JPH0729210B2 - Laser welding method - Google Patents

Laser welding method

Info

Publication number
JPH0729210B2
JPH0729210B2 JP62321884A JP32188487A JPH0729210B2 JP H0729210 B2 JPH0729210 B2 JP H0729210B2 JP 62321884 A JP62321884 A JP 62321884A JP 32188487 A JP32188487 A JP 32188487A JP H0729210 B2 JPH0729210 B2 JP H0729210B2
Authority
JP
Japan
Prior art keywords
light guide
laser
welding
welded
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62321884A
Other languages
Japanese (ja)
Other versions
JPH01162587A (en
Inventor
稔雄 熱田
耕三 安田
敏史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP62321884A priority Critical patent/JPH0729210B2/en
Publication of JPH01162587A publication Critical patent/JPH01162587A/en
Publication of JPH0729210B2 publication Critical patent/JPH0729210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はレーザ溶接方法に関するものである。The present invention relates to a laser welding method.

(従来の技術) 熱源としてレーザ光を用いるレーザ溶接は、電子ビーム
溶接と同程度の高エネルギ集中性が得られ、この結果、
狭い溶融幅、深い溶込みとなる溶接部形状が得られるの
で、溶接歪の発生が少なく、高精度溶接法の一つとして
各種金属細線や薄板の溶接法として実用化されている。
(Prior Art) Laser welding using laser light as a heat source can obtain high energy concentration as high as electron beam welding. As a result,
Since a welded portion shape with a narrow melting width and deep penetration can be obtained, welding distortion is less likely to occur, and it has been put to practical use as one of the high-precision welding methods as a welding method for various thin metal wires and thin plates.

一方、厚板溶接に対しては、第5図に示すような開先形
状を被溶接部材31に設けて多層盛溶接が行われている。
つまり、例えば出力5〜10KWのCO2レーザを用いる場合
にも、板厚Tが10〜15mm以上になるとワンパスでの溶接
は困難となり、このため、図のように、まず開先底部側
にレンズ32を用いてレーザ光を集光させてこの開先底部
側の肉盛溶接を行い、以降、上記レンズ32による集光点
を順次上方へと移動させていくことによって、多層盛溶
接となる開先溶接が行われるのである。そして上記の開
先底部側にレンズ32によってレーザ光を集光させる場合
に、被溶接部材31の表面側における開先幅で上記レーザ
光の集束径路を妨害しないようにする必要があり、この
ため被溶接部材31の開先形状は、開先底部から表面側へ
と順次幅を広げた形状となされている。
On the other hand, for thick plate welding, multi-pass welding is performed by forming a groove shape as shown in FIG. 5 on the member 31 to be welded.
That is, for example, even when using a CO 2 laser with an output of 5 to 10 KW, if the plate thickness T is 10 to 15 mm or more, it is difficult to perform welding in one pass. Therefore, as shown in the figure, first, the lens on the groove bottom side Laser welding is performed using 32 to perform overlay welding on the bottom side of the groove, and thereafter, by gradually moving the focusing point by the lens 32 upward, multi-pass welding is performed. Pre-welding is performed. When the laser light is focused by the lens 32 on the groove bottom side, it is necessary to prevent the laser beam focusing path from being disturbed by the groove width on the surface side of the member 31 to be welded. The groove shape of the member to be welded 31 is a shape in which the width is gradually increased from the groove bottom portion to the front surface side.

(発明が解決しようとする問題点) しかしながら、上記のように被溶接部材31の表面側の開
先幅を広くする必要があるために、第6図の上記溶接結
果の断面模式図に示すように、溶着金属領域Bが大幅に
増大し、このため、溶接時のパス数が増加して溶接に長
時間を要することになると共に、溶接歪も大きくなる。
この結果、上記のような厚板溶接においては、前記した
レーザ溶接の高エネルギ集中性という利点が充分には生
かせないという問題があった。
(Problems to be Solved by the Invention) However, since it is necessary to widen the groove width on the front surface side of the member 31 to be welded as described above, as shown in the schematic sectional view of the welding result in FIG. In addition, the welded metal region B is significantly increased, which increases the number of passes during welding, which requires a long time for welding and also causes large welding distortion.
As a result, in the above-described thick plate welding, there is a problem that the advantage of high energy concentration of laser welding described above cannot be fully utilized.

この発明は上記従来の問題点に鑑みなされたものであっ
て、その目的は、厚板等においても狭開先形状での溶接
を可能とするレーザ溶接方法を提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to provide a laser welding method that enables welding with a narrow groove shape even on a thick plate or the like.

(問題点を解決するための手段) そこでこの発明のレーザ溶接方法は、開先溶接される被
溶接部材の相対向する被溶接面間に、入射口と出射口と
を有すると共に上記入射口を通して入射されるレーザ光
を上記出射口へと導く導光路部材を挿入し、開先底部側
に位置する上記出射口から出射するレーザ光によって開
先底部側の溶接を行うレーザ溶接方法であって、上記導
光路部材においては、上記入射口と上記出射口とを連通
する横断面矩形の貫通孔を形成すると共に、該貫通孔の
周壁をレーザ光を反射可能に加工することによって導光
路を形成し、上記入射口の近傍に集光したレーザ光を導
光路内で繰返し反射させながら上記出射口へと導くよう
にしたことを特徴としている。
(Means for Solving the Problems) Therefore, the laser welding method of the present invention has an entrance and an exit between the opposite welding surfaces of the member to be welded to be groove welded, and through the above-mentioned entrance. A laser welding method of inserting a light guide member that guides incident laser light to the emission port, and performing welding on the groove bottom side by laser light emitted from the emission port located on the groove bottom side, In the light guide member, a through hole having a rectangular cross section is formed to connect the entrance and the exit, and the light guide is formed by processing the peripheral wall of the through hole so that the laser light can be reflected. The laser light focused near the entrance is guided to the exit while being repeatedly reflected in the light guide path.

(作用) 上記のレーザ溶接方法においては、被溶接部材の相対向
する被溶接面間に挿入した導光路部材の入射口に、例え
ばレンズを用いて細く絞られた高エネルギ密度状態のレ
ーザ光を入射させることによって、このレーザ光は、上
記導光路部材内を開先底部側へと導かれる。この導光路
部材はレーザ光の集束径に応じて小さな幅で構成するこ
とができ、したがって上記被溶接面間の距離、すなわち
開先幅も上記導光路部材と略同程度に小さくしても、開
先底部側へと上記導光路部材内を通して導かれるレーザ
光の高エネルギ密度状態は、上記被溶接部材の開先形状
で損なわれることはないので、厚板等においても狭い開
先幅、すなわち狭開先形状でのレーザ溶接が可能とな
る。
(Operation) In the laser welding method described above, a laser beam in a high energy density state, which is narrowed down using, for example, a lens, is introduced into the entrance of the light guide member inserted between the opposite surfaces to be welded of the member to be welded. By entering the laser light, the laser light is guided to the groove bottom side in the light guide member. This light guide member can be formed with a small width according to the focusing diameter of the laser light, and therefore, even if the distance between the welded surfaces, that is, the groove width is made substantially the same as the light guide member, The high energy density state of the laser light guided through the inside of the light guide member to the groove bottom side is not impaired by the groove shape of the member to be welded, so that the groove width is narrow even in a thick plate, that is, Laser welding with a narrow groove shape is possible.

また上記のように導光路を貫通孔で構成してあるので、
導光し得るレーザ光の種類や出力に関しての制限が大幅
に緩和されることになる。しかも導光路を横断面矩形と
し、レーザ光を導光路内で繰返し反射させながら出射口
へと導くようにしてあるため、被溶接部に照射されるレ
ーザ光のエネルギ分布は緩やかで比較的平坦な分布とな
る。そしてこのようなエネルギ分布の熱源によって形成
される溶接ビードは平坦なものとなり、この結果、ビー
ド両端側での融合不良等の溶接欠陥の発生を抑制した良
好な溶接結果が得られることになる。
Since the light guide path is formed by the through hole as described above,
The restrictions on the type and output of laser light that can be guided will be greatly relaxed. Moreover, since the light guide path is rectangular in cross section and the laser light is guided to the emission port while being repeatedly reflected in the light guide path, the energy distribution of the laser light applied to the welded part is gentle and relatively flat. Distribution. The welding bead formed by the heat source having such an energy distribution becomes flat, and as a result, a good welding result is obtained in which the occurrence of welding defects such as defective fusion on both ends of the bead is suppressed.

(実施例) 次にこの発明のレーザ溶接方法の具体的な実施例につい
て、図面を参照しつつ詳細に説明する。
(Examples) Next, specific examples of the laser welding method of the present invention will be described in detail with reference to the drawings.

第1図は、この発明の一実施例を説明するための要部模
式図であり、同図において、1及び2はI形突合せ溶接
される被溶接部材であって、それらの被溶接面3、4間
に、略直方体形状の導光路部材5が挿入されている。こ
の導光路部材5は、被溶接部材1、2の板厚Tをやや超
える長さを有しており、したがって導光路部材5の上部
側は被溶接部材1、2の上面よりやや上方に突出するよ
うになされている。この導光路部材5には、その上端面
から下端面に貫通する貫通孔、すなわち導光路6が形成
されており、この導光路6の上端面における開口が入射
口7、また下端面における開口が出射口8となされてい
る。また上記入射口7の上方には、集光レンズ9が配設
され、このレンズ9の略焦点位置に上記入射口7が位置
するようになされている。つまりレーザ発振器(図示せ
ず)から出力されるレーザ光は、上記レンズ9によって
集中し、細く絞られて上記入射口7へと入射するように
なされているのである。
FIG. 1 is a schematic view of an essential part for explaining an embodiment of the present invention. In FIG. 1, 1 and 2 are welded members to be I-shaped butt welded, and their welded surfaces 3 The light guide member 5 having a substantially rectangular parallelepiped shape is inserted between the four. The light guide member 5 has a length slightly exceeding the plate thickness T of the members 1 and 2 to be welded. Therefore, the upper side of the light guide member 5 projects slightly above the upper surfaces of the members 1 and 2 to be welded. It is designed to do. The light guide path member 5 is formed with a through hole that penetrates from the upper end surface to the lower end surface, that is, a light guide path 6, and an opening on the upper end surface of the light guide path 6 is an entrance 7, and an opening on the lower end surface is formed. It is formed as an emission port 8. Further, a condenser lens 9 is arranged above the entrance 7, and the entrance 7 is located at a substantially focal position of the lens 9. That is, the laser light output from the laser oscillator (not shown) is concentrated by the lens 9, is narrowed down, and enters the entrance 7.

第2図には上記導光路部材5の断面を示す模式図を示し
ており、同図のように、上記導光路部材5内には、上記
導光路6に隣接してこれに平行に上下に貫通するガス流
路10が穿設されており、このガス流路10を通してシール
ドガスを上記出射口8付近へと供給し得るようになされ
ている。また同図において11はワイヤ供給装置の模式図
であって、このワイヤ供給装置11からフィラワイヤ12が
上記出射口8の下部位置に供給される。なお上記フィラ
ワイヤ12に替えて金属粉末を供給しながら溶接を行うこ
とも可能であり、この場合には上記ワイヤ供給装置11の
替わりに、粉末供給装置が配置される。
FIG. 2 shows a schematic view showing a cross section of the light guide member 5, and as shown in FIG. 2, the light guide member 5 is vertically adjacent to and adjacent to the light guide member 6 in parallel therewith. A gas passage 10 is formed so as to penetrate therethrough, and the shield gas can be supplied to the vicinity of the emission port 8 through the gas passage 10. Further, in the figure, 11 is a schematic view of a wire supply device, and the filler wire 12 is supplied from this wire supply device 11 to the position below the emission port 8. It is also possible to perform the welding while supplying the metal powder instead of the filler wire 12, and in this case, the powder supplying device is arranged instead of the wire supplying device 11.

第3図には上記導光路部材5の斜視図を示している。同
図のように、上記導光路6は断面略正方形の貫通孔で構
成しており、その寸法は上記集束されたレーザ光が入射
し得る程度の、一辺1〜2mm長の大きさで構成してい
る。このとき導光路部材5の幅Wは3mm程度で構成する
ことが可能である。上記導光路6の内面には鏡面加工を
施しており、このため、上記入射口7から入射するレー
ザ光は、鏡面加工された上記導光路6内面で多重反射し
ながら出射口8へと導かれ、この出射口8から出射する
こととなる。
FIG. 3 shows a perspective view of the light guide member 5. As shown in the figure, the light guide path 6 is formed of a through hole having a substantially square cross section, and its size is 1 to 2 mm on each side so that the focused laser light can enter. ing. At this time, the width W of the light guide member 5 can be set to about 3 mm. The inner surface of the light guide path 6 is mirror-finished. Therefore, the laser light entering from the entrance port 7 is guided to the exit port 8 while being multiple-reflected on the inner surface of the light guide path 6 that has been mirror-finished. The light is emitted from this emission port 8.

次に上記での溶接手順について説明する。第1図に示す
ように、導光路部材5を、その下端面が被溶接面3、4
間、すなわち開先領域の底部を覆うバックプレート13に
近接する所定の位置に位置させ、ガス流路10を通してシ
ールドガスを供給しながらレーザ光の発振を行う。レン
ズ9で集光して細く絞られると共に高エネルギ密度状態
となったレーザ光は、入射口7を通して導光路6内へと
導かれ、この導光路6の内面で多重反射しながら出射口
8側へと導かれる。この導光路6内面は、前記したよう
に鏡面加工がなされているために、反射時の損失は小さ
く抑えられる。すなわち出射口8においては、入射口7
に比較して、エネルギ密度はやや低下するものの、開先
底部側の部材を溶融させる程度のエネルギ密度は充分に
有しており、この高エネルギ密度のレーザ光が出射口8
へと導かれると共に、出射口8から上記バックプレート
13側、すなわち開先底部側へと出射される。なお、上記
レンズ9として長焦点レンズを用いることにより、導光
路6内部での多重反射回数が少なくなり、エネルギロス
をより小さくすることができる。
Next, the welding procedure described above will be described. As shown in FIG. 1, the lower end surface of the light guide member 5 is the welded surfaces 3, 4
The laser beam is oscillated while being positioned at a predetermined position close to the back plate 13 that covers the bottom of the groove region, that is, the shield gas is supplied through the gas flow path 10. The laser light condensed by the lens 9 and narrowed down and in a high energy density state is guided into the light guide path 6 through the entrance 7, and is reflected multiple times on the inner surface of the light guide 6 while exiting from the exit 8. Be led to. Since the inner surface of the light guide path 6 is mirror-finished as described above, the loss during reflection can be suppressed to a small level. That is, at the exit 8, the entrance 7
Although the energy density is slightly lower than that of, the laser beam has a sufficient energy density to melt the member on the groove bottom side, and this high energy density laser light is emitted from the emission port 8
And the back plate from the exit 8 while being guided to
The light is emitted to the 13 side, that is, the groove bottom side. By using a long-focus lens as the lens 9, the number of multiple reflections inside the light guide path 6 is reduced, and energy loss can be further reduced.

このように高エネルギ密度状態を略維持して出射口8か
ら出射されるレーザ光によて、フィラワイヤ12或いは金
属粉末が溶融され、被溶接面3、4間の開先底部側の溶
着が与えられる。
In this way, the filler wire 12 or the metal powder is melted by the laser beam emitted from the emission port 8 while maintaining the high energy density state substantially, and welding on the groove bottom side between the welded surfaces 3 and 4 is given. To be

そして第1図において紙面表裏方向に被溶接部材1、2
を導光路部材5に対して相対的に移動していくことによ
って、開先底部の一層目の肉盛溶接が行われる。続いて
上記導光路部材5を被溶接部材1、2に対して漸時上昇
させながら上記操作を継続していくことによって、開先
内の積層溶接が行われ、厚板におけるI形突合せ溶接が
行われる。
Then, in FIG. 1, the members to be welded 1 and 2 are arranged in the front-back direction of the paper.
Is relatively moved with respect to the light guide member 5, so that the first buildup welding of the bottom of the groove is performed. Subsequently, the light guide path member 5 is gradually raised with respect to the members 1 and 2 to be welded to continue the above-mentioned operation, thereby performing the layered welding in the groove and the I-shaped butt welding in the thick plate. Done.

上記導光路部材5はその厚みを3mm程度で構成すること
が可能であり、したがって開先幅tを4mm程度として、
第4図に示すような溶着金属領域Aの狭い多層溶接が可
能となる。1層当りの盛上り量は、フィラワイヤや粉末
の供給量、或いはレーザパワー等との関係で異なるもの
となるが、5KWのレーザ装置を用いて1層3〜4mmの盛上
り量が得られている。
The light guide path member 5 can be configured to have a thickness of about 3 mm. Therefore, the groove width t is set to about 4 mm,
It is possible to perform a narrow multi-layer welding of the deposited metal region A as shown in FIG. The amount of rise per layer is different depending on the amount of filler wire or powder supplied, the laser power, etc., but the amount of rise of 3 to 4 mm per layer can be obtained using a 5 KW laser device. There is.

従来は、前記したように、板厚が増すと開先幅を板表面
側で大きくとる必要があるために、大出力(15KWクラ
ス)のCO2レーザ装置を用いた場合にも板厚40〜50mmが
実用上の限界と考えられる。また開先幅をより狭くする
ために、狭開先TIG溶接法を用いたとしても、10〜12mm
の開先幅が必要である。しかしながら上記によれば、高
エネルギ密度状態へと細く絞ったレーザ光が、開先内を
その底部側へと導かれるので、板厚100mm程度の被溶接
部材に対しても、4mm以下の狭開先状態で溶接が可能で
あり、低歪、高精度の厚板溶接を行うことができる。
Conventionally, as described above, as the plate thickness increases, it is necessary to make the groove width larger on the plate surface side. Therefore, even when a high power (15 KW class) CO 2 laser device is used, the plate thickness 40 ~ 50mm is considered to be the practical limit. Moreover, even if the narrow groove TIG welding method is used to make the groove width narrower, it is 10 to 12 mm.
Groove width is required. However, according to the above, since the laser beam that is narrowed down to a high energy density state is guided to the bottom side of the inside of the groove, even for a workpiece with a plate thickness of about 100 mm, a narrow opening of 4 mm or less is required. Welding is possible in the previous state, and thick plate welding with low distortion and high accuracy can be performed.

以上の説明のように上記実施例においては、レーザ光は
細く絞られた状態で被溶接部材の低部側まで導かれるの
で、被溶接部材には、従来のようにレーザ光の集束径路
に応じてその表面側の開先幅を広げるということが必要
でなくなり、上記レーザ光を導く導光路部材の厚味と略
同等幅の開先幅形状で溶接することが可能となるので、
厚板等における狭開先状態でのレーザ溶接を行うことが
できる。
As described above, in the above-described embodiment, the laser light is guided to the lower side of the member to be welded in a state of being narrowed down, so that the member to be welded has a conventional focusing path of laser light. It is not necessary to widen the groove width on the surface side, and it becomes possible to weld in a groove width shape having a width substantially equal to the thickness of the light guide member for guiding the laser light.
It is possible to perform laser welding in a narrow groove state on a thick plate or the like.

また上記のように導光路6を貫通孔で構成してあるの
で、導光し得るレーザ光の種類や出力に関しての制限が
大幅に緩和されることになる。しかも導光路6を横断面
矩形とし、レーザ光を導光路6内で繰返し反射させなが
ら出射口8へと導くようにしてあるため、被溶接部に照
射されるレーザ光のエネルギ分布は緩やかで比較的平坦
な分布となる。そしてこのようなエネルギ分布の熱源に
よって形成される溶接ビードは、第4図にも示すように
平坦なものとなり、この結果、ビード両端側での融合不
良等の溶接欠陥の発生を抑制した良好な多層盛り溶接結
果が得られることになる。
Further, since the light guide path 6 is formed by the through hole as described above, the restrictions on the type and output of the laser light that can be guided can be greatly relaxed. Moreover, since the light guide path 6 has a rectangular cross section and the laser light is guided to the emission port 8 while being repeatedly reflected in the light guide path 6, the energy distribution of the laser light radiated to the welded portion is gentle. The distribution is flat. The weld bead formed by the heat source having such an energy distribution becomes flat as shown in FIG. 4, and as a result, good welding defects such as poor fusion at both ends of the bead are suppressed. Multi-layer welding results will be obtained.

なお上記実施例はこの発明を限定するものではなく、こ
の発明の範囲内で種々の変更が可能であり、例えば上記
においては導光路6の内面を鏡面加工して反射損失を低
減する構成として説明したが、例えば導光路内面に反射
被膜を形成して反射損失を抑えるようにすることや、ま
た上記では導光路6を上下に貫通する一直線状の形状と
した例について説明したが、例えば導光路の途中で45°
の反射面を形成して、側方よりレーザ光を入射して、下
方へと出射させる等の導光路形状とすることも可能であ
る。
The above embodiment is not intended to limit the present invention, and various modifications can be made within the scope of the present invention. For example, in the above description, the inner surface of the light guide path 6 is mirror-finished to reduce reflection loss. However, for example, a case where a reflective coating is formed on the inner surface of the light guide path to suppress reflection loss, and an example in which the light guide path 6 is formed in a straight line shape extending vertically is described above. 45 ° in the middle of
It is also possible to form a light-reflecting surface so that the laser light is incident from the side and is emitted downward.

(発明の効果) 上記のようにこの発明のレーザ溶接方法においては、レ
ーザ光を細く絞った状態で導光路部材により被溶接部材
の開先底部側まで導くことが可能であり、従来のように
レーザ光の集束径路に応じて表面側の開先幅を広げるこ
とは必要でないので、厚板等に対しても上記導光路部材
の厚味と略同等の幅まで狭めた狭開先状態でのレーザ溶
接を行うことが可能となる。
(Effects of the Invention) As described above, in the laser welding method of the present invention, it is possible to guide the laser beam to the groove bottom side of the member to be welded by the light guide member in a state of being narrowed down, as in the conventional case. Since it is not necessary to widen the groove width on the front surface side according to the focusing path of the laser light, even in the case of a thick plate or the like, in a narrow groove state narrowed to a width substantially equal to the thickness of the light guide member. It becomes possible to perform laser welding.

また上記のように導光路を貫通孔で構成してあるので、
導光し得るレーザ光の種類や出力に関しての制限が大幅
に緩和されることになる。しかも導光路を横断面矩形と
し、レーザ光を導光路内で繰返し反射させながら出射口
へと導くようにしてあるため、被溶接部に照射されるレ
ーザ光のエネルギ分布は緩やかで比較的平坦な分布とな
る。そしてこのようなエネルギ分布の熱源によって形成
される溶接ビードは平坦なものとなり、この結果、ビー
ド両端側での融合不良等の溶接欠陥の発生を抑制した良
好な溶接結果が得られることになる。
Since the light guide path is formed by the through hole as described above,
The restrictions on the type and output of laser light that can be guided will be greatly relaxed. Moreover, since the light guide path is rectangular in cross section and the laser light is guided to the emission port while being repeatedly reflected in the light guide path, the energy distribution of the laser light applied to the welded part is gentle and relatively flat. Distribution. The welding bead formed by the heat source having such an energy distribution becomes flat, and as a result, a good welding result is obtained in which the occurrence of welding defects such as defective fusion on both ends of the bead is suppressed.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のレーザ溶接方法の一実施例を説明す
るための要部模式図、第2図は第1図のII-II線におけ
る断面図、第3図は上記における導光路部材の斜視図、
第4図は上記によってなされたレーザ溶接結果の断面模
式図、第5図は従来のレーザ溶接法の説明図、第6図は
従来のレーザ溶接結果の断面模式図である。 1、2……被溶接部材、3、4……被溶接面、5……導
光路部材、7……入射口、8……出射口。
FIG. 1 is a schematic view of an essential part for explaining an embodiment of a laser welding method of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. Perspective view,
FIG. 4 is a schematic sectional view of the result of laser welding performed as described above, FIG. 5 is an explanatory diagram of a conventional laser welding method, and FIG. 6 is a schematic sectional view of the result of conventional laser welding. 1, 2 ... Welded member, 3, 4 ... Welded surface, 5 ... Light guide member, 7 ... Inlet, 8 ... Outlet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開先溶接される被溶接部材の相対向する被
溶接面間に、入射口と出射口とを有すると共に上記入射
口を通して入射されるレーザ光を上記出射口へと導く導
光路部材を挿入し、開先底部側に位置する上記出射口か
ら出射するレーザ光によって開先底部側の溶接を行うレ
ーザ溶接方法であって、上記導光路部材においては、上
記入射口と上記出射口とを連通する横断面矩形の貫通孔
を形成すると共に、該貫通孔の周壁をレーザ光を反射可
能に加工することによって導光路を形成し、上記入射口
の近傍に集光したレーザ光を導光路内で繰返し反射させ
ながら上記出射口へと導くようにしたことを特徴とする
レーザ溶接方法。
1. A light guide having an entrance and an exit between the welded surfaces of a member to be welded to be groove-welded and facing each other, and guiding a laser beam incident through the entrance to the exit. A laser welding method in which a member is inserted and the groove bottom side is welded by laser light emitted from the emission port located on the groove bottom side, wherein in the light guide member, the incident port and the emission port are used. And a through-hole having a rectangular cross-section that communicates with the through hole, and a peripheral wall of the through-hole is processed to reflect the laser light to form a light guide path, and the laser light condensed near the entrance is guided. A laser welding method characterized in that the laser beam is guided to the emission port while being repeatedly reflected in the optical path.
JP62321884A 1987-12-19 1987-12-19 Laser welding method Expired - Fee Related JPH0729210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321884A JPH0729210B2 (en) 1987-12-19 1987-12-19 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321884A JPH0729210B2 (en) 1987-12-19 1987-12-19 Laser welding method

Publications (2)

Publication Number Publication Date
JPH01162587A JPH01162587A (en) 1989-06-27
JPH0729210B2 true JPH0729210B2 (en) 1995-04-05

Family

ID=18137477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321884A Expired - Fee Related JPH0729210B2 (en) 1987-12-19 1987-12-19 Laser welding method

Country Status (1)

Country Link
JP (1) JPH0729210B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146690B2 (en) 2002-10-19 2006-12-12 General Motors Corporation Releasable fastener system
US7013536B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Releasable fastener systems and processes
US6983517B2 (en) 2002-10-19 2006-01-10 General Motors Corporation Releasable fastener system
US6944920B2 (en) 2002-10-19 2005-09-20 General Motors Corporation Electrostatically releasable fastening system and method of use
JP4015983B2 (en) 2002-10-19 2007-11-28 ゼネラル・モーターズ・コーポレーション Magnetorheological nanocomposite elastomer for releasable accessories
US7013538B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Electroactive polymer releasable fastening system and method of use
US7140081B2 (en) 2002-10-19 2006-11-28 General Motors Corporation Releasable fastener system
US7308738B2 (en) 2002-10-19 2007-12-18 General Motors Corporation Releasable fastener systems and processes
US7032282B2 (en) 2002-10-19 2006-04-25 General Motors Corporation Releasable fastener system
US6973701B2 (en) 2002-10-19 2005-12-13 General Motors Corporation Releasable fastening system based on ionic polymer metal composites and method of use
US6797914B2 (en) * 2003-02-05 2004-09-28 General Motors Corporation Joining workpieces by laser welding with powder injection
DE102006021755A1 (en) * 2006-05-10 2007-11-15 Edag Engineering + Design Ag Energy beam soldering or welding of components
SG143087A1 (en) * 2006-11-21 2008-06-27 Turbine Overhaul Services Pte Laser fillet welding
US20120181255A1 (en) * 2011-01-13 2012-07-19 Bruck Gerald J Flux enhanced high energy density welding
CN104874919B (en) * 2015-05-16 2016-08-17 上海交通大学 A kind of slab narrow gap laser photocoagulation method
DE102018222361A1 (en) * 2018-12-19 2020-06-25 Audi Ag Method for connecting two components, in particular for a motor vehicle, and component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149797A (en) * 1984-08-15 1986-03-11 Nippon Steel Corp Laser beam welding method

Also Published As

Publication number Publication date
JPH01162587A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JPH0729210B2 (en) Laser welding method
US20230030159A1 (en) Methods and laser welding devices for deep welding a workpiece
TWI702105B (en) Laser processing apparatus and method
US5595670A (en) Method of high speed high power welding
US4912297A (en) Device for and method of establishing joints by means of laser beams
Katayama Fundamentals and details of laser welding
KR20220071276A (en) Laser welding method for edge joining of workpiece parts
EP2886241A1 (en) Welding system and welding method
WO2008052551A2 (en) Method and system for laser welding
TW201710009A (en) Laser processing apparatus and use thereof, method for processing workpiece by using laser beam and optical component for combining and aligning laser beam
RU2547987C1 (en) Laser welding method
JP2022517713A (en) Methods for spatter-free welding, especially with solid-state lasers
JPH06218567A (en) Laser joining configuration
JP6805710B2 (en) Laser welding equipment and laser welding method
JP2007253181A (en) Laser beam welding method
CN216298281U (en) Laser composite welding head
JPH0745112B2 (en) Laser welding method
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
US10226841B2 (en) Aperture plate for overheating prevention and wire nozzle protection
JP2003181663A (en) Method and head for composite welding
JPH0199789A (en) Manufacture of welded pipe
JPS60216986A (en) Welding method of thin steel sheets by laser beam
JPH07214360A (en) Laser beam machining
JPS60127088A (en) Welding method of thin steel sheet by laser
JPS60127089A (en) Welding method of thin steel sheets by laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees