JPS6098276A - Control of electrical valve - Google Patents

Control of electrical valve

Info

Publication number
JPS6098276A
JPS6098276A JP20661183A JP20661183A JPS6098276A JP S6098276 A JPS6098276 A JP S6098276A JP 20661183 A JP20661183 A JP 20661183A JP 20661183 A JP20661183 A JP 20661183A JP S6098276 A JPS6098276 A JP S6098276A
Authority
JP
Japan
Prior art keywords
valve
electric
flow rate
control
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20661183A
Other languages
Japanese (ja)
Other versions
JPH0627558B2 (en
Inventor
Megumi Otani
大谷 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58206611A priority Critical patent/JPH0627558B2/en
Publication of JPS6098276A publication Critical patent/JPS6098276A/en
Publication of JPH0627558B2 publication Critical patent/JPH0627558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To obtain the rectilinear relation between the applied voltage and the air flow-rate by applying the standard pulse group of the effective values of the square impact wave at time intervals into the electric conduction part of an electric valve equipped with a decompression mechanism. CONSTITUTION:A coolant circuit A is equipped with refrigeration parts such as an electrical coolant compressor 1, condenser 2, electrical valve 3 equipped with decompression mechanism, and an evaporator 4 annularly connected through piping, and used for cooling a cooled-side load 5. An electric circuit is constituted of a control center part 6, photocoupler 8 set between a primary side 7A and a secondary side 7B, PNP transistors 9 and 10, interface part 7 equipped with fixed resistances 11-13, and an output part 14. The effective value of the square impact wave is applied as an applied voltage into the electric conduction part of the electrical valve 3 from the output part 14. Therefore, a rectilinear flow-rate characteristic can be obtained in a wide range, and stable control is permitted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気胴相模、冷蔵庫等の冷凍、空調機器釦用い
られる熱電式膨張弁、可逆電磁比例弁等減圧機栴付き電
動弁の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial field of application The present invention is applicable to air cylinders, refrigeration of refrigerators, thermoelectric expansion valves used in air conditioning equipment buttons, reversible electromagnetic proportional valves, etc., and control of electric valves with pressure reducers and grooves. Regarding the method.

(ロ)従来技術 この種’F11.動弁は「電気的加熱手段を有するバイ
メタル式熱応動弁」として特公昭58−7869号公報
にて紹介されている。この電動弁には通電閉弁型と、通
電開弁型との二種類があり、その作動特性に二ついては
上記公報及び刊行物「冷凍」の第56巻第641号(昭
和56年3月号)の第60頁〜第64頁で詳細に説明さ
れている。
(b) Prior art This type 'F11. The valve train is introduced in Japanese Patent Publication No. 7869/1986 as a "bimetallic heat-responsive valve with electric heating means." There are two types of electric valves: an energized closed type and an energized open type. ), pages 60 to 64.

上記電動弁の作動特性は、通電部となるヒータに印加し
た電圧と、冷媒流量との関係が基本特性となる。上記刊
行物の第61頁の第2図には通電閉弁型及び通電開弁型
の流量特性が示され、何れも理論的には全閉から全開ま
で広範囲の制御が可能であるが、実際に使用するときに
は、制御方式が簡略化できるように流量特性の直線部分
を使用している。
The basic operating characteristics of the electric valve described above are the relationship between the voltage applied to the heater, which is the current-carrying part, and the refrigerant flow rate. Figure 2 on page 61 of the above publication shows the flow characteristics of the energized closed valve type and the energized open valve type, both of which can theoretically be controlled over a wide range from fully closed to fully open, but in practice. When used in applications, the linear portion of the flow rate characteristics is used to simplify the control method.

即ち、かNる制御方法では、通電部の印加電圧をアナロ
グ電圧としているために、流量特性が全体として曲線と
なり、その結果、この曲線の直線部分の狭い範囲のみの
制御しか行なうことができなかった。
In other words, in the control method described above, since the voltage applied to the current-carrying part is an analog voltage, the flow rate characteristic becomes a curve as a whole, and as a result, control can only be performed within a narrow range of the linear portion of this curve. Ta.

そこで、本願発明者は、(株)鷺宮製作所の通電閉弁型
電動弁(熱電式膨張弁)SQX−22012D(差圧i
okg)を使用して上記流量特性の裏付けを取る実験を
行なった。
Therefore, the inventor of the present application has developed an energized closed-valve electric valve (thermoelectric expansion valve) SQX-22012D (differential pressure i
An experiment was carried out to confirm the above flow rate characteristics using the following:

その実験結果を第1図に示す。かNる実験では、冷媒流
量と空気流量との間に双方共に流体で一義的な関係があ
る点に鑑み、冷媒流量を空気流量に置換してもその特性
が損なわれることがないので、電動弁を通過する流体と
して空気流を使用した。
The experimental results are shown in Figure 1. In the KN experiment, considering that there is a unique relationship between the refrigerant flow rate and the air flow rate in both fluids, even if the refrigerant flow rate is replaced with the air flow rate, the characteristics will not be impaired. Air flow was used as the fluid passing through the valve.

実験結果によれば、制御量となるアナログ電圧(印加電
圧)Eと、操作量となる空気流Jll GAとの間には
直線的な関係は殆んどなく、空気流量特性が曲線となっ
た。即ち、冷凍装置の被冷却側負荷、例えば冷蔵庫にあ
っては庫内自衛の増減に伴ない、電動弁に入る冷媒流量
を変化させるために、この変化に合わせてアナログ電圧
Eを変えると、その時々のアナログ電圧Eにより同じ制
御量の変化分△E、例えば0.5VK対しての操作量△
GAの変化分が第1図及び下記の表に示す如く表われる
According to the experimental results, there was almost no linear relationship between the analog voltage (applied voltage) E, which was the controlled variable, and the air flow Jll GA, which was the manipulated variable, and the air flow characteristics were a curve. . In other words, in order to change the flow rate of refrigerant entering the electric valve as the load to be cooled in a refrigeration system, such as a refrigerator, increases or decreases internal self-defense, if the analog voltage E is changed in accordance with this change, the Change of the same control amount △E due to occasional analog voltage E, for example, the manipulated amount △ for 0.5VK
The changes in GA appear as shown in FIG. 1 and the table below.

この様に、通電部忙印加されるアナログ電圧Eの制御量
の変化分△Eが同じでも、操作量△QAの値が変化する
ため、同じ操作量の変化分△GAを得る場合には制御量
△GAの決定(弁の開度調整)が難かしく、即ち流量特
性の曲線部分における制御が難かしく、上記刊行物で述
べられた欠点を確認できた。
In this way, even if the change in the control amount △E of the analog voltage E applied to the current-carrying part is the same, the value of the manipulated variable △QA changes. It was difficult to determine the amount ΔGA (adjust the valve opening), that is, it was difficult to control the curved portion of the flow rate characteristic, and the drawbacks mentioned in the above publications were confirmed.

(ハ)発明の目的 本発明は従来技術の欠点を解決すると共に、制御量(印
加電圧)と操作量(空気流量)との関係を直線に表わし
、電動弁の制御を簡単に行なえる様にすることを目的と
する。
(c) Purpose of the Invention The present invention solves the drawbacks of the prior art and expresses the relationship between the controlled amount (applied voltage) and the manipulated amount (air flow rate) in a straight line, making it possible to easily control the electric valve. The purpose is to

(ロ)発明の構成 減圧機構付き電動弁の通電部にひずみ波の一種である方
形衝撃波の実効値の基準パルス群を時間間隔をもって印
加してなる電動弁の制御方法。
(B) Structure of the Invention A method for controlling a motor-operated valve comprising applying a reference pulse group of the effective value of a rectangular shock wave, which is a type of strain wave, at time intervals to the current-carrying part of the motor-operated valve with a pressure reducing mechanism.

(ホ)発明の実施例 第2図は冷凍装置の制御回路で、冷媒回路(4)と電気
回路(Blとを示す。前記冷媒回路は冷媒電動圧縮機(
11、凝縮器(2)、上記した公知の減圧機構付き電動
弁(3)、蒸発器(4)等の冷凍部品を配管によって環
状に接続すること釦より構成され、所定の冷凍サイクル
を形成して被冷却側負荷(5)を冷却する。
(E) Embodiment of the Invention Figure 2 shows a control circuit for a refrigeration system, showing a refrigerant circuit (4) and an electric circuit (Bl).
11. Consists of buttons to connect refrigeration components such as a condenser (2), the above-mentioned known electric valve with a pressure reducing mechanism (3), and an evaporator (4) in a ring shape through piping to form a predetermined refrigeration cycle. to cool the load to be cooled (5).

又、前記電気回路はマイクロプロセッサ等からなる制御
中心部(6)と、1次側(7A)と2次側(7B)とに
跨がるフォトカプラー(8)、PNP )ランジスタ(
9)Ql、固定抵抗Ql)Q7J(13を備えたインタ
ーフェイス部(7)と、出力部(14)とからなり、出
力部(14)から方形衝撃波の実効値を印加電圧として
電動弁(3)の通電部に与える。
The electric circuit includes a control center (6) consisting of a microprocessor, a photocoupler (8) spanning the primary side (7A) and the secondary side (7B), and a PNP transistor (
9) Consists of an interface part (7) with Ql, fixed resistance Ql) Q7J (13), and an output part (14), and from the output part (14), the effective value of the square shock wave is applied as the voltage to the electric valve (3). to the current-carrying part.

前記電動弁の制御性を改善するためには制御量(印加電
圧E)対操作量(空気流量GA )の関係を直線関係に
表現できればよい。例えば、GA=G(MAX)−kB という−次式が得られ〜ば、操作量の変化分△QAが制
御量Eの大きさや位置に依存する事態を解消できる。
In order to improve the controllability of the electric valve, it is sufficient if the relationship between the controlled amount (applied voltage E) and the manipulated amount (air flow rate GA) can be expressed as a linear relationship. For example, if the following expression GA=G(MAX)-kB is obtained, the situation in which the change in the manipulated variable ΔQA depends on the magnitude and position of the controlled variable E can be eliminated.

上記印加電圧相当値Eを得るためには、波形のHIGH
時間の長さによる実効値の直流電圧相当値、即ち方形衝
撃波の実効値電圧を利用する必要がある。
In order to obtain the above applied voltage equivalent value E, the waveform must be set to HIGH.
It is necessary to use the DC voltage equivalent value of the effective value depending on the length of time, that is, the effective value voltage of the rectangular shock wave.

上記方形衝撃波忙ついては第3図でその波形及び実効値
を示す。か〜る図面から印加電圧相当値Ee(V)は、 Ee = EH5(D となる。
FIG. 3 shows the waveform and effective value of the square shock wave. From these drawings, the applied voltage equivalent value Ee (V) is Ee = EH5 (D).

次に、印加電圧E〔■〕対空気流量GA(:M’/H)
を解析する。
Next, applied voltage E [■] vs. air flow rate GA (:M'/H)
Analyze.

上記第1図の曲線を曲線近似すると、略下記の式になる
When the curve in FIG. 1 is approximated, it becomes approximately the following equation.

GA = GA CM A X ) ”+ Et□■即
ち、印加電圧の2乗で流量に変化が表われるのがわかる
。更正、印加電圧Eで上記0式を微分すれば dGA dp、ニーktE [kt”2に+とする〕となり、電
圧の大きさによる流量の割合がよく分圧になる程、空気
流量の変化が多量になり、電動弁(3)の制御が難しく
なる。
GA = GA CM A ``2 + +'', and the better the ratio of the flow rate depending on the magnitude of the voltage becomes a partial pressure, the larger the change in the air flow rate becomes, and the more difficult it becomes to control the electric valve (3).

次に、方形衝撃波の実効値で与えた印加電圧対空気流量
について説明すると、上記0式を0式に代入して GA ;= GA[MAX)−4,E2−〇AP:MA
X:)−に、 (EHL〒)”= GA、(MAX) 
−に、Eix”/7= GA (M A X ) ”s
τ □■(ks” ’+Eり1゛とする〕 の式が得られる。か〜る式洗よれば、空気流量QAが方
形衝撃波のHIG)(時間τの一次式として得られ、上
記0式における困難を解決でき、制御性が向上する。
Next, to explain the applied voltage vs. air flow rate given by the effective value of the square shock wave, by substituting the above equation 0 into the equation 0, we get GA ;= GA[MAX)-4,E2-〇AP:MA
X:)−, (EHL〒)”= GA, (MAX)
−, Eix”/7= GA (MAX) ”s
The formula τ □■ (ks''' + E = 1) is obtained.According to this formula, the air flow rate QA is HIG of the rectangular shock wave) (obtained as a linear formula for time τ, and the above formula 0 This improves controllability.

次K、方形衝撃波の構成を具体的な数値で表わ但し、τ
6:基準パルス:周期5m5ecとし、又HIGH時間
τを基準パルスの個数を群として扱える様にした。その
結果、0≦N≦200〔個/秒〕で、O≦Ee≦114
〔■〕となる。
The configuration of the rectangular shock wave of order K is represented by specific numerical values. However, τ
6: Reference pulse: The period was set to 5 m5 ec, and the HIGH time τ was made so that the number of reference pulses could be treated as a group. As a result, 0≦N≦200 [pieces/second] and O≦Ee≦114
It becomes [■].

この状態での波形は第4図に示す様になり、又その実効
値Eeは となり、第4図及び第5図に示すようになる。
The waveform in this state is as shown in FIG. 4, and its effective value Ee is as shown in FIGS. 4 and 5.

又、方形衝撃波のパルス数対空気流量QAの関係を上記
0式よりみると、 QA二GA (M AX) −k、τ 二 GA(MAXI −ksX(NTg)= GA (
MAXl−kt N (kt” k3τ8とする〕 となる。この関係は第6図に示す空気流量特性となり、
直線にて空気流量特性を表わすことができる。
Also, looking at the relationship between the number of pulses of the square shock wave and the air flow rate QA from the above equation 0, QA2GA (MAX) -k, τ2GA (MAXI -ksX(NTg) = GA (
MAXl-kt N (kt" k3τ8) This relationship becomes the air flow rate characteristic shown in Fig. 6,
Air flow characteristics can be represented by a straight line.

従って、′WL動弁(3)を全閉から全開迄の制御が行
なえ、流量特性のどの部分をとっても直線制御となる。
Therefore, the 'WL valve train (3) can be controlled from fully closed to fully open, and any part of the flow rate characteristics can be controlled linearly.

(へ)効果 本発明は減圧機構付き電動弁の通電部に方形衝撃波の実
効値を印加するので、下記に列挙する効果を奏する。
(f) Effects Since the present invention applies the effective value of a rectangular shock wave to the current-carrying portion of an electric valve with a pressure reducing mechanism, it produces the effects listed below.

■ 制御量対操作量の関係即ち流量特性が広範囲にわた
り直線となり、電動弁を全閉から全開迄制御できると共
に、流量特性のどの部分を取っても直線であるため釦所
定範囲の制御が簡単となり、又被冷却側に負荷の変動が
あってもその収斂を容易に行なえ、全体として安定した
制御が行なえる。
■ The relationship between the controlled amount and the manipulated amount, that is, the flow rate characteristics, is linear over a wide range, making it possible to control the electric valve from fully closed to fully open, and since the flow rate is linear no matter where you take it, it is easy to control within a predetermined range using the button. Moreover, even if there is a variation in the load on the side to be cooled, it can be easily converged, and stable control can be performed as a whole.

■ 被冷却側負荷の変動に応じて制御量が多様に変化し
ても、操作量の変化分は略一定なので、過熱度を最適な
状態に維持でき、蒸発器の熱交換効率の向上が図れる。
■ Even if the controlled variable varies in response to fluctuations in the load on the cooled side, the change in the manipulated variable is approximately constant, so the degree of superheating can be maintained at an optimal state, improving the heat exchange efficiency of the evaporator. .

■ 被冷却側負荷の変動が生じても過熱度を略一定に維
持できるので、冷媒電動圧縮機への液戻りが少なくなり
、冷凍装置の安全性が向上する。
■ Even if the load on the cooled side changes, the degree of superheat can be maintained at a substantially constant level, reducing the amount of liquid returning to the electric refrigerant compressor, improving the safety of the refrigeration system.

■ 波形の発生がデジタル処理に適しているので、電気
回路の構成が扱いやすくなる。
■ Waveform generation is suitable for digital processing, making it easier to construct electrical circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の制御方法による流量特性図。 第2図は本発明Kか〜る電動弁を備えた冷凍装置の制御
回路図、第3図は方形衝撃波の基本波形図、第4図は本
発明にか〜る方形衝撃波の構成図、第5図は第4図の基
準パルス図、第6図は本発明の制御方法による流量特性
図である。
FIG. 1 is a flow rate characteristic diagram according to a conventional control method. Fig. 2 is a control circuit diagram of a refrigeration system equipped with an electric valve according to the present invention, Fig. 3 is a basic waveform diagram of a rectangular shock wave, and Fig. 4 is a configuration diagram of a rectangular shock wave according to the present invention. 5 is a reference pulse diagram of FIG. 4, and FIG. 6 is a flow rate characteristic diagram according to the control method of the present invention.

Claims (1)

【特許請求の範囲】 1、減圧機構付き電動弁の通電部に、ひずみ波の一種で
ある方形衝撃波の実効値の基準パルス群を時間間隔をも
って印加することを特徴とする市。 動弁の制御方法。
[Claims] 1. A device characterized in that a reference pulse group of the effective value of a rectangular shock wave, which is a type of strain wave, is applied at time intervals to a current-carrying part of an electric valve with a pressure reducing mechanism. Valve train control method.
JP58206611A 1983-11-01 1983-11-01 Motorized valve control method Expired - Lifetime JPH0627558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206611A JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206611A JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Publications (2)

Publication Number Publication Date
JPS6098276A true JPS6098276A (en) 1985-06-01
JPH0627558B2 JPH0627558B2 (en) 1994-04-13

Family

ID=16526245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206611A Expired - Lifetime JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Country Status (1)

Country Link
JP (1) JPH0627558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921694B2 (en) 2005-10-12 2011-04-12 Airbus Deutschland Gmbh Leak detector and detection method using radiation transmitted through a fluid line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204381A (en) * 1981-06-12 1982-12-15 Saginomiya Seisakusho Inc Flow rate control method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204381A (en) * 1981-06-12 1982-12-15 Saginomiya Seisakusho Inc Flow rate control method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921694B2 (en) 2005-10-12 2011-04-12 Airbus Deutschland Gmbh Leak detector and detection method using radiation transmitted through a fluid line
US8365581B2 (en) 2005-10-12 2013-02-05 Airbus Operations Gmbh Valve for a leak detector

Also Published As

Publication number Publication date
JPH0627558B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
CN100427849C (en) Improved efficiency thermoelectrics utilizing thermal isolation
KR960018439A (en) Refrigeration system using refrigerant flow control valve and refrigerant flow control valve
US3119236A (en) Superconductive temperature control
US2998707A (en) Control apparatus and method for heat pumps
US3482623A (en) Zone temperature control system
JPH0345872A (en) Servo-control expansion valve
JPS6366781U (en)
JPS6098276A (en) Control of electrical valve
JPS5881277A (en) Control method of expansion valve
US3406744A (en) Heating and air-conditioning apparatus
ES1023755U (en) Mixing valve.
JPS5899575A (en) Valve
JPS6353379A (en) Fluid mixing valve
JPS59137676A (en) Expansion valve
US11914406B2 (en) Self-sensing and self-actuating valve for modulating process coolant flow
JPS5881278A (en) Expansion valve
US1285991A (en) Temperature-regulating valve mechanism.
JPS6269034A (en) Temperature regulator
JPH0348629U (en)
WO2001001053A1 (en) Electro-thermal expansion valve system
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
EP1361400A2 (en) Thermostatic expansion valve
JP3326629B2 (en) Micro temperature control device and method
US2558652A (en) Stabilized pressure-opfrated valve
JPS59170667A (en) Expansion valve for refrigerator