JPS59137676A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPS59137676A
JPS59137676A JP58011526A JP1152683A JPS59137676A JP S59137676 A JPS59137676 A JP S59137676A JP 58011526 A JP58011526 A JP 58011526A JP 1152683 A JP1152683 A JP 1152683A JP S59137676 A JPS59137676 A JP S59137676A
Authority
JP
Japan
Prior art keywords
valve
opening
port
flow
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58011526A
Other languages
Japanese (ja)
Inventor
Masakatsu Hayashi
政克 林
Kunio Fujie
藤江 邦男
Kazumi Iwai
岩井 一躬
Yoshio Okamoto
良雄 岡本
Kazuaki Yokoi
和明 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58011526A priority Critical patent/JPS59137676A/en
Publication of JPS59137676A publication Critical patent/JPS59137676A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/082Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet using a electromagnet and a permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To prevent a valve from any influence due to hysteresis, by installing permanent magnet and a solenoid coil between a pipe provided at the outside of a hollow shaft and installed so as to wrap both of a nozzle hole and a flow port and a closed end part of the shaft. CONSTITUTION:When a pulse signal is impressed on a solenoid coil 2, a plunger 3 moves up and down due to a relationship between electromagnetic force and resilient force of springs 25 and 26 whereby opening at an average time in a nozzle hole 18 of a hollow shaft 21 varies to some extent and the nozzle hole 18 will not come to its halfway opening so that there is no influence of hysteresis. The pulse signal is given to the coil 2 so as to cause it become the same direction as a line of magnetic force of a permanent magnet 29, and when a flow port 19 is opened by making a sucker 22 attract a plunger, a refrigerant flows into a pipe 24 from an opening part 27 with no flow resistance, while if the pulse signal is given to the coil 2 so as to cause it to become the opposite direction to the line of magnetic force of the permanent magnet 29, the flow port 19 is closed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明uルームエアコン、パッケージエアコン。[Detailed description of the invention] [Field of application of the invention] U room air conditioner and packaged air conditioner according to the present invention.

カーエアコン、車輛用エアコンおよびこれらのヒートポ
ンプエアコン等の冷凍サイクルに使用する膨張弁に関す
るもので、特に電気入力信号に比例して冷媒の流量を制
御する電磁流葉割御膨張弁を提供するものである。
This invention relates to expansion valves used in the refrigeration cycle of car air conditioners, vehicle air conditioners, and heat pump air conditioners, and in particular provides an electromagnetic flow control expansion valve that controls the flow rate of refrigerant in proportion to an electrical input signal. .

〔従来技術〕[Prior art]

従来、電磁力を利用して弁を閉じ、流体の流れを止める
t磁弁(ON−OFF弁)は公知である。
BACKGROUND ART Magnetic valves (ON-OFF valves) that use electromagnetic force to close a valve and stop the flow of fluid are conventionally known.

しかしこのJIIL磁弁(ON−OFF弁)においては
、流量を連秩的に制御する働きは持っていない。また、
電磁石へ入力する電気信号(電流又は電圧)を変えて流
路の面積を変えることによル流量を制御する方法も行l
わfしているが、この方法は、特公昭52−14845
に示されているように大きな電気的ヒステリシスを生じ
流量の制御に誤差を生じる等の欠点がお夛、これを補正
するために補正@暮を付加するなどして高価になる欠点
があった。
However, this JIIL magnetic valve (ON-OFF valve) does not have the function of continuously controlling the flow rate. Also,
There is also a method of controlling the flow rate by changing the electrical signal (current or voltage) input to the electromagnet and changing the area of the flow path.
However, this method is
As shown in Figure 2, there are many drawbacks such as large electrical hysteresis and errors in flow rate control, and the addition of a correction to compensate for this has the drawback of being expensive.

またルームエアコン等の冷凍サイクルの流量制御用バル
ブとして、特公昭55−6025や特公昭55−607
73に示される熱電式(バイメタル式)膨張弁がある。
It is also used as a flow rate control valve for the refrigeration cycle of room air conditioners, etc.
There is a thermoelectric (bimetallic) expansion valve shown at 73.

このパルプは、電気信号を熱エネルギーに変換し、この
熱エネルギー蓋に応じてバイメタルの変位を変えて流量
を制御する方法をとっている。しかしこの方法は熱気1
言号を熱エネルギーに変換するために応答が遅くなると
いう欠点がめった。
This pulp converts electrical signals into thermal energy and controls the flow rate by changing the displacement of the bimetal in response to this thermal energy lid. However, this method is hot
The problem was that the response time was slow because words were converted into thermal energy.

以下に従来の戎ilt制両弁を図に基づいて説明す−る
。第1図の流jti61J御弁は従来の電磁力を利用し
た弁である。これは、制御弁本体1内に設けられり電磁
コイル2への1気入力信号による磁力によりグランジャ
3をスプリング4に抗して吸引し、その吸引力とスプリ
ング3のバネ力とのっルあいによシ、該プランジャ3を
電気入力信号の大きさに応じた位置に保持し、グランジ
ャ3に取り付けられた弁体5と制御弁本体に設けられた
弁座6とによって形成される弁の流路面積を任意に変化
させることによシ、電気入力信号の大きさに応じた流量
を連続的に制御して流すように構成されている。この制
御弁によればプランジャ3に塩9付けられた弁体5と制
御弁本体1に設けられた弁座6で形成される弁の流路面
積を電磁コイル2へ供給する電気入力信号の大きさによ
って任意に変化させ流量を制御出来る。しかしながら強
磁性体からなるグランジャ3には磁気的ヒステリシスH
が生じてしま5ので、第2図に示したよプに入力域圧E
+とプランジャ変位量tの関係が、入力電圧E1の増加
時Cと入力端子Eiの減少時Bとで大きく異なってくる
。すなわち入力電圧Eiが同一でもプランジャ変位量は
Llとt2で示すようにな9、流量は大幅に異なってし
まう・。この種の流量制御弁では実用化にあたってはこ
の誤差を補・正するための機器を付加しなければならず
非常に高価になってしまう。さらにこのような弁をヒー
トポンプエアコンの制御弁として使用した場合、膨張弁
として利用することになる。この場合、弁体5と弁座6
との藺に形成逼れる流路面積は非常に不妊くなり、弁座
6の両側に設けられた空間7と8の間には大きな圧力差
が生じる。これがヒートポンプエアコンのように冷房時
と暖房時において流れ方向が逆になる場合、空間7と8
の圧力差が弁体5におよばず力は逆方向になる。このた
め冷房時と暖房時においては電磁コイル2とスプリング
40力のバランスの関係は大幅に異なり、−個の弁で冷
暖房時をともに制御することは困維であった。
A conventional ilt control valve will be explained below based on the drawings. The flow jti61J control valve shown in FIG. 1 is a conventional valve that utilizes electromagnetic force. This is provided in the control valve main body 1, and attracts the granger 3 against the spring 4 by the magnetic force generated by a single input signal to the electromagnetic coil 2, and the attraction force matches the spring force of the spring 3. Therefore, the plunger 3 is held at a position corresponding to the magnitude of the electrical input signal, and the valve flow formed by the valve body 5 attached to the plunger 3 and the valve seat 6 provided on the control valve body is adjusted. By arbitrarily changing the road area, the flow rate is continuously controlled in accordance with the magnitude of the electrical input signal. According to this control valve, the flow area of the valve formed by the valve body 5 with salt 9 attached to the plunger 3 and the valve seat 6 provided on the control valve body 1 is determined by the magnitude of the electrical input signal supplied to the electromagnetic coil 2. The flow rate can be controlled by changing it arbitrarily depending on the flow rate. However, the granger 3 made of ferromagnetic material has magnetic hysteresis H.
occurs5, so the input area pressure E is changed as shown in Figure 2.
The relationship between + and the plunger displacement amount t differs greatly between C when the input voltage E1 increases and B when the input terminal Ei decreases. That is, even if the input voltage Ei is the same, the plunger displacement amount will be as shown by Ll and t29, and the flow rate will be significantly different. When this type of flow control valve is put into practical use, it is necessary to add equipment for correcting and correcting this error, making it extremely expensive. Furthermore, when such a valve is used as a control valve of a heat pump air conditioner, it is used as an expansion valve. In this case, the valve body 5 and the valve seat 6
The flow path area that is formed tightly due to this becomes extremely infertile, and a large pressure difference occurs between the spaces 7 and 8 provided on both sides of the valve seat 6. When the flow direction is reversed during cooling and heating, as in a heat pump air conditioner, spaces 7 and 8
The pressure difference is not applied to the valve body 5, and the force is in the opposite direction. For this reason, the balance between the forces of the electromagnetic coil 2 and the spring 40 differs significantly between cooling and heating, making it difficult to control both heating and cooling using only one valve.

また第3図は従来の熱電式(バイメタル式)膨張弁の例
である。これは電気端子9,10から与えられた電気信
号をノ(イメタ今/11のまわりに巻刀1れたヒータ1
2によシ熱に変換して)(イメタルを変形させ、この変
形量をスペーサ13を介して弁体5に伝へ、ノズル14
の絞り量を制御するようにしたものである。この弁で社
電気信号を熱に変換してバイメタルを熱したル、又は熱
せられたバイメタルの容器15内の流体の自然放熱によ
り冷却してバイメタルの変形量を変えるというように、
−変態に変換するため応答が遅くなる。さらにと−トポ
ンプの冷凍サイクルに使用1れた場合は、冷房時に図の
矢印方向に冷媒を流してやると、開口部16の高圧の液
体冷媒はノズル14を通って低圧の気液の混合冷媒とな
って関口部17へ流れて行く。この時容器15内には開
口部16からの低圧の気体冷媒が入シ、前記のごとく制
御されるが、暖房時のように図の矢印と逆方向に冷媒が
流される場合には開口部17の高圧の液体冷媒が容器1
5内に入ることになる。Cの時)くイメタルを熱しよう
とする熱が全て高圧の液体冷媒の蒸発によシ奪われてし
まうため、バイメタルが変形せず制御出来なくなる。こ
のようにこの熱電膨張弁は応答が遅いおよび可逆流通性
を有していないという欠点があった。
FIG. 3 is an example of a conventional thermoelectric (bimetallic) expansion valve. This is the electric signal given from the electric terminals 9 and 10.
2, converts it into heat) (deforms the metal), transfers this deformation amount to the valve body 5 via the spacer 13, and transfers it to the nozzle 14.
The amount of aperture is controlled. This valve converts the electric signal into heat to heat the bimetal, or the heated bimetal is cooled by natural heat dissipation of the fluid in the heated bimetal container 15, changing the amount of deformation of the bimetal.
-Response becomes slower due to conversion to metamorphosis. Furthermore, when used in the refrigeration cycle of a toto pump, when the refrigerant is flowed in the direction of the arrow in the figure during cooling, the high-pressure liquid refrigerant in the opening 16 passes through the nozzle 14 and becomes a low-pressure gas-liquid mixed refrigerant. It then flows to Sekiguchi section 17. At this time, low-pressure gas refrigerant enters the container 15 from the opening 16 and is controlled as described above. However, when the refrigerant is flowed in the opposite direction to the arrow in the figure, such as during heating, the opening 17 A high pressure liquid refrigerant is placed in container 1.
It will be in the top 5. In the case of C) All the heat that tries to heat the bimetal is taken away by the evaporation of the high-pressure liquid refrigerant, so the bimetal does not deform and cannot be controlled. As described above, this thermoelectric expansion valve has the disadvantages of slow response and lack of reversible flow.

さらに第1図、第3図の弁を冷凍サイクルの膨張弁とし
て使用する場合、弁座6又はノズル15に設けられる流
路の断面積は全開時においても流れが絞られるように小
さくなっていゐ。これは流路断面積を流れが絞られない
程に大きくした場合、弁体5.14のストロークを太き
(シ逐ければならず、このため駆動のための電磁コイル
2又はバ大、きくなるためコストが上がる。電気入力も
大きくなる。および制御性も悪くなる等の欠点が出るた
めである。したがって、このような制御弁に一般の電磁
弁(ON−OFF弁)の開時の場合と同じく流通抵抗を
ほとんどなく流体を流す機能を同時に持たせることは困
難であった。
Furthermore, when the valves shown in Figures 1 and 3 are used as expansion valves in refrigeration cycles, the cross-sectional area of the flow path provided in the valve seat 6 or nozzle 15 is made small so that the flow is restricted even when the valve is fully open. . This is because if the cross-sectional area of the flow path is made large enough to prevent the flow from being restricted, the stroke of the valve body 5.14 must be made thicker. This increases the cost, increases the electrical input, and causes disadvantages such as poor controllability.Therefore, when opening a general solenoid valve (ON-OFF valve) for such a control valve, Similarly, it was difficult to simultaneously provide the ability to flow fluid with almost no flow resistance.

〔発明の目的」 本発明は上述の事柄に基づきなされたもので、ヒステリ
シスによる影響を受けない弁構造であって、電気入力信
号の信号形態に工夫をこらし、流路面積を任意に変化さ
せ、単位時間当たりの流量を連続的に変化させ任意の流
量を得られるようにするとともに、流路方向が変わった
時にも十分に制御出来るとともに、一般の電磁弁(スト
ップ弁)を目的とするものである。
[Object of the Invention] The present invention has been made based on the above-mentioned matters, and is a valve structure that is not affected by hysteresis, in which the signal form of the electrical input signal is devised, and the flow path area is arbitrarily changed. It is designed to continuously change the flow rate per unit time to obtain a desired flow rate, as well as to provide sufficient control even when the direction of the flow path changes, and is intended as a general solenoid valve (stop valve). be.

〔発明の概要」 冷凍サイクル用の膨張弁として使用するものであるが、
特にヒートポンプエアコン用の膨張弁として、可逆流通
性を持たせるために弁構造を改良し弁体に作用する冷媒
の圧力の影響を小さくして弁体の可動性を良くした。駆
動方式としては外部電磁コイルへパルス周期の電気信号
を加えて、弁体を周期的に動かして流量を制御する方式
を用いた。さらに弁体の駆動部内に永久磁石を組込み、
電磁コイルと永久磁石の磁力の方向および大きさを制御
して、流量制御弁に従来の電磁弁(ON−0・FF弁)
と同様の機能を合わせて持った膨張弁゛である。
[Summary of the invention] This is used as an expansion valve for a refrigeration cycle.
In particular, as an expansion valve for a heat pump air conditioner, the valve structure has been improved to provide reversible flow, reducing the influence of refrigerant pressure acting on the valve body and improving the valve body's mobility. The driving method used was to apply a pulse-period electric signal to an external electromagnetic coil to periodically move the valve body to control the flow rate. In addition, a permanent magnet is incorporated into the drive part of the valve body,
By controlling the direction and magnitude of the magnetic force of the electromagnetic coil and permanent magnet, a conventional electromagnetic valve (ON-0/FF valve) can be used as a flow control valve.
This is an expansion valve that also has the same functions as the above.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面にて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明による膨張弁の一例を示したもので、図
において第1図と同−符舟を付したものは同一あるいは
それに相当するものを示す。
FIG. 4 shows an example of an expansion valve according to the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same or equivalent parts.

本発明による膨張弁は、側壁にノズル口18、流通口1
9を有し、かつ一方に開口部20を有する中空状のシャ
フト21内に開口部20と反対側の閉端部に吸引子22
を設け、この吸引子22と開口部200間に均圧口23
を有するプランジャ3を艮ブリング25.26を介して
シャフト21の軸方向に移動可能に設けるとともに、開
口部27を有するパイプ24をノズル018、流通口1
9をつつむように取付け、さらに永久磁石29および電
磁゛コイル2をシャフト21の外側でかつバイブ24と
シャフト21の閉端部の間に設けた構造からなる。
The expansion valve according to the present invention has a nozzle port 18 and a flow port 1 on the side wall.
9 and has an opening 20 on one side, and an attractor 22 at the closed end opposite to the opening 20.
A pressure equalizing port 23 is provided between the suction element 22 and the opening 200.
A plunger 3 having an opening 27 is provided so as to be movable in the axial direction of the shaft 21 via a ring 25, 26, and a pipe 24 having an opening 27 is connected to a nozzle 018 and a flow port 1.
The permanent magnet 29 and the electromagnetic coil 2 are provided outside the shaft 21 and between the vibrator 24 and the closed end of the shaft 21.

上記のように構成される膨張弁は、電磁コイル2に印加
される入カバルス信号により発生する電磁力とスプリン
グ25.26の力の釣り合いからプランジャ3は上下動
し、シャフト21のノズル口18を開あるいは閉するよ
うに作動する。
In the expansion valve configured as described above, the plunger 3 moves up and down due to the balance between the electromagnetic force generated by the input cabling signal applied to the electromagnetic coil 2 and the force of the spring 25, 26, and the nozzle opening 18 of the shaft 21 is Operates to open or close.

本発明は、上記パルス信号をたとえば、第5図に示した
ようにシャフト21に設けたノズル口18の開時間ある
いは閉時間が一定で、その回数を、すなわち周波数を可
変にしたものである。また、第6図に示しだように上、
記パルス信号を周波数一定でシャフト21に設けたノズ
ル口18の開時間あるいは閉時間を可変にしたものでち
る。このようなパルス信号によりプランジャ3を上下動
させて、時間平均でのノズル口18の開度を変えること
により、冷媒の流量を制御することが出来る。したがっ
てプランジャ3はノズル口18を完全に開あるいは閉し
て上下動するのて、従来の弁のようにプランジャ3をノ
ズル口18の中途の開度になるように制御する必要がな
いため、従来の弁において問題としていたヒステリシス
の影響は全く受けない、で、冷媒の流量をパルス信号に
応じて連続的に変化させて任意の流量を得ることが出来
る。
In the present invention, for example, as shown in FIG. 5, the pulse signal is made such that the opening time or closing time of the nozzle opening 18 provided on the shaft 21 is constant, and the number of times, that is, the frequency, is variable. Also, as shown in Figure 6,
The pulse signal is one in which the frequency is constant and the opening time or closing time of the nozzle opening 18 provided on the shaft 21 is variable. The flow rate of the refrigerant can be controlled by moving the plunger 3 up and down using such a pulse signal and changing the opening degree of the nozzle port 18 on a time average basis. Therefore, the plunger 3 completely opens or closes the nozzle port 18 and moves up and down, so there is no need to control the plunger 3 to an intermediate opening of the nozzle port 18, unlike in conventional valves. The refrigerant flow rate is completely unaffected by the hysteresis that was a problem with the previous valve, and the flow rate of the refrigerant can be continuously changed in accordance with the pulse signal to obtain an arbitrary flow rate.

また本発明の弁をと一トポンプエアコンの膨張弁に使用
した場合、冷房時と暖房時の冷媒の流れ方向が変わり、
プランジャ3のまわシの圧力も変わるが、プランジャ3
に設けた均圧口23により、プランジャ3.の上面およ
び下面に働く圧力のノ(うンスがとれるため、圧力の影
響は受けることなくほとんど同じパルス信号によってプ
ランジャ3を駆動することが出来る。場らに本発明の弁
でLシリンダ21内のプランジャ3と吸引子22との間
に入る冷媒か気体又は′液体のどちらの状態であっても
、従来のバイメタル式膨張弁のように電気信号を熱に変
換せず、外部からの電磁力によって直接プランジャ3を
駆動する方式であるため、冷房時、暖房時どちらの場合
でも制御か可能な可逆流通性を容易に持たせることが出
来る。
Furthermore, when the valve of the present invention is used in the expansion valve of a toto pump air conditioner, the flow direction of the refrigerant changes during cooling and heating.
The rotation pressure of plunger 3 also changes, but plunger 3
The pressure equalizing port 23 provided in the plunger 3. Since the pressure acting on the upper and lower surfaces can be balanced, the plunger 3 can be driven by almost the same pulse signal without being affected by the pressure. Regardless of whether the refrigerant is in a gas or liquid state that enters between the plunger 3 and the suction element 22, it does not convert an electrical signal into heat like a conventional bimetallic expansion valve, but instead uses an external electromagnetic force. Since the plunger 3 is directly driven, it is possible to easily provide reversible flow that can be controlled in both cooling and heating.

これら流量制御を行なう場合、電磁コイル2に入力する
パルス信号は、第5図に示した周波数可変の場合と、第
6図で示すように周波数一定でON時間T i * T
 z−1OFF時間t −’1’□、1−Tz可変の場
合以外に、これら両者を組合せて用いることKよっても
単位時間当シの流量を連続的に変化させ任意の流量を得
ることが出来る。この方法によるといささかはん雑な制
御を要求されるが、流量制御を直線的にしたシ、制御弁
全体を大きくせずにさらに流量を増加させ幅広く制御す
ることが出来る等の利点が増す。また第5図、第6図で
はパルス信号は正又は負の一方向の信号を使用していた
が、このパルス信号は正、負の両方を組合せても良い。
When performing these flow rate controls, the pulse signal input to the electromagnetic coil 2 has a variable frequency as shown in FIG. 5, and a constant frequency and ON time T i * T as shown in FIG.
In addition to the case where z-1OFF time t -'1'□ and 1-Tz are variable, by using a combination of these two, it is also possible to continuously change the flow rate per unit time and obtain an arbitrary flow rate. . Although this method requires somewhat complicated control, it has additional advantages such as linear flow rate control and the ability to further increase the flow rate and control over a wide range without increasing the size of the entire control valve. Further, in FIGS. 5 and 6, a unidirectional positive or negative pulse signal is used, but this pulse signal may be a combination of both positive and negative signals.

第7図は本発明による実験結果を示したものでおる。横
軸は電磁コイル2へ加える電気パルスの周波数を示し、
縦軸はノズル口18を完全に開−た時の流量を100%
とした時の流量側合を示している。図から明らかなよう
に周波数に応じて流量は連続的に変化し、かつ周波数増
加時Cと周波数増加時几で得られる流量にほとんど差が
見られず任意の流量が得られている。また第7b図は本
実五例の制御弁の可逆性を調べたものでめる。この図よ
りAの方向又はBの方向に冷媒を流しても流量は周波数
と一対一の対応に1)十分に制御出来ることがわかる。
FIG. 7 shows experimental results according to the present invention. The horizontal axis indicates the frequency of the electric pulse applied to the electromagnetic coil 2,
The vertical axis represents the flow rate when the nozzle port 18 is fully opened, which is 100%.
The figure shows the flow rate side when . As is clear from the figure, the flow rate changes continuously according to the frequency, and there is almost no difference between the flow rates obtained when the frequency is increased and when the frequency is increased, and an arbitrary flow rate is obtained. Moreover, FIG. 7b shows a result of investigating the reversibility of the control valve of the fifth example. From this figure, it can be seen that even if the refrigerant flows in the direction A or the direction B, the flow rate can be sufficiently controlled in a one-to-one correspondence with the frequency.

次に本発明の弁において電磁弁(ON−OFF弁)の開
時のように流通抵抗をほとんどなく冷媒を流す方法につ
いて説明する。この場合には永久磁石29の磁力線の方
向と同一になるように電磁コイル2に流量制御の場合よ
シも高い電圧又は08時間の長い電気パルスを加え、吸
引子22にプランジャ3を吸引させて、ノズル口18よ
りも大きな流通口19を弗いてやることにより、よシ大
量の冷媒を流通抵抗をほとんど受けずに流すことが出来
るようになる。この場合吸引子22にプランジャ3が吸
引されたら、電磁コイルへの電気信号パルスはOFFに
して、永久磁石の作用により、この状態を保持させるこ
とにより、従来の電磁弁(ON−OFF弁)が開又は閉
時に常時通電されていることを比較すると非常に小さな
電気入力となる。また流通口19を閉じる時は流通口1
9を開く時とは逆に、永久磁石29の磁力線の方向と逆
方向になるように電磁コイル2に電気パルスを加えるこ
とによシ、プランジャ3は吸引子22から離れ、流通口
19を容易に閉じることが出来る。
Next, a method of flowing the refrigerant in the valve of the present invention with almost no flow resistance like when a solenoid valve (ON-OFF valve) is opened will be described. In this case, a higher voltage or a longer electric pulse of 08 hours than in the case of flow control is applied to the electromagnetic coil 2 so as to be in the same direction as the magnetic field lines of the permanent magnet 29, and the plunger 3 is caused to be attracted by the attractor 22. By opening the flow port 19, which is larger than the nozzle port 18, a larger amount of refrigerant can flow with almost no flow resistance. In this case, when the plunger 3 is attracted to the attractor 22, the electric signal pulse to the electromagnetic coil is turned OFF, and this state is maintained by the action of the permanent magnet, so that the conventional electromagnetic valve (ON-OFF valve) Compared to the fact that it is always energized when open or closed, the electrical input is very small. Also, when closing the distribution port 19, the distribution port 1
By applying an electric pulse to the electromagnetic coil 2 in the opposite direction to the direction of the magnetic field lines of the permanent magnet 29, the plunger 3 separates from the attractor 22 and the flow opening 19 is easily opened. can be closed.

また、第4図の実施例の膨張弁において、吸引子22、
永久磁石29を取シ除いても同様の動作を行なわせるこ
とが出来る。すなわち、この場合には従来の電磁弁(O
N−OFF弁)と−同様に流通口19を開く時には当然
のことながら通電を続ける必要が、通電を続けるとプラ
ンジャ3#′i吸引されて流通口19を開いた状態に保
持される。
Further, in the expansion valve of the embodiment shown in FIG. 4, the suction element 22,
The same operation can be performed even if the permanent magnet 29 is removed. That is, in this case, the conventional solenoid valve (O
As with the N-OFF valve, when opening the flow port 19, it is of course necessary to continue energizing, but if the current is continued, the plunger 3#'i is attracted and the flow port 19 is held in the open state.

他の実施例第8図は第6図の実施例におけるノズル口1
8と流通口19を一つの流通口19′にまとめた場合で
ある。この場合、膨張弁として使用する場合には、電磁
コイル2への電気ノ(ルス信号の電圧を流通口19′を
全開する場合よりも低くする等によシブランジャ30ス
トロークを第9図のLlのように小石くシ、この状態で
前の実施例のように鬼気パルス信号の周波数又は0N−
OFF時間を変えて冷媒流量を制御する。流通口19′
を全開にする場合には電気パルス信号の電圧を上けてノ
ーランジャ30ストロークをL2以上にプランジャ3を
吸引子22に吸引させると良い。
Another embodiment FIG. 8 shows the nozzle opening 1 in the embodiment shown in FIG.
8 and the flow port 19 are combined into one flow port 19'. In this case, when using it as an expansion valve, the voltage of the electric nozzle signal to the electromagnetic coil 2 should be lower than that when the flow port 19' is fully opened, so that the sibling plunger 30 stroke can be adjusted to Ll in FIG. In this state, as in the previous embodiment, the frequency of the demon pulse signal or 0N-
Control the refrigerant flow rate by changing the OFF time. Flow port 19'
In order to fully open the plunger 3, it is preferable to increase the voltage of the electric pulse signal so that the no-lunger 30 stroke reaches L2 or more so that the plunger 3 is attracted to the attractor 22.

プランジャ3のストロークを変える方法としては電圧を
変える他に、−気パルス信号の08時間を長くすること
によっても可能である。第10a図。
As a method of changing the stroke of the plunger 3, in addition to changing the voltage, it is also possible to change the stroke of the plunger 3 by lengthening the 08 hours of the pulse signal. Figure 10a.

第10b図、第10C図は流通口19’の形状の変形例
で、特に第10C図の例は冷媒流量の制御が容易となる
う 第11図は別の実施例で、これは第6図の流通口19を
除いて冷媒流量制御専用にしたもので、+! 流量の制御方法4前実施例と同じである。
10b and 10C show modified examples of the shape of the flow port 19'. In particular, the example shown in FIG. 10C makes it easier to control the refrigerant flow rate. Except for the flow port 19, it is dedicated to controlling the refrigerant flow rate, and +! Flow rate control method 4 The method is the same as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の膨張弁の制御方法によれば
、ヒステリシスの影響もなく、電磁コイルに入力するパ
ルス信号に応じて連続的に任意の流量が得られ、かつ流
量の制御を高い精度で行なうことが出来る。また冷媒を
流す方向が変わった場合でも冷媒の圧力の影響を受けず
容易に冷媒流量を制御出来る可逆流通性を持っている。
As explained above, according to the expansion valve control method of the present invention, any desired flow rate can be obtained continuously according to the pulse signal input to the electromagnetic coil without the influence of hysteresis, and the flow rate can be controlled with high precision. It can be done with Furthermore, it has reversible flowability that allows the flow rate of the refrigerant to be easily controlled without being affected by the pressure of the refrigerant even if the direction in which the refrigerant flows changes.

さらに従来の電磁弁(ON−OFF弁)・と同じように
通路抵抗をほとんど受けずに冷媒を流すことが出来、か
つ、この時に加えられる電気入力は弁を作動させる時の
パルス信号のみで、その後は永久磁石によってプランジ
ャの位置が保持されるのでほとんど電力を消費しないと
いう効果がおる。
Furthermore, like conventional solenoid valves (ON-OFF valves), refrigerant can flow with almost no passage resistance, and the only electrical input applied at this time is a pulse signal when operating the valve. After that, the position of the plunger is held by the permanent magnet, which has the effect of consuming almost no power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の制御弁の断爵図、第2図は第1図の制御
弁における入力〜圧とプランジャ変位量との関係を示す
図、第3図は従来の膨張弁である熱電膨張弁の断面図、
第4図から第7図は本発明を説明するためのもので、第
4図は本発明に使用される膨張弁の一実施例を示す縦断
面図、第5図。 第6図は第4図に示した膨張弁の電磁石に印加される入
力パルスの波形を示す図であって、第5図は周波数を可
変にした例、第6図は周波数一定でノズル口の開時間あ
るいは閉時間を可変にした図、第7図及び第7b図は本
発明方法による実験例を示す図で、周波数の変化と流量
の変化を示す関係図、第8図から第11図は本発明の他
の実施例を示すものである。 2・・・taミコイル3・・・プランジャ、18・−・
ノズル口、19・・・流通口、22・・・吸引子、23
・・・均圧口、25.26・・・スプリング、29・・
・永久磁石。 第 1  図 第 2 図 入力?JL       E′ 石3図 第5図 ¥J l 図 第 7  目。 C−・、−周:藻ん0埼 目汲数 Hz 貴5  7  ト  図
Figure 1 is a diagram of a conventional control valve, Figure 2 is a diagram showing the relationship between input pressure and plunger displacement in the control valve of Figure 1, and Figure 3 is a thermoelectric expansion diagram of a conventional expansion valve. cross-sectional view of the valve,
4 to 7 are for explaining the present invention; FIG. 4 is a vertical cross-sectional view showing one embodiment of an expansion valve used in the present invention, and FIG. FIG. 6 is a diagram showing the waveform of the input pulse applied to the electromagnet of the expansion valve shown in FIG. 4. FIG. 5 is an example in which the frequency is variable, and FIG. Figures 7 and 7b, in which the opening time or closing time is variable, are diagrams showing experimental examples using the method of the present invention. Figures 8 to 11 are relationship diagrams showing changes in frequency and flow rate. This figure shows another embodiment of the present invention. 2...Tami coil 3...Plunger, 18...
Nozzle port, 19... Distribution port, 22... Suction element, 23
...Pressure equalization port, 25.26...Spring, 29...
·permanent magnet. Figure 1 Figure 2 Input? JL E' Stone 3 Figure 5 ¥ J l Figure 7. C-・,-period: Algae 0 Saime Kumo count Hz Takashi 5 7 Fig.

Claims (1)

【特許請求の範囲】 1、側壁にノズル口と流通口を有し、かつ一方に開口部
を有する中空状のシャフト内に、開口部と反対側の閉端
部に磁性体からなる吸引子を設け、また、磁性体からな
り、内部に均圧口を有するプランジャを前記シャフト内
の開口部と吸引子の間に両端にスプリングを介してシャ
フトの軸方向に移動可能に保持するとともに、シャフト
の外部でノズル口と流通口にパイプを接続し、さらに、
永久磁石訃よび電磁コイルをシャフトの外側でかつパイ
プとシャフトの閉端部の間に設けたことを特徴とする冷
葆機用膨張弁。 2、特許請求の範囲第1項において、ノズル口と流通口
をまとめて一つにした流通口を有することを特徴とする
膨張弁。 3.11壁にノズル口を有し、かつ一方に開口部を有す
る中空状のシャフト内に、磁性体からなり内部に均圧口
を有するプランジャを開口部と閉端部の間にスプリング
を介してシャフトの軸方向移動可能に保持するとともに
、シャフトの外部でノズル口にパイプを接続し、さらに
電磁コイルをシャフトの外側に設けたことを特徴とする
膨張弁。
[Claims] 1. A hollow shaft having a nozzle port and a flow port on the side wall and an opening on one side, and an attractor made of a magnetic material at the closed end on the opposite side of the opening. A plunger made of a magnetic material and having a pressure equalizing port inside is held between the opening in the shaft and the attractor so as to be movable in the axial direction of the shaft via springs at both ends. Connect the pipe to the nozzle port and the flow port externally, and
An expansion valve for a refrigerator, characterized in that a permanent magnet and an electromagnetic coil are provided outside the shaft and between the pipe and the closed end of the shaft. 2. The expansion valve according to claim 1, characterized in that it has a flow port that combines a nozzle port and a flow port into one. 3.11 A plunger made of a magnetic material and having an internal pressure equalization port is placed in a hollow shaft with a nozzle port on the wall and an opening on one side, with a spring interposed between the opening and the closed end. An expansion valve characterized in that a shaft is held so as to be movable in the axial direction, a pipe is connected to a nozzle port on the outside of the shaft, and an electromagnetic coil is further provided on the outside of the shaft.
JP58011526A 1983-01-28 1983-01-28 Expansion valve Pending JPS59137676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011526A JPS59137676A (en) 1983-01-28 1983-01-28 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011526A JPS59137676A (en) 1983-01-28 1983-01-28 Expansion valve

Publications (1)

Publication Number Publication Date
JPS59137676A true JPS59137676A (en) 1984-08-07

Family

ID=11780408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011526A Pending JPS59137676A (en) 1983-01-28 1983-01-28 Expansion valve

Country Status (1)

Country Link
JP (1) JPS59137676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155872A (en) * 1983-12-22 1985-08-15 キヤリア・コーポレイシヨン Refrigeration system
JPS60159974U (en) * 1984-03-30 1985-10-24 カルソニックカンセイ株式会社 Automotive cooling system
JPS63116071A (en) * 1986-10-31 1988-05-20 キャリア・コーポレイション Refrigerant expansion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155872A (en) * 1983-12-22 1985-08-15 キヤリア・コーポレイシヨン Refrigeration system
JPH0227583B2 (en) * 1983-12-22 1990-06-18 Carrier Corp
JPS60159974U (en) * 1984-03-30 1985-10-24 カルソニックカンセイ株式会社 Automotive cooling system
JPH0221738Y2 (en) * 1984-03-30 1990-06-12
JPS63116071A (en) * 1986-10-31 1988-05-20 キャリア・コーポレイション Refrigerant expansion device
JPH0587746B2 (en) * 1986-10-31 1993-12-17 Carrier Corp

Similar Documents

Publication Publication Date Title
US20090020716A1 (en) Motor driven valve and cooling/heating system
JP2757205B2 (en) Solenoid operated valve assembly
US4319606A (en) Fluid pressure regulator valve
JPS59137676A (en) Expansion valve
DE10356645A1 (en) Proportional valve has magnetic anchor which is closed by pressure or spring when no current flows through coil and opens against force of spring system , allowing proportional fluid flow
EP1092106B1 (en) Electrically actuated reed valve
CN108869774B (en) Electromagnetic valve and one-driving-two power recovery type pulse tube refrigerator
JPS5881278A (en) Expansion valve
JPH04302784A (en) Flow control valve
JPS6018875B2 (en) temperature sensitive valve
GB2181818A (en) Fluid flow control valve
JPS6025676B2 (en) Gas flow control method using solenoid valve
JP2673661B2 (en) Giant magnetostriction displacement magnifying mechanism
KR100512186B1 (en) Apparatus for controlling flux using flux-controlling valve
JP2982984B2 (en) Control valve for micro flow
JPS59212581A (en) Flow rate controller
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
JPH02154956A (en) Refrigerant control method
JPH0616189Y2 (en) Switching valve
JPH03609Y2 (en)
JPS5913417Y2 (en) gas flow control valve
JPS6170356A (en) Expansion valve for refrigeration cycle
JPH0599369A (en) Fluid control valve
JPS5973680A (en) Flow control valve
JPS61231325A (en) Gas proportional control valve with closing function