claims] The upper and lower parts of the welding point are shielded by hemispherical cavities. A method for welding thin steel plates using a laser, characterized in that reflected and radiant energy from the welding point is focused on the welding point by multiple reflections on the inner surface of the cavity, thereby increasing the effective absorption rate of the laser beam at the welding surface.
JP58206930A 1983-11-01 1983-11-01 Welding method of thin steel sheets by laser Pending JPS6099494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206930A JPS6099494A (en) 1983-11-01 1983-11-01 Welding method of thin steel sheets by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206930A JPS6099494A (en) 1983-11-01 1983-11-01 Welding method of thin steel sheets by laser

Publications (1)

Publication Number Publication Date
JPS6099494A true JPS6099494A (en) 1985-06-03

Family

ID=16531404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206930A Pending JPS6099494A (en) 1983-11-01 1983-11-01 Welding method of thin steel sheets by laser

Country Status (1)

Country Link
JP (1) JPS6099494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990741A (en) * 1990-02-06 1991-02-05 Rockwell International Corporation Method of laser welding
JPH05212572A (en) * 1992-02-05 1993-08-24 Fanuc Ltd Laser beam machine
CN110328447A (en) * 2018-03-28 2019-10-15 丰田自动车株式会社 The laser butt welding method of metal parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990741A (en) * 1990-02-06 1991-02-05 Rockwell International Corporation Method of laser welding
JPH05212572A (en) * 1992-02-05 1993-08-24 Fanuc Ltd Laser beam machine
CN110328447A (en) * 2018-03-28 2019-10-15 丰田自动车株式会社 The laser butt welding method of metal parts

Similar Documents

Publication Publication Date Title
US6087619A (en) Dual intensity multi-beam welding system
JP6602860B2 (en) Laser processing apparatus and laser processing method
US4912297A (en) Device for and method of establishing joints by means of laser beams
JPS62254991A (en) Laser welding method and apparatus
TW201929989A (en) Laser welding apparatus and method for welding a workpiece with a laser beam
CN106862757A (en) A kind of double laser beam complex welding method
CN112743297B (en) Laser online preheating auxiliary processing method
JPH0729210B2 (en) Laser welding method
CN114633022A (en) Red copper material double-beam composite laser welding device and method
JPS6099494A (en) Welding method of thin steel sheets by laser
JP2002210576A (en) Method for welding thin steel plate with resultant yag laser beam
JPS60216986A (en) Welding method of thin steel sheets by laser beam
JPS60127089A (en) Welding method of thin steel sheets by laser
JPS60127088A (en) Welding method of thin steel sheet by laser
JPH08304668A (en) Laser welding method for fixing optical element
JPH07214360A (en) Laser beam machining
JPS6284889A (en) Method and device for laser welding
CN217701714U (en) Laser welding head with visual positioning and temperature feedback
CN216298281U (en) Laser composite welding head
JPS60221185A (en) Welding method of thin steel sheet by laser beam
WO1995029034A1 (en) Method for welding automatic pipe forming machine
JPS61279385A (en) Laser welding method for thin sheet
JPS6096382A (en) Welding method of ultra thin steel sheet by laser
JP2501594B2 (en) Focus position adjustment method of laser processing machine
KR20090032222A (en) Laser welding system and welding method thereof using scanning mirror