JPS5881278A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPS5881278A
JPS5881278A JP56179675A JP17967581A JPS5881278A JP S5881278 A JPS5881278 A JP S5881278A JP 56179675 A JP56179675 A JP 56179675A JP 17967581 A JP17967581 A JP 17967581A JP S5881278 A JPS5881278 A JP S5881278A
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
shaft
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56179675A
Other languages
Japanese (ja)
Inventor
Masakatsu Hayashi
政克 林
Kunio Fujie
藤江 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56179675A priority Critical patent/JPS5881278A/en
Priority to US06/440,630 priority patent/US4548047A/en
Publication of JPS5881278A publication Critical patent/JPS5881278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0648One-way valve the armature and the valve member forming one element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To pass refrigerant through an expansion valve without flow resistance by providing an orifice and a pass hole on a shaft penetrating through a valve main body. CONSTITUTION:An orifice 25 and a pass hole 26 are provided on the periphery of a shaft lower part 23a in a valve main body 21. When a magnetic force is generated in an electromagnetic coil 29 in the same direction with that of a permanent magnet 28, a plunger 31 is moved greatly to be attracted to an attraction element 30. Then, the pass hole 26 can be kept opened by the work of the permanent magnet 28 and the attraction element 30. As a result, the pass hole 26 considerably greater than the orifice 25 is opened, and refrigerant can pass through with little flow resistance.

Description

【発明の詳細な説明】 本発明はルームエアコン、パッケージエアコン。[Detailed description of the invention] The present invention is a room air conditioner and a package air conditioner.

カーエアコンおよびこれらのと一トポンプエアコンなど
の冷凍サイクルIc@用される冷媒の流量を制御する膨
張弁に関するものである。
This invention relates to an expansion valve that controls the flow rate of refrigerant used in the refrigeration cycle Ic of car air conditioners and pump air conditioners.

従来の典型的な流量制御弁は第1図に示すように、弁本
体1に取付けられた電磁コイル2への電気入力信号によ
る磁力により、弁本体1のプランジャ3tl−スプリン
グ4に抗して吸引し、その吸引力とスプリング4のバネ
力との釣合により、プランジャ3を前記電気入力信号の
大きさに応じた位置に保持し、プランジャ3に$付けら
れた弁体5および弁本体1に設けられた弁座6により形
成された弁の流路面構を電化させることにより、前記電
気入力信号の大きさに応じ九訛蓋を連続的に制御して流
すように構成されている。
As shown in FIG. 1, a typical conventional flow rate control valve is attracted against a plunger 3tl of the valve body 1 and a spring 4 by a magnetic force generated by an electric input signal to an electromagnetic coil 2 attached to the valve body 1. By balancing the attractive force with the spring force of the spring 4, the plunger 3 is held at a position corresponding to the magnitude of the electrical input signal, and the valve element 5 attached to the plunger 3 and the valve body 1 are By electrifying the flow path surface structure of the valve formed by the provided valve seat 6, the valve is configured to continuously control nine valves to flow in accordance with the magnitude of the electrical input signal.

上記のように従来の制御弁によれ#″!′、電磁コイル
2へ供給され、61iL気入力li号の大きさに応じて
As mentioned above, by the conventional control valve #''!' is supplied to the electromagnetic coil 2, depending on the magnitude of the 61iL air input li.

弁の流路面構を変化させることによシ流itを制御する
ことかで1!るが、*磁性体からなるグラ/ジャ3には
、謁2図に示すように磁気的ヒステリシスHを生ず勾の
で、入力電圧Esとグラ/ジャ3の質位量tとの関係は
入力電圧Esの増加時Cおよび減少時Rによって着しく
異なる。すなわち入力電圧Esが同一であっても、プラ
ンジャ変位量は1..1.で示すようになるから流量に
大輪な表具を生ずる。
1! By controlling the flow rate by changing the flow path structure of the valve! However, *Gura/jar 3 made of a magnetic material has a magnetic hysteresis H as shown in Figure 2, so the relationship between input voltage Es and mass t of Gra/jar 3 is as follows: It differs considerably depending on the time C when the voltage Es increases and the time R when it decreases. That is, even if the input voltage Es is the same, the plunger displacement amount is 1. .. 1. Since it becomes as shown in the figure, a large scale is produced in the flow rate.

したがってこの種の流量制御弁では、実用化に際し前記
誤差を補正するための機器を付加しなければならないか
ら非常に高価となる。またこの弁をヒートポンプエアコ
ンの制御弁として使用したときには膨張弁として利用す
ることになるが、この場合、弁体5と弁座6とめ間に形
成される流路面積は非常に小さくなシ、弁座6の両側に
設けられた空間7.8間に大きな圧力差を生ずる。この
ためヒートポンプエアコンのように冷房時において冷媒
の流れ方向が逆になる場合、空間7,8間の圧力差が弁
体5に及ぼす力は逆方向になるので。
Therefore, when this type of flow control valve is put into practical use, equipment for correcting the error must be added, making it very expensive. Also, when this valve is used as a control valve for a heat pump air conditioner, it is used as an expansion valve, but in this case, the flow path area formed between the valve body 5 and the valve seat 6 is very small. This creates a large pressure difference between the spaces 7,8 provided on both sides of the seat 6. For this reason, when the flow direction of the refrigerant is reversed during cooling as in a heat pump air conditioner, the force exerted on the valve body 5 by the pressure difference between the spaces 7 and 8 is in the opposite direction.

冷房時と暖房時では電極コイル2とスプリング4の力の
バランス関係が大幅に異なるから、−個の升で冷房時と
暖房時の双方の流量制御を行なうことは至難である。
Since the balance of forces between the electrode coil 2 and the spring 4 is significantly different during cooling and heating, it is extremely difficult to control the flow rate during both cooling and heating using -1 squares.

また、従来の典型的な熱電膨張弁は第3図に示すように
、弁本体9に取付けられた容器lO内にヒータ12を巻
き付けたバイメタル11を設け。
Further, as shown in FIG. 3, a typical conventional thermoelectric expansion valve includes a bimetal 11 with a heater 12 wrapped around it inside a container 10 attached to a valve body 9.

そのヒータ12を端子11.13bを介して電源(図示
せず)h接続して加熱することによりバイメタル11を
変形させ、この変形量をスペーサ14を介して弁体15
に伝達して移動させることによシ、弁本体9内に設けら
れたノズル16の絞シ量を制御するように構成されてい
る。
The bimetal 11 is deformed by heating the heater 12 by connecting it to a power source (not shown) h via the terminal 11.13b, and the amount of deformation is transferred to the valve body 15 via the spacer
The valve body 9 is configured to control the amount of throttling of the nozzle 16 provided in the valve body 9 by transmitting the signal to the valve body 9 and moving the valve body 9 .

このような弁では、電気信号をと−タ12によ)熱に変
換してバイメタル11を加熱すると共に。
In such a valve, the bimetal 11 is heated by converting an electrical signal into heat by the heater 12.

この加熱されたバイメタル11を容器10内の流体の自
然放熱により冷却してバイメタル11の変形量を変えて
いる。このように電気g1号を一度熱に変換しているか
ら、弁体15の応答すなわち動作が遅延する恐れがある
The heated bimetal 11 is cooled by natural heat dissipation of the fluid in the container 10 to change the amount of deformation of the bimetal 11. Since the electricity g1 is once converted into heat in this way, there is a risk that the response or operation of the valve body 15 will be delayed.

また上記弁をヒートポンプの冷凍サイクルに使用し九場
合、冷透時に矢印19の方向に冷媒を流すと、一方の開
口部17の高圧の液冷媒はノズル16を流通して低圧の
気液混合冷媒となって他方の開口部18へ流れる。この
場合、容器10円にはノズル16tl−鮭て低圧となっ
た気体冷媒が侵入する。
Furthermore, when the above-mentioned valve is used in a heat pump refrigeration cycle, when the refrigerant is flowed in the direction of the arrow 19 during cooling, the high-pressure liquid refrigerant in one opening 17 flows through the nozzle 16, and the low-pressure gas-liquid mixed refrigerant flows through the nozzle 16. and flows to the other opening 18. In this case, the gaseous refrigerant at low pressure enters the container 10 yen through the nozzle 16 tl.

一方、暖房時には冷房時と逆方向に冷媒が流れるから、
開口部18の高圧液冷媒が容器10内に侵入する。この
ためバイメタル11を加熱しようとする熱がすべて高圧
の液体冷媒の蒸発によシ奪われるので、バイメタル11
は変形しないから制御不能となる。このように従来の熱
電膨張弁は応答性が急く、かつ可逆流通性を有しない欠
点がある。
On the other hand, during heating, the refrigerant flows in the opposite direction to that during cooling.
High pressure liquid refrigerant in opening 18 enters container 10 . For this reason, all the heat that attempts to heat the bimetal 11 is taken away by the evaporation of the high-pressure liquid refrigerant, so the bimetal 11
cannot be controlled because it does not deform. As described above, conventional thermoelectric expansion valves have the drawbacks of rapid response and lack of reversible flow.

さらに第1図および第3図に示す弁を冷凍サイクルの膨
張弁として使用する場合、弁座6およびノズル16にお
ける流路の断面積は、全開時においても流れが絞られる
ように小さく設定されている。その理由は次のとおシで
るる。すなわち前記流路117面槓面積れが絞られない
程に大きくした場合、弁体5,15のストロークを大き
くしなければならないため2升体5.15を移動させる
電磁コイル2およびバイメタル11も大きくする必費が
あるので、弁全体が大きくなるからコストの上昇、電気
入力の増大および制御性の低下などの諸欠点がある。し
たがって前記弁に一般の電磁弁((オン−オフ弁)の開
時の場合と同様に流体抵抗がほとんどなく流体を流す慎
能を四時に持たせることは困難であった。
Furthermore, when the valve shown in FIGS. 1 and 3 is used as an expansion valve in a refrigeration cycle, the cross-sectional area of the flow path at the valve seat 6 and nozzle 16 is set small so that the flow is restricted even when the valve is fully open. There is. The reason is as follows. In other words, if the flow path 117 face area gap is made so large that it is not restricted, the strokes of the valve bodies 5 and 15 must be made large, and therefore the electromagnetic coil 2 and bimetal 11 that move the two square bodies 5 and 15 will also have to be made large. Since the entire valve becomes larger, there are various disadvantages such as an increase in cost, an increase in electrical input, and a decrease in controllability. Therefore, it has been difficult to provide the valve with the ability to allow fluid to flow with almost no fluid resistance, similar to when a general solenoid valve (on-off valve) is opened.

本発明は上記にかんがみ冷媒の流量制御1を行うばかシ
でなく、冷媒を流通抵抗なく流すことができ、かつ可逆
流通性を有し、しかも応答の迅速な膨張弁を提供するこ
とを目的とするもので、開口を有する弁本体と、この弁
本体を頁通し、かつ弁本体と密層して一体に結合された
一方の閉基する中空状シャフトと、このシャフト内の閉
塞端に取付けられ九吸引子と、前記シャフトの閉塞側の
外周部に取付けられた永久磁石および電磁コイルとから
なシ、前記弁本体内のシャフトと弁本体との間に流通空
間を形成し、このtlt、通空関とシャフト内をそのシ
ャフトに設けたオリアイスと流通口により遅過させたこ
と1に%黴とするものである。
In view of the above, the present invention aims to provide an expansion valve that does not simply perform refrigerant flow rate control 1, but allows refrigerant to flow without flow resistance, has reversible flowability, and has a quick response. A valve body having an opening, one closed hollow shaft that passes through this valve body and is integrally connected to the valve body in a dense layer, and a closed end that is attached to the closed end within this shaft. A circulation space is formed between the shaft in the valve body and the valve body, and this tlt is composed of a permanent magnet and an electromagnetic coil attached to the outer periphery of the closed side of the shaft. 1% mold is caused by the air barrier and the inside of the shaft being delayed by the orifice and the flow port provided in the shaft.

以下本発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図において、21は開口22を有する弁本体、23
は弁本体21を貫通すると共に密着して一体に結合され
た中空状シャフトで、このシャフト23と弁本体21と
の間に流通空間27が形成されている。前記シャフト2
3は一方側が閉塞されると共に、他方側に開口24が設
けられ、かつ弁本体21内のシャフト下部23畠の周壁
にはオリフィス25と流通口26が設けられ、弁本体2
1の上方に突出するシャフト上部23bの外側には永久
磁石28と電磁コイル29が取付けられている。
In FIG. 4, 21 is a valve body having an opening 22;
is a hollow shaft that passes through the valve body 21 and is closely connected to the valve body 21, and a flow space 27 is formed between the shaft 23 and the valve body 21. The shaft 2
3 is closed on one side and has an opening 24 on the other side, and an orifice 25 and a flow port 26 are provided on the peripheral wall of the shaft lower part 23 in the valve body 21.
A permanent magnet 28 and an electromagnetic coil 29 are attached to the outside of the shaft upper part 23b that protrudes upward.

30はシャフト23内の閉基端に取付けられた吸引子、
31はシャフト23内にスプリング34゜35を介して
軸方向に摺動自在に設けられたプランジャで、このプラ
ンジャ31には内部に均圧路32が軸方向に設けられる
と共に、下部胸壁に均圧路33が半径方向に設けられ、
ている。
30 is an attractor attached to the closed proximal end within the shaft 23;
Reference numeral 31 denotes a plunger that is slidably provided in the shaft 23 via springs 34 and 35 in the axial direction, and this plunger 31 is provided with a pressure equalizing passage 32 in the axial direction inside, and a pressure equalizing passage 32 is provided in the lower chest wall. a channel 33 is provided radially;
ing.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

電磁コイル29に印加される電気入力信号によシ発生す
る電磁力と、スプリング34,350バネカとの釣合い
からプランジャ31は上下動を繰返し行い、シャツ)3
1に設けられ良オリフィスi5を開閉して単位時間当り
の流量を連続的に制御する。前記電気入力信号としてパ
ルス信号を用いることにより、オリフィス25の開度は
プランジャ31がオリフィス25を開放あるいは閉塞す
る回数、またはプランジャ3がオリフィス25t−開放
あるいは閉塞する通電時間を任意に遍足して制御するこ
とができる。
The plunger 31 repeatedly moves up and down due to the balance between the electromagnetic force generated by the electric input signal applied to the electromagnetic coil 29 and the spring force of the springs 34 and 350.
The flow rate per unit time is continuously controlled by opening and closing a good orifice i5 provided at 1. By using a pulse signal as the electrical input signal, the opening degree of the orifice 25 can be controlled by arbitrarily adding up the number of times the plunger 31 opens or closes the orifice 25 or the energization time during which the plunger 3 opens or closes the orifice 25t. can do.

プランジャ31には軸方向および半径方向に均圧路32
.33が設けられているため、プランジャ31に働く流
体の圧力は常に開口24の圧力にほぼ等しくなる。すな
わちオリアイス250前後1 に圧力差が生じても、この圧力差はプランジャ守にはほ
とんど影譬を及はさない。し九がって冷媒をシャフト2
3の開口24から流入し、オリフィス25および流通空
間27を経て弁本体j!1の開口22よCm出させる場
合、シャフト23の開口24の圧力は弁本体21の開口
22の圧力よp高くなる。また冷媒を前記と逆方向に流
した場合には、前記開口24の圧力は開口22の圧力よ
り低くなる。
The plunger 31 has pressure equalizing passages 32 in the axial and radial directions.
.. 33, the pressure of the fluid acting on the plunger 31 is always approximately equal to the pressure in the opening 24. In other words, even if a pressure difference occurs between the front and rear of the Oriice 250, this pressure difference has almost no effect on the plunger guard. Then move the refrigerant to shaft 2.
3 through the opening 24, passes through the orifice 25 and the circulation space 27, and enters the valve body j! 1, the pressure at the opening 24 of the shaft 23 becomes p higher than the pressure at the opening 22 of the valve body 21. Further, when the refrigerant is caused to flow in the opposite direction, the pressure in the opening 24 becomes lower than the pressure in the opening 22.

このように冷媒の流れ方向により開口22と開口24と
の間には、オリフィス25を境にして圧力差を生ずるが
、このような場合でもプランジャ31の周囲に鋤く圧力
は常に開口24の圧力に等しく、かつ均圧路33.32
によシブランジャ31の上、下面にはほとんど圧力差が
生じない。
In this way, a pressure difference occurs between the openings 22 and 24 with the orifice 25 as a boundary depending on the flow direction of the refrigerant, but even in such a case, the pressure built around the plunger 31 is always equal to the pressure in the openings 24. equal to and pressure equalization path 33.32
There is almost no pressure difference between the upper and lower surfaces of the passive plunger 31.

このためプランジャ31t−作動させるために必要な電
気信gは、冷媒の流れ方向と無関係に同じ入力信号を使
用できると共に、冷媒の訛れ方向の如何にかかわらず冷
媒の流量を容易に制御することができる。
Therefore, the electric signal g required to operate the plunger 31t can use the same input signal regardless of the flow direction of the refrigerant, and the flow rate of the refrigerant can be easily controlled regardless of the direction of the refrigerant flow. I can do it.

冷凍サイクルの冷房運転時には、プランジャ31はオリ
フィス25のみを開閉し、流通口26を開放しない。こ
れは、プランジャ31のストロークが′wL磁コベコイ
ル29加する電気入力信号例えば電圧の大きさによシ決
定されるから、オリフィス25のみを開閉するときには
、その電気入力信号(パルス信号)を流通口26の開放
時よりも小さい信号とすることによシ遅成できる。そし
て流量側(11には前記パルス信号を変化させ、オリフ
ィス25の開閉時間を変化させるようにする。
During cooling operation of the refrigeration cycle, the plunger 31 opens and closes only the orifice 25 and does not open the flow port 26. This is because the stroke of the plunger 31 is determined by the magnitude of the electrical input signal, for example voltage, applied to the 'wL magnetic coil 29, so when only the orifice 25 is opened or closed, the electrical input signal (pulse signal) is applied to the flow outlet. By making the signal smaller than that when 26 is open, the delay can be achieved. Then, on the flow rate side (11), the pulse signal is changed to change the opening/closing time of the orifice 25.

電磁コイル29で発生する磁力を永久磁石28の磁力と
同一方向とし、かつ流量制御時よりも大きな電気入力信
号を与えて、プランジャ31を大きく移動させて吸引子
30に&引させる。この吸引終了後に電磁コイル29へ
の電気信号の入力を中断すると、永久磁石28と吸引子
30のl1llきにより、流通口’zeyP放状態に保
持することができる。
The magnetic force generated by the electromagnetic coil 29 is set in the same direction as the magnetic force of the permanent magnet 28, and a larger electric input signal than that during flow rate control is applied to move the plunger 31 largely to cause the attractor 30 to pull. When the input of the electric signal to the electromagnetic coil 29 is interrupted after this suction is completed, the flow port 'zeyP can be maintained in the open state by the l1ll movement of the permanent magnet 28 and the attractor 30.

このようにしてオリフィス25よシも着しく大きい流通
口26が開放されるため、冷媒は訛過抵抗をほとんど受
けることなく流通する仁とが可能である。一方、流通口
26を閉塞する場合には。
In this way, the flow port 26, which is larger than the orifice 25, is opened, so that the refrigerant can flow with almost no resistance. On the other hand, when the flow port 26 is closed.

前記と反対に電磁コイル29に永久磁石28の磁力と逆
方向の磁力が発生するように電気入力信号を付与すれば
、ff通口26が閉基されて冷媒流量を制御する状態に
復帰する。
Conversely, if an electrical input signal is applied to the electromagnetic coil 29 so as to generate a magnetic force in the opposite direction to the magnetic force of the permanent magnet 28, the ff port 26 is closed and the refrigerant flow rate is returned to a state controlled.

上述した本実施例では、プランジャ31に均圧路32.
38を設けたが、そのプランジャ31が小径で均圧路を
設けることができない場合には。
In this embodiment described above, the plunger 31 is provided with a pressure equalizing passage 32 .
38, but when the plunger 31 has a small diameter and a pressure equalizing path cannot be provided.

シャフト23の開口24の圧力を外部均圧管によりプラ
ンジャ310反対1it(上面側)へ導くようにすれば
よい。また本実施例ではシャフト23の下部にオリフィ
ス25および流通口26を別々に設けて制御を容易にし
たが、電磁コイル29への電気入力信号の大きさを細か
くコントロールできるときには、オリフィス25と流通
口26を合体して一つにすると共に、電気入力信号の大
きさによシプラ/ジャ31のスト四−りを制御するよう
にしてもよい。
The pressure in the opening 24 of the shaft 23 may be guided to the opposite side of the plunger 310 (on the upper surface side) by an external pressure equalizing pipe. Further, in this embodiment, the orifice 25 and the flow port 26 are separately provided at the lower part of the shaft 23 to facilitate control, but when the magnitude of the electrical input signal to the electromagnetic coil 29 can be precisely controlled, 26 may be combined into one, and the stroke of the cipher/jar 31 may be controlled depending on the magnitude of the electrical input signal.

以上説明したように本発明によれば、シャフトにオリア
イスと流通口を設けることによ)、冷媒の流量制御ばか
りでなく、冷媒を流通抵抗なく流すことが可能であシ、
また冷媒の流れ方向の如何5 にかかわらず、冷媒の流量を容易に制御することにより
、可逆流通性t−肩するようにしたので、冷媒時および
暖房時の制御を一個の弁で行うことができる。さらに電
磁コイルへの電気入力信号を熱に変換することなく、磁
力として直接にプランジャを移動させることによシ、応
答を迅速化させることができるので、冷凍機の立上り性
能を向上させることが可能である。なお永久磁石と吸引
子の作用により、シャ゛フトの流通口を開放状態に保持
することができるため、電気人力を節減して経済性の向
上を゛はかることが可能である。
As explained above, according to the present invention, by providing an oriice and a flow port in the shaft, it is possible not only to control the flow rate of the refrigerant but also to flow the refrigerant without flow resistance.
In addition, regardless of the flow direction of the refrigerant, reversible flowability is achieved by easily controlling the flow rate of the refrigerant, making it possible to control the refrigerant and heating operations with a single valve. can. Furthermore, by directly moving the plunger as magnetic force without converting the electrical input signal to the electromagnetic coil into heat, response can be made faster, improving the start-up performance of the refrigerator. It is. Furthermore, since the flow port of the shaft can be kept open by the action of the permanent magnet and the attractor, it is possible to save electric power and improve economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の制御弁の断面図、第2図は同制御弁の制
作説明図、第3図は従来の熱電膨張弁の断面図、1s4
図は本発明の膨張弁の一実施例を示す断面図である。 21・・・弁本体、22.24・・・開口、23・・・
中空状シャフト、25・・・オリフィス、26・・・流
通口。 27・・・流通中間、28・・・永久磁石、29・・・
電磁コイル、30・・・吸引子、31・・・プランジャ
、32゜33・・・均圧路。゛ 代理人 弁理士 博田荊雫 第 1  図 第 7 図 入つ t H−(E<:)     r“第3図 /’?)
Figure 1 is a sectional view of a conventional control valve, Figure 2 is an explanatory diagram of the production of the same control valve, and Figure 3 is a sectional view of a conventional thermoelectric expansion valve.
The figure is a sectional view showing an embodiment of the expansion valve of the present invention. 21...Valve body, 22.24...Opening, 23...
Hollow shaft, 25...orifice, 26...flow port. 27... Distribution intermediate, 28... Permanent magnet, 29...
Electromagnetic coil, 30... Attractor, 31... Plunger, 32° 33... Pressure equalization path.゛Representative Patent Attorney Shizuku Hakata 1 Figure 7 Figure included t H-(E<:) r"Figure 3/'?)

Claims (1)

【特許請求の範囲】 1、開口を有する弁本体と、この弁本体をX遡し、かつ
弁本体と密着して一体に結付された一方の閉塞する中空
状シャフトと、このシャフト内の閉塞端に取付けられた
吸引子と、前記シャフト内に軸方向に摺動可能に収納さ
れたプランジャと、前記シャフトの閉塞側の外鵬部に取
付けられた永久磁石および電磁コイルとからな9゜前記
弁本体内のシャフトと弁本体との間に流通空間を形成し
、この流通空間とシャフト内をそのシャフトに設けたオ
リアイスと流通口によシ連通させたことを特徴とする膨
張弁。 2 上記プランジャに均圧路1km方向および半径方向
にそれぞれ設けたことを特徴とする特許請求の範目第1
項記載の膨張弁。
[Scope of Claims] 1. A valve body having an opening, a hollow shaft extending back from this valve body and integrally connected to the valve body, and one of which is closed, and a blockage in this shaft. A 9.degree. An expansion valve characterized in that a flow space is formed between a shaft within the valve body and the valve body, and the flow space and the inside of the shaft are communicated with an oriice provided in the shaft through a flow port. 2. Claim 1, characterized in that the plunger is provided with pressure equalizing passages in the 1 km direction and in the radial direction, respectively.
Expansion valve as described in section.
JP56179675A 1981-11-11 1981-11-11 Expansion valve Pending JPS5881278A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56179675A JPS5881278A (en) 1981-11-11 1981-11-11 Expansion valve
US06/440,630 US4548047A (en) 1981-11-11 1982-11-10 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56179675A JPS5881278A (en) 1981-11-11 1981-11-11 Expansion valve

Publications (1)

Publication Number Publication Date
JPS5881278A true JPS5881278A (en) 1983-05-16

Family

ID=16069904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56179675A Pending JPS5881278A (en) 1981-11-11 1981-11-11 Expansion valve

Country Status (1)

Country Link
JP (1) JPS5881278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186180A (en) * 1988-04-29 1990-07-20 Eaton Corp Electromagnetic action type valve assembly
EP1219877A1 (en) * 2000-12-25 2002-07-03 SMC Kabushiki Kaisha Self-holding type solenoid-operated valve
US6863255B2 (en) 2000-02-29 2005-03-08 Nok Corporation Solenoid having fluid accumulating and plunger chambers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497959U (en) * 1972-04-21 1974-01-23
JPS5620172B2 (en) * 1971-10-01 1981-05-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620172B2 (en) * 1971-10-01 1981-05-12
JPS497959U (en) * 1972-04-21 1974-01-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186180A (en) * 1988-04-29 1990-07-20 Eaton Corp Electromagnetic action type valve assembly
US6863255B2 (en) 2000-02-29 2005-03-08 Nok Corporation Solenoid having fluid accumulating and plunger chambers
EP1219877A1 (en) * 2000-12-25 2002-07-03 SMC Kabushiki Kaisha Self-holding type solenoid-operated valve
US6691740B2 (en) 2000-12-25 2004-02-17 Smc Kabushiki Kaisha Self-holding type solenoid-operated valve

Similar Documents

Publication Publication Date Title
US4548047A (en) Expansion valve
US20090020716A1 (en) Motor driven valve and cooling/heating system
US2991631A (en) Reverse cycle refrigeration system and four-way transfer valve for same
US4406306A (en) Heat pump switchover valve
JPS5881278A (en) Expansion valve
JPS5881277A (en) Control method of expansion valve
JP3362990B2 (en) Expansion valve with solenoid valve
EP1092106A1 (en) Electrically actuated reed valve
JPH0587746B2 (en)
CN212745056U (en) Electronic expansion valve
CN108869774B (en) Electromagnetic valve and one-driving-two power recovery type pulse tube refrigerator
JPH01155163A (en) Four-way valve for refrigeration cycle
JPS59137676A (en) Expansion valve
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
JPS62147182A (en) Expansion valve
JPS6170356A (en) Expansion valve for refrigeration cycle
JPH0341279A (en) Pilot type solenoid valve
US3009478A (en) Fluid valve structures
JPH0649980Y2 (en) solenoid valve
JP3387586B2 (en) Expansion valve with solenoid valve
JP3123901B2 (en) Composite valve for refrigeration cycle
JPH0616189Y2 (en) Switching valve
KR101262933B1 (en) Heat pump system using injector, and method of controlling the same
JPS58152988A (en) Reversible magnet valve
JP2004093031A (en) Electric expansion valve