JPS6096382A - Welding method of ultra thin steel sheet by laser - Google Patents

Welding method of ultra thin steel sheet by laser

Info

Publication number
JPS6096382A
JPS6096382A JP58201793A JP20179383A JPS6096382A JP S6096382 A JPS6096382 A JP S6096382A JP 58201793 A JP58201793 A JP 58201793A JP 20179383 A JP20179383 A JP 20179383A JP S6096382 A JPS6096382 A JP S6096382A
Authority
JP
Japan
Prior art keywords
laser
welding
melting
melted
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201793A
Other languages
Japanese (ja)
Inventor
Katsuhiro Minamida
勝宏 南田
Hideo Takato
高藤 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58201793A priority Critical patent/JPS6096382A/en
Publication of JPS6096382A publication Critical patent/JPS6096382A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform stable welding with high energy efficiency by controlling the surface condition of steel sheets as well as the wavelength, energy density and welding speed of a laser. CONSTITUTION:The ratio in absorptivity between the time when steel sheets are not melted and the time when the sheets are melted is decreased by using a YAG laser. The surface condition of the steel sheets such as roughness, temp., film, etc. as well as the wavelength, beam diameter, energy density such as output of the laser and welding speed are controlled. The surface of the steel sheet is controlled to the energy absorption state in which substantial penetration melting is attained when the steel sheets are not melted and to such condition in which the melting width is made >=2-fold the thickness of the steel sheets without melt-down (hamping) when the steel sheets are melted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極薄鋼板の突合せ溶接などに好適な1− レーザ溶接方法に関する。[Detailed description of the invention] [Industrial application field] The present invention is suitable for butt welding of ultra-thin steel plates. Relating to a laser welding method.

〔従来技術〕[Prior art]

第1図は、例えば特開昭54−32154号公報に示さ
れているような、鋼板の突合せ状態でのレーザ溶接の概
略を示すものである。すなわち、溶接すべき鋼板MLと
MRの両端面CL、CRを突合せて端面間中央にレーザ
ビームLBを照射する。端面が平滑であり、しかも密着
している場合には、集光されたレーザビームLBが、突
合せ端面c、、CRの両者に分布し、両端面が溶接され
る。
FIG. 1 schematically shows laser welding of steel plates in abutted state, as disclosed in, for example, Japanese Patent Application Laid-Open No. 54-32154. That is, the end surfaces CL and CR of the steel plates ML and MR to be welded are brought together and the laser beam LB is irradiated to the center between the end surfaces. When the end faces are smooth and in close contact, the focused laser beam LB is distributed over both the abutting end faces c, , CR, and both end faces are welded.

しかしながら、第2図に示すごとく、端面に凹凸又は、
切断加工で生じた端面の曲り等で、端面間にギャップg
を生じた場合、この突合せ状態で集光したレーザビーム
LB又はLB’ を照射すると、レーザビームが端面間
を通過するか、又は、一方の端面のみに照射され、両端
面又はどちらが一方の端面は溶融せず、溶接が不完全に
なる。
However, as shown in Fig. 2, the end face is uneven or
There is a gap g between the end faces due to bending of the end faces caused by cutting.
If a laser beam LB or LB' focused in this abutting state is irradiated, the laser beam will pass between the end faces, or it will be irradiated only on one end face, and both end faces or which one end face will be irradiated. It will not melt and the weld will be incomplete.

このような問題点を解決するため、従来は、端面加工の
精度を高めて両端面間の間隔を小さくす2− ることか行なわれているが、鋼板の厚さが薄くなるほど
、また溶接線長が長くなるほど、端面加工の必要精度を
高めなくてはならないので、必然的にその限界が定まっ
てしまい、溶接に必要な間隔が得られなくなることがあ
り、またその加工に極めて手数を要し1面倒であった。
In order to solve these problems, conventional methods have been to improve the precision of end face machining and reduce the distance between the two end faces, but as the thickness of the steel plate becomes thinner, The longer the length, the higher the accuracy required for end face processing, which inevitably limits the required distance, making it impossible to obtain the necessary spacing for welding, and making the process extremely time-consuming. 1 It was a hassle.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来技術の問題点を解決し、極薄
鋼板の突合せ部に間隙がある場合にも、レーザによる溶
接を確実に行ない得るようにすることを目的とする。
It is an object of the present invention to solve these problems of the prior art and to make it possible to reliably perform laser welding even when there is a gap between the abutting portions of ultra-thin steel plates.

〔発明の構成9作用〕 上記目的を達成するために本発明においては、たとえば
0 、5mm以下の極薄鋼板の溶接において、鋼板表面
の非溶融時と溶融時のレーザビームのエネルギー吸収率
の比を小さくし、さらに非溶融時に充分な貫通溶融を得
るエネルギー吸収状態であり、また溶融時に融は落ち(
ハンピング)が生じないエネルギー吸収状態の範囲にな
り、かつ溶融幅が鋼板の厚さの2倍以上になるように、
鋼板の表3− 面状態およびレーザビームの波長、エネルギー密度なら
びに溶接速度を制御することを特徴とするレーザによる
極薄鋼板の溶接方法に関するものである。
[Structure 9 of the Invention] In order to achieve the above object, in the present invention, for example, in welding ultra-thin steel plates of 0.5 mm or less, the ratio of the energy absorption rate of the laser beam when the steel plate surface is not melted and when it is melted is determined. It is an energy-absorbing state that reduces the melting point and achieves sufficient penetration melting when not melting, and also reduces melting when melting (
Humping) is within the range of energy absorption that does not occur, and the melting width is at least twice the thickness of the steel plate.
Table 3 of Steel Plate - This relates to a method for welding ultra-thin steel plates using a laser, which is characterized by controlling the surface condition, wavelength, energy density, and welding speed of the laser beam.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第3図は溶接のため端部を突合せた鋼板M L 。Figure 3 shows steel plates M and L with their ends butted together for welding.

MR間に間隔が存在する場合を示すものである。This shows a case where there is an interval between MRs.

このとき鋼板ML、MRの厚さをtmm、間隔をgmm
とした場合、レーザビームLBが間隔gをカバーするよ
うにビーム径Sを間隔gの数倍に設定して、レーザビー
ム■、Bを照射する。このようにすると、レーザビーム
L8は両鋼板M L 、 M Rの端面CL I CR
の端部を加熱溶融し、溶接が行なわれる。しかしながら
この場合、前記のようにレーザビームの径が鋼板間の間
隔g以上であり、しがもエネルギー密度が低いと、鋼板
面上に照射されたレーザビームの大部分は反射し、鋼板
内に吸収される量が少なくなり、良好な加熱、溶融現象
を得ることができない。
At this time, the thickness of the steel plates ML and MR is tmm, and the interval is gmm.
In this case, the beam diameter S is set to several times the distance g so that the laser beam LB covers the distance g, and the laser beams ① and B are irradiated. In this way, the laser beam L8 hits the end faces CLI CR of both steel plates M L and M R.
Welding is performed by heating and melting the ends of the However, in this case, as mentioned above, if the diameter of the laser beam is greater than or equal to the distance g between the steel plates, and the energy density is low, most of the laser beam irradiated onto the steel plate surface will be reflected, and the laser beam will be absorbed into the steel plate. The amount absorbed becomes small, making it impossible to obtain good heating and melting phenomena.

そこで本発明においては、鋼板表面におけるレー4− ザビームの吸収特性を、非溶融時および溶融時において
それぞれ変化させると共に、レーザの出力エネルギー、
ビーム径、溶接速度等を制御して溶接時における未溶融
現象あるいは過溶融による溶は落ち現象を防止し、安定
した溶接を可能としたのである。
Therefore, in the present invention, the absorption characteristics of the laser beam on the surface of the steel sheet are changed respectively when the steel sheet is not melted and when it is melted, and the output energy of the laser is
By controlling the beam diameter, welding speed, etc., it was possible to prevent the phenomenon of under-melting or dripping due to over-melting during welding, making stable welding possible.

第4図および第5図は、鋼板表面Msでのレーザビーム
L8の吸収率dを示す説明図で、吸収率dは投入エネル
ギーEoと吸収されたエネルギーE1とによって次のよ
うに表わされる。
4 and 5 are explanatory diagrams showing the absorption rate d of the laser beam L8 on the steel plate surface Ms. The absorption rate d is expressed by the input energy Eo and the absorbed energy E1 as follows.

d=E1/Eo・・・・・(1) また、反射したレーザビームのエネルギーE2は、E2
=Eo−El ・・・・(2) と表わされる。
d=E1/Eo...(1) Also, the energy E2 of the reflected laser beam is E2
=Eo-El (2) It is expressed as follows.

一方、鋼板表面の状態が非溶融時(第5a図)のときと
、溶融時(第5b図)のときのレーザビームの吸収率の
変化は以下のようになる。
On the other hand, the change in the absorption rate of the laser beam when the steel sheet surface is in a non-melting state (FIG. 5a) and when it is melting (FIG. 5b) is as follows.

非溶融時:吸収率はdc、吸収するエネルギー量Ec1
=Eo Xdc 溶融時:吸収率はdm 5− そこで本発明では、非溶融時における吸収率((cを高
め、溶融時の吸収率c(mとの比を小さくすることを第
1の特徴とするものである。
When not melted: Absorption rate is dc, amount of absorbed energy Ec1
=Eo It is something to do.

この場合、吸収率dは、鋼板表面の粗さ、温度。In this case, the absorption rate d is the roughness and temperature of the steel plate surface.

被膜およびレーザビームの波長等によって変えることが
できるが、ここでは、レーザビームの波長による吸収率
の向上について説明する。
Although it can be changed depending on the coating, the wavelength of the laser beam, etc., the improvement of the absorption rate depending on the wavelength of the laser beam will be explained here.

一般に使用されている工業用レーザの代表的なものとし
てC02レーザおよびYAGレーザが挙げられる。そし
て、その波長はCO2レーザは10.6μm、YAGレ
ーザは1.06μmである。
Representative industrial lasers that are commonly used include C02 laser and YAG laser. The wavelength of the CO2 laser is 10.6 μm, and the wavelength of the YAG laser is 1.06 μm.

また、冷延鋼板と電磁鋼板の表面における各波長λの吸
収率d入は、第6図に示す通りである。そこで電磁鋼板
の場合について説明すると、Co2レーザの吸収率dc
o2は0.08以下であるが、YAGレーザの吸収率c
(y a gは0.4以上となる。すなわち、非溶融時
において鋼板表面に一定の量のエネルギーを吸収させる
場合、Co2レーザはYAGレーザの5倍以上の出力パ
ワーが必要である。
Further, the absorption coefficient d of each wavelength λ on the surface of the cold-rolled steel sheet and the electromagnetic steel sheet is as shown in FIG. So, to explain the case of electromagnetic steel sheet, the absorption rate dc of Co2 laser is
o2 is less than 0.08, but the absorption rate c of YAG laser
(y a g is 0.4 or more. In other words, if a certain amount of energy is to be absorbed by the surface of the steel sheet when it is not melted, the Co2 laser requires an output power that is five times or more that of the YAG laser.

6− しかし、鋼板表面が溶融状態になると、吸収率はいずれ
も0.9以上になる。従って、非溶融時と溶融時の吸収
率の比は、YAGレーザの場合Ry>2.5.C○2レ
ーザの場合RCO2>11となる。
6- However, when the surface of the steel plate becomes molten, the absorption rate becomes 0.9 or more in all cases. Therefore, the ratio of the absorption rate when not melted and when it is melted is Ry>2.5 in the case of YAG laser. In the case of C○2 laser, RCO2>11.

そこで本発明においては、YAGレーザを使用すること
により、鋼板の非溶融時と溶融時の吸収率の比を少くす
るのである。
Therefore, in the present invention, by using a YAG laser, the ratio of absorption rate when the steel plate is not melted and when it is melted is reduced.

さらに、粗さ、温度、皮膜等の鋼板表面状態およびレー
ザの波長、ビーム径、出力等のエネルギー密度や溶接速
度を制御することにより、鋼板表面を非溶融時には充分
な貫通溶融を得るエネルギー吸収状態、また溶融時には
溶は落ち(ハンピング)が生じないようにし、かつ溶融
幅が鋼板の厚さの2倍以上になるようにするのである。
Furthermore, by controlling the steel plate surface conditions such as roughness, temperature, and film, and the energy density and welding speed such as laser wavelength, beam diameter, and output, we can create an energy absorption state that allows sufficient penetration melting when the steel plate surface is not melted. Also, during melting, the melt should not drip (humping), and the melt width should be at least twice the thickness of the steel plate.

第7図は、溶融部の形状を示す説明図である。FIG. 7 is an explanatory diagram showing the shape of the fusion zone.

鋼板の厚さをt、溶融幅をW、溶融速度をVとすると、
貫通溶融に最低限必要なエネルギー(c(P)+は、 (dP)M=t°W°v°ρ° (ΔT1’CP1+λ
)10.24・71・・・・・(3) 7− ρ:重密 度T、:T、−T。
Assuming that the thickness of the steel plate is t, the melting width is W, and the melting speed is V,
The minimum energy (c(P)+) required for penetrating melting is (dP)M=t°W°v°ρ° (ΔT1'CP1+λ
)10.24・71...(3) 7- ρ: Heavy density T, :T, -T.

CPI :比熱 λ:潜熱 η:エネルギー利用効率 である。CPI: Specific heat λ: latent heat η: Energy use efficiency It is.

このうちエネルギー利用効率ηは、レーザビームの吸収
率以外の要素で決まるものであり、鋼板の熱拡散による
ものが大きく、その値は一般的には0.3〜0.8であ
る。
Among these, the energy utilization efficiency η is determined by factors other than the absorption rate of the laser beam, and is largely due to thermal diffusion of the steel plate, and its value is generally 0.3 to 0.8.

また、過溶融によるハンピングが生じるエネルギ(cf
P)Hは、 (cfP) +=t °w−v 1p 0(ΔT+1C
pl+λ十ΔT H−CR2)10.24・η・・・・
・(4)となる。
In addition, the energy (cf
P)H is (cfP) +=t °w−v 1p 0(ΔT+1C
pl+λ+ΔT H-CR2) 10.24・η・・・・
・(4) becomes.

また、ハンピングが生じる温度THは、TH=TM十Δ
TH・・・・・・(5)で、照射エネルギー(cfP)
+、溶接速度V、溶融幅W等で決まる。
Also, the temperature TH at which humping occurs is TH=TM+Δ
TH... (5), irradiation energy (cfP)
+, determined by welding speed V, fusion width W, etc.

そこで本発明においては、上記の各条件から、=8− レーザによる投入エネルギーを最適条件に制御すること
を第2の特徴とするのである。第8図は、投入エネルギ
ー量による溶融現象の領域を示すものであるが、投入エ
ネルギーが(c(P)M以下の場合は、非溶融域(T)
となり、表面温度もTMM以下なる。また投入エネルギ
ーが(c(P)xから(+:(P)l−1の間では1貫
通溶融域(TI)となり、安定した溶接を行なうことが
できる。さらに投入エネルギーが(c(P)+を越える
とハンピング域(III)となる。
Therefore, the second feature of the present invention is to control the energy input by the laser to an optimal condition based on the above conditions. Figure 8 shows the region of melting phenomenon depending on the input energy amount, but when the input energy is less than (c(P)M), the non-melting region (T)
Therefore, the surface temperature also becomes below TMM. Furthermore, when the input energy is between (c(P) If it exceeds +, it becomes a humping region (III).

そこで本発明では、YAGレーザ単体による吸収率比(
Ry>2.5)、あるいはこれに例えば鋼板の粗度、吸
収皮膜の効果等を加えて吸収率比を小さくし、さらに鋼
板の突合せ部分の間隔g、レーザ出力P、ビーム径a、
溶接速度V等の各条件を制御し、投入エネルギーが常に
第8図の領域(II)を保持するようにするのである。
Therefore, in the present invention, the absorption ratio (
Ry > 2.5), or by adding, for example, the roughness of the steel plate, the effect of the absorption film, etc., the absorption rate ratio is reduced, and furthermore, the distance g between the butt parts of the steel plates, the laser output P, the beam diameter a,
Each condition, such as the welding speed V, is controlled so that the input energy is always maintained in region (II) in FIG.

第9図および第10図は、非溶融時と溶融時の吸収率比
が大きい為に生じる溶融物落下によるハンピング現象を
示すものである。第9図は溶接線9− にそった側面からのハンピングの状態を、又、第10図
は上面からのハンピングの状態を示す。非溶融時から溶
融が開始し、溶は落ちが初まるまでの間をnpとし、溶
は落ち域をhpで示す。レーザパワーpとビーム径aお
よび溶接速度Vによってnpとhpの長さ及び割合いが
決まる。レーザビームを集光しエネルギー密度が3〜5
K11/mm2以上の場合は、プラズマが発生し、その
発生域はnpになり、同様なハンピング現象となる。
FIG. 9 and FIG. 10 show the humping phenomenon caused by the melt falling due to the large absorption rate ratio between the non-melting state and the melting state. FIG. 9 shows the state of humping from the side along the weld line 9-, and FIG. 10 shows the state of humping from the top. The period from the time of non-melting to the time when melting starts until melting starts to drop is defined as np, and the melting melting range is indicated by hp. The lengths and proportions of np and hp are determined by the laser power p, beam diameter a, and welding speed V. Focus the laser beam to achieve an energy density of 3 to 5
When K11/mm2 or more, plasma is generated and the generation area becomes np, resulting in a similar humping phenomenon.

第11図は、吸収率比を小さくし、ギャップgを考慮し
、溶融幅をWとした安定溶接ビードの上面を示す。
FIG. 11 shows the top surface of a stable weld bead in which the absorption rate ratio is reduced, the gap g is taken into consideration, and the fusion width is set to W.

また本発明においては、第12図に示すようにギャップ
センサー1を設けて鋼板M L 、 M Rの突合せ部
の間隔gを測定し、その結果によって制御機構2を制御
してレーザビーム径a、レーザ出力Px、溶接速度vx
の値を定め、安定な自動制御レーザ溶接を行なうことが
できる。
Further, in the present invention, as shown in FIG. 12, a gap sensor 1 is provided to measure the distance g between the abutting portions of the steel plates M L and M R, and the control mechanism 2 is controlled based on the result to determine the laser beam diameter a, Laser output Px, welding speed vx
It is possible to determine the value of and perform stable automatically controlled laser welding.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

10− 被溶接材として厚さ0.2mmの電磁鋼板を用い、出力
600WのYAGレーザにより溶接を行なった。
10- An electromagnetic steel plate with a thickness of 0.2 mm was used as the material to be welded, and welding was performed using a YAG laser with an output of 600 W.

その結果を第13図に示す。この図から明らかなように
、溶接速度4〜]Om/minの範囲で溶融幅1.4〜
0.7mmの溶接を行なうことができた。通常鋼板の間
隔gは、溶融幅の173程度であるので、この場合鋼板
の間隔を0.5mm程度まで離すことが可能となり、従
って突合せ端面の加工精度を緩和することができる。な
お、比較例として出力450WのCO2レーザを用いて
溶接を行なったところ、溶接速度4〜6m/minで溶
融幅は0.35−0.3mmであった。
The results are shown in FIG. As is clear from this figure, at a welding speed of 4 to] Om/min, the melting width is 1.4 to
Welding of 0.7 mm was possible. Normally, the distance g between the steel plates is about 173 times the melting width, so in this case, the distance between the steel plates can be set to about 0.5 mm, and therefore the machining accuracy of the butt end faces can be relaxed. As a comparative example, when welding was performed using a CO2 laser with an output of 450 W, the fusion width was 0.35-0.3 mm at a welding speed of 4-6 m/min.

従って、この場合鋼板の間隔は0.1mm以下にしなけ
れば完全な溶接を行なうことができない。
Therefore, in this case, complete welding cannot be achieved unless the distance between the steel plates is 0.1 mm or less.

〔発明の効果〕 以上説明したように、本発明は非溶融時と溶融時との吸
収比を小さくし、かつ鋼板の表面状態およびレーザの波
長、エネルギー密度、溶接速度を制御することにより安
定かつエネルギー効率が高い溶接を行なうことができる
と共に、必要なビード幅溶接ができるので、突合せ端面
の加工に対する要求精度を緩和することができ、従って
レーザ溶接に必要な鋼板切断装置、鋼板押え機構その他
の両帯設備を簡素化しコストの低減を図ることができる
。またレーザビーム倣い制御も容易になるので自動化が
容易である等、その効果は極めて大きい。
[Effects of the Invention] As explained above, the present invention reduces the absorption ratio between the non-melting state and the melting state, and controls the surface condition of the steel plate, the laser wavelength, energy density, and welding speed, thereby achieving stable and stable welding. Since it is possible to perform welding with high energy efficiency and to perform welding with the necessary bead width, the precision required for processing the butt end faces can be relaxed, and therefore the steel plate cutting equipment, steel plate holding mechanism, etc. required for laser welding can be reduced. Both belt facilities can be simplified and costs can be reduced. In addition, the laser beam tracing control becomes easy, so automation is easy, and the effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は、従来一般に行なわれて
いるレーザ溶接における鋼板の突合せ間隔とレーザビー
ム吸収率について示す説明図、第6図はレーザの波長と
吸収率との関、係を示すグラフ、第7図は溶融量と投入
エネルギー量を示す説明図、第8図は投入エネルギー量
と溶融現象域の関係を示すグラフ、第9図および第10
図はハンピング現象を示す側面図および平面図、第11
図は本発明により得られた安定溶接域での上面ビードを
示す説明図、第12図は本発明法を自動化した場合を示
す説明図、第13図は本発明の実施例の一例を示す図で
ある。 M L 、 M R:鋼板 cL、cFl:突合せ部L
B:レーザビーム g:間隔 1:ギャップセンサ 2:制御機構 特許出願人 新日本製鐵株式會社 13− 第1 図 東3囚 荊2図 B 東4図 第5a図 第5b図 皐6図 攻長入(μm) − 東7図 第 9図 東10図 ↑ 岩 皐11閲 融 幅 第12図 第13図 溶欅ま& (m/m1n) − 手続補正書(方式) 昭和58年 2月tい61日 ゝ(、トメ 特許庁長官 若杉 和犬 殿 1、事件の表示 昭和58年特許願第201793号2
、発明の名称 レーザによる極薄鋼板の溶接方法3、補
正をする者 事件との関係 特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式會社 代表者 武 1) 豊 4、代理人 〒103 電話 03−864−6052
住 所 東京都中央区東日本橋2丁目27番6号5、補
正命令の日付 昭和59年 1月11日(発送日同年1月31日)6、
補正の対象 明細書の発明の詳細な説明の欄および図面
の簡単な説明の欄 7、補正の内容 (1)明細書第5頁第7行の、「および第5図」を「第
5a図および第5b図」に訂正する。 (2)明細書第12頁第10行の「説明図、」を次の文
章に訂正する。 「説明図、第4図、第5a図および第5b図は鋼板表面
でのレーザビームの吸収と反射、並びに吸収率を示す説
明図、」 以上
FIGS. 1, 2, and 3 are explanatory diagrams showing the butt spacing of steel plates and laser beam absorption rate in laser welding, which is conventionally commonly performed. FIG. 6 is an explanatory diagram showing the relationship between laser wavelength and absorption rate. Figure 7 is an explanatory diagram showing the relationship between the amount of melting and the amount of input energy, Figure 8 is a graph showing the relationship between the amount of input energy and the melting phenomenon area, Figures 9 and 10
The figure is a side view and a top view showing the humping phenomenon.
The figure is an explanatory diagram showing the upper surface bead in the stable welding area obtained by the present invention, Fig. 12 is an explanatory diagram showing the case where the method of the present invention is automated, and Fig. 13 is a diagram showing an example of the embodiment of the present invention. It is. M L, M R: Steel plate cL, cFl: Butt part L
B: Laser beam g: Interval 1: Gap sensor 2: Control mechanism Patent applicant Nippon Steel Corporation 13- 1 Figure East 3 Prisoner 2 Figure B East 4 Figure 5a Figure 5b Figure 6 Figure 6 Input (μm) - East Figure 7 Figure 9 East Figure 10 ↑ Iwago 11 review Melting width Figure 12 Figure 13 Fukinama & (m/m1n) - Procedural amendment (method) February 1982 61st (, Tome Patent Office Commissioner Wakasugi Wainu 1, Incident Indication 1981 Patent Application No. 201793 2
, Title of the invention: Laser welding method for ultra-thin steel plates 3, Relationship with the amended case Patent applicant address: 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 103 Phone: 03-864-6052
Address: 2-27-6-5 Higashi Nihonbashi, Chuo-ku, Tokyo; date of amendment order: January 11, 1980 (shipment date: January 31 of the same year) 6;
Subject of amendment Contents of amendment in the Detailed Description of the Invention column and Brief Description of the Drawings column 7 of the specification (1) In the 7th line of page 5 of the specification, "and Figure 5" has been replaced with "Figure 5a". and Figure 5b”. (2) "Explanatory drawings," on page 12, line 10 of the specification should be corrected to the following sentence. "Explanatory diagrams, Figures 4, 5a, and 5b are explanatory diagrams showing the absorption and reflection of a laser beam on the surface of a steel plate, as well as the absorption rate."

Claims (1)

【特許請求の範囲】 (])極薄鋼板の溶接において、鋼板表面の非溶融時と
溶融時とのレーザビームのエネルギー吸収率の比を小さ
くし、更に非溶融時には充分な貫通溶融を得るエネルギ
ー吸収状態、また溶融時には溶は落ちが生じないエネル
ギー吸収状態を呈し、かつ溶融幅が鋼板の厚さの2倍以
上になるように、鋼板の表面状態および、レーザビーム
の波長、エネルギー密度ならびに溶接速度を制御するこ
とを特徴とするレーザによる極薄鋼板の溶接方法。 (2)互に突合せた鋼板間の端面間の間隔を予め測定し
、レーザビームの径を設定することを特徴とする特許請
求の範囲第(1)項記載のレーザによる極薄鋼板の溶接
方法。
[Claims] (]) In welding ultra-thin steel plates, the ratio of the laser beam energy absorption rate when the steel plate surface is not melted and when it is melted is made small, and the energy required to obtain sufficient penetration melting when the steel plate surface is not melted. The surface condition of the steel sheet, the wavelength of the laser beam, the energy density, and the welding must be adjusted so that the melt will be in an energy absorption state without dripping during melting, and the melt width will be at least twice the thickness of the steel sheet. A method for welding ultra-thin steel plates using a laser, which is characterized by speed control. (2) A method for welding ultra-thin steel plates using a laser according to claim (1), characterized in that the distance between the end faces of the steel plates abutted against each other is measured in advance and the diameter of the laser beam is set. .
JP58201793A 1983-10-27 1983-10-27 Welding method of ultra thin steel sheet by laser Pending JPS6096382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201793A JPS6096382A (en) 1983-10-27 1983-10-27 Welding method of ultra thin steel sheet by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201793A JPS6096382A (en) 1983-10-27 1983-10-27 Welding method of ultra thin steel sheet by laser

Publications (1)

Publication Number Publication Date
JPS6096382A true JPS6096382A (en) 1985-05-29

Family

ID=16447022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201793A Pending JPS6096382A (en) 1983-10-27 1983-10-27 Welding method of ultra thin steel sheet by laser

Country Status (1)

Country Link
JP (1) JPS6096382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110885A (en) * 1985-11-11 1987-05-21 Inoue Japax Res Inc Laser welding method
JPH0511164U (en) * 1991-07-26 1993-02-12 日立金属株式会社 Magnettrol
US5500503A (en) * 1994-08-04 1996-03-19 Midwest Research Institute Simultaneous laser cutting and welding of metal foil to edge of a plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110885A (en) * 1985-11-11 1987-05-21 Inoue Japax Res Inc Laser welding method
JPH0511164U (en) * 1991-07-26 1993-02-12 日立金属株式会社 Magnettrol
US5500503A (en) * 1994-08-04 1996-03-19 Midwest Research Institute Simultaneous laser cutting and welding of metal foil to edge of a plate

Similar Documents

Publication Publication Date Title
Cao et al. Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes
US4546230A (en) Welding process using laser beam
JPH07236984A (en) Method and device for laser beam processing
JP4797659B2 (en) Laser welding method
JPS6096382A (en) Welding method of ultra thin steel sheet by laser
Iwase et al. Dual-focus technique for high-power Nd: YAG laser welding of aluminum alloys
JPH09216078A (en) Method and equipment for laser beam welding
Willgoss et al. Laser welding of steels for power plant
JPS59133985A (en) Laser welding method
Yamada et al. Direct diode laser cladding of Co-based alloy to dual-phase stainless steel for repairing machinery parts
Vollertsen et al. Welding with fiber lasers from 200 to 17000 W
DE69311462D1 (en) Method for laser welding at least two metal sheets of different thickness
JPS60216986A (en) Welding method of thin steel sheets by laser beam
JPH01205893A (en) Method for welding high carbon steel sheet
Dell'Erba CO2 laser welding of copper slabs
JP2778287B2 (en) Laser pipe welding method
JPS60127088A (en) Welding method of thin steel sheet by laser
JPH0252183A (en) Laser beam welding method for using plasma arc jointly
JPH01233084A (en) Butt laser welding method for thin sheet
Schinzel et al. Laser welding of aluminum car bodies-From research to production
JPS60127089A (en) Welding method of thin steel sheets by laser
JPS60221185A (en) Welding method of thin steel sheet by laser beam
Miyazaki et al. Welding techniques for tailored blanks
JPS5897489A (en) Laser welding method
JPH06170567A (en) Lap beam welding method