JPS5913417Y2 - gas flow control valve - Google Patents

gas flow control valve

Info

Publication number
JPS5913417Y2
JPS5913417Y2 JP1977135603U JP13560377U JPS5913417Y2 JP S5913417 Y2 JPS5913417 Y2 JP S5913417Y2 JP 1977135603 U JP1977135603 U JP 1977135603U JP 13560377 U JP13560377 U JP 13560377U JP S5913417 Y2 JPS5913417 Y2 JP S5913417Y2
Authority
JP
Japan
Prior art keywords
permanent magnet
electromagnet
magnetic pole
valve
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977135603U
Other languages
Japanese (ja)
Other versions
JPS5461320U (en
Inventor
通雄 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1977135603U priority Critical patent/JPS5913417Y2/en
Publication of JPS5461320U publication Critical patent/JPS5461320U/ja
Application granted granted Critical
Publication of JPS5913417Y2 publication Critical patent/JPS5913417Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 この考案は、ガスの流量を制御電流に比例して精度良く
制御する制御弁に関する。
[Detailed Description of the Invention] This invention relates to a control valve that accurately controls the flow rate of gas in proportion to the control current.

第1図は、この種の従来の制御弁の要部の構成を示す断
面図で、1は弁本体、2はコ1′ル、3はプランジャで
両端に形成された穴31にその先端が差し込まれた板ば
ね4によって支承され、板ばね4の他の端は弁本体1に
固着されて、常時はばね板4の弾性力でもってプランジ
ャ3の先端に係止された弁体5が弁座6に押圧されて入
ロアから圧送されるガスを封止している。
FIG. 1 is a sectional view showing the configuration of the main parts of this type of conventional control valve, in which 1 is the valve body, 2 is a coil, and 3 is a plunger, the tip of which is inserted into a hole 31 formed at both ends. The other end of the leaf spring 4 is fixed to the valve body 1, and the valve body 5, which is normally locked to the tip of the plunger 3 by the elastic force of the spring plate 4, is supported by the inserted leaf spring 4. The gas that is pressed against the seat 6 and forced to flow from the inlet lower is sealed.

今コイル2に通電するとプランジャ3に通電量に対応し
た吸引力が作用し、板ばね4の弾性力と平衡する変位位
置で停止し、この変位に従って弁が開き、この開いた量
に比例した流量のガスが出口8から送出される。
When the coil 2 is energized now, a suction force corresponding to the amount of energization acts on the plunger 3, and it stops at a displacement position that is balanced with the elastic force of the leaf spring 4. The valve opens according to this displacement, and the flow rate is proportional to the amount of opening. of gas is delivered from outlet 8.

この場合、ばね板4はプランジャ3の吸引力と平衡して
弁の開度を決定するのみではなく、プランジャ3がコイ
ル3の中心軸と平行に変位するように同寸に形成されて
いる。
In this case, the spring plate 4 not only determines the opening degree of the valve in balance with the suction force of the plunger 3, but also is formed to have the same size so that the plunger 3 is displaced parallel to the central axis of the coil 3.

このように構成された従来の制御弁は、プランジャ3が
変位するとき他の部材との間で接触することがないよう
に、ばね板4で両端で支承するなど構造が複雑であり、
またガス流路と、コイル3との間のシールがむずかしい
ため、全体を気密構造とする必要があり、更に停止時の
ガスの封止をばね板4の弾性力によっているため、ある
程度強い弾力を要し、これに伴ってプランジャ3の吸引
力を増す必要があるため、大きな作動電流を必要とする
などの欠点があった。
The conventional control valve configured in this manner has a complicated structure, in which the plunger 3 is supported at both ends by spring plates 4 to prevent it from coming into contact with other members when it is displaced.
Also, since it is difficult to seal between the gas flow path and the coil 3, the entire structure needs to be airtight.Furthermore, since the gas is sealed when the gas is stopped by the elastic force of the spring plate 4, a certain degree of strong elasticity is required. Accordingly, it is necessary to increase the attractive force of the plunger 3, which has the disadvantage of requiring a large operating current.

この考案は上記従来の制御弁の難点に鑑みてなされたも
ので、電磁石と永久磁石とを用い、停止時には電磁石の
中心磁極と永久磁石との間の磁気吸引力によって弁を閉
塞し、作動時には電磁石の中心磁極と永久磁石との間の
反発力と、電磁石の周囲磁極と永久磁石との間の吸引力
とによって永久磁石を変位させ、この永久磁石に連結さ
れた弁体の変位に応じてガス流量を規制するようにした
ものである。
This idea was made in view of the above-mentioned difficulties with conventional control valves, and uses an electromagnet and a permanent magnet.When the valve is stopped, the valve is closed by the magnetic attraction between the central magnetic pole of the electromagnet and the permanent magnet, and when it is in operation, the valve is closed. The permanent magnet is displaced by the repulsive force between the central magnetic pole of the electromagnet and the permanent magnet, and the attractive force between the surrounding magnetic poles of the electromagnet and the permanent magnet, and the permanent magnet is displaced according to the displacement of the valve body connected to this permanent magnet. It is designed to regulate the gas flow rate.

第2図はこの考案の一実施例の断面図で、9は電磁石で
、91は中心磁極、92はつぼ形の磁極、93はコイル
で構成させる。
FIG. 2 is a sectional view of an embodiment of this invention, in which 9 is an electromagnet, 91 is a central magnetic pole, 92 is a pot-shaped magnetic pole, and 93 is a coil.

10はフェライト磁石などで形成された永久磁石で、ダ
イヤフラム11によって中心磁極91と対向する位置に
支承され、コイル93に通電していないときは中心磁極
91に自己の磁気でもって吸着し、コイル93に通電し
たときには永久磁石10の磁極と同極性に中心極91が
励磁され、この中心磁極91と永久磁石10との間に磁
気反発力F1を発生する。
Reference numeral 10 denotes a permanent magnet made of a ferrite magnet, etc., which is supported by a diaphragm 11 at a position facing the center magnetic pole 91. When the coil 93 is not energized, it attracts the center magnetic pole 91 with its own magnetism, and the coil 93 When energized, the center pole 91 is excited with the same polarity as the magnetic pole of the permanent magnet 10, and a magnetic repulsion force F1 is generated between the center pole 91 and the permanent magnet 10.

永久磁石10は、この反発力F1と、この反発力F1に
抗するつぼ形磁極92との間の吸引力、ダイヤフラム1
1の変位による弾性応力および弁体5に加えられるガス
圧の和F2とが平衡する位置まで変位し、ガスの流量が
規制される。
The permanent magnet 10 has an attractive force between this repulsive force F1 and the pot-shaped magnetic pole 92 that resists this repulsive force F1, and the diaphragm 1
The valve body 5 is displaced to a position where the elastic stress caused by the displacement 1 and the sum F2 of the gas pressure applied to the valve body 5 are balanced, and the flow rate of the gas is regulated.

12は永久磁石10と弁体5との連結部材、13はダイ
ヤフラム11により気密に封止された電磁石9内を外気
と連通ずる透孔である。
12 is a connecting member between the permanent magnet 10 and the valve body 5, and 13 is a through hole that communicates the inside of the electromagnet 9, which is hermetically sealed with the diaphragm 11, with the outside air.

このように構成された制御弁は、コイル93に通電して
いないときは永久磁石10の吸着力により弁体5が弁座
6に圧着され、弁座6が気密に封せられるとともに、コ
イル93に通電したときは、通電量に見合って中心磁極
91と永久磁石10との間の反発力F1の大きさを変え
る事が可能で、又、永久磁石10の磁束が大きいほど即
ち、磁石の強さの強いほど同一通電量での反発力F1が
大きいことから、コイル93の通電量は、上記従来の制
御弁に比し小電流で足りるという利点がある。
In the control valve configured in this manner, when the coil 93 is not energized, the valve body 5 is pressed against the valve seat 6 by the attraction force of the permanent magnet 10, and the valve seat 6 is hermetically sealed. When energized, it is possible to change the magnitude of the repulsive force F1 between the center magnetic pole 91 and the permanent magnet 10 according to the amount of energization, and the larger the magnetic flux of the permanent magnet 10, the stronger the magnet. The stronger the repulsive force F1 is, the greater the repulsive force F1 is with the same amount of energization.Therefore, there is an advantage that the amount of energization of the coil 93 is smaller than that of the conventional control valve described above.

また、永久磁石10と中心磁極9とは面で対向するから
、従来の制御弁のように、中心軸を正確に合せる必要が
なく、従って構造も簡単になるという利点もある。
Furthermore, since the permanent magnet 10 and the center magnetic pole 9 face each other in planes, there is no need to accurately align the center axes as in conventional control valves, and there is also the advantage that the structure is simple.

なお永久磁石10にフェライト磁石などの抗磁力の大き
いものを適用すれば、永年にわたって安定な動作が期待
できるという利点もある。
Furthermore, if a permanent magnet 10 having a large coercive force, such as a ferrite magnet, is used, there is an advantage that stable operation can be expected for many years.

又、第2図に示した実施例の構成にあっては永久磁石1
0の変位即ち、弁体5の変位はFlとF2とが平衡する
位置で作動し、Flはコイル93の通電量により定まり
、一方F2はダイヤフラム11の受圧面積と該室内のガ
ス圧との積にほぼ依存するから出口8から送出されるガ
ス圧はほぼFlに比例する。
In addition, in the configuration of the embodiment shown in FIG. 2, the permanent magnet 1
The displacement of 0, that is, the displacement of the valve body 5, operates at a position where Fl and F2 are in equilibrium, and Fl is determined by the amount of current flowing through the coil 93, while F2 is the product of the pressure receiving area of the diaphragm 11 and the gas pressure in the chamber. Since the pressure of the gas delivered from the outlet 8 is approximately proportional to Fl.

結局F1を一定に保持すれば、入ロアのガス圧が多少変
動しても出口8のガス圧をほぼ一定に保つ機能も有する
という利点もある。
After all, if F1 is kept constant, there is also the advantage of having the function of keeping the gas pressure at the outlet 8 almost constant even if the gas pressure at the inlet lower fluctuates somewhat.

第3図は、この発明の一実施例のコイル93の通電量と
、ガス流通との関係を示す特性図で、上記F1.F2の
発生要素となる諸条件を適当に設計すれば、広い範囲に
わたって良好な比例関係が得られることを示している。
FIG. 3 is a characteristic diagram showing the relationship between the amount of energization of the coil 93 and the gas flow according to an embodiment of the present invention, and shows the relationship between the amount of current flowing through the coil 93 and the gas flow. This shows that if the various conditions that cause F2 to occur are appropriately designed, a good proportional relationship can be obtained over a wide range.

第4図はこの考案の他の実施例の断面図で、ガス出口8
内のガス圧が高い状態で使用されるのに適した構成とし
たものである。
FIG. 4 is a sectional view of another embodiment of this invention, showing the gas outlet 8.
The structure is suitable for use in situations where the internal gas pressure is high.

14は電磁石9とガス流路との間を気密に仕切る隔膜で
、ゴム、プラスチックなどで形成される。
A diaphragm 14 airtightly partitions the electromagnet 9 and the gas flow path, and is made of rubber, plastic, or the like.

15はダイヤフラム15に形成された透孔、16は止栓
時の助ける巻ばねである。
Reference numeral 15 is a through hole formed in the diaphragm 15, and reference numeral 16 is a coiled spring that assists when stopping the plug.

このようにすると、ダイヤフラム11は永久磁石10お
よび弁体5を単に支持するだけでよく、はぼ巻バネの変
位によるバネ力のみで与えられるF2とFlの平衡関係
のみで弁体5の変位が決定される様に構成した。
In this way, the diaphragm 11 only needs to support the permanent magnet 10 and the valve body 5, and the displacement of the valve body 5 can be controlled only by the balanced relationship between F2 and Fl given only by the spring force caused by the displacement of the spiral spring. It was configured to be determined.

これによってガス圧が高い場合でも小さなFlによって
流量制御が可能である。
As a result, even when the gas pressure is high, the flow rate can be controlled using a small Fl.

なお、以上説明した実施例は、電磁石9の構成を中心磁
極91と、これをとりまくつぼ形磁極92とで構成した
ものを示したが、必ずしもこの構成とする必要はなく、
例えば第5図に示したように、つぼ形磁極をコ字形ヨー
ク94とリング状の磁極95とで構成してもよい。
Note that in the embodiments described above, the structure of the electromagnet 9 was shown to be composed of a center magnetic pole 91 and a crucible-shaped magnetic pole 92 surrounding it, but it is not necessarily necessary to have this structure.
For example, as shown in FIG. 5, the pot-shaped magnetic pole may be composed of a U-shaped yoke 94 and a ring-shaped magnetic pole 95.

このように永久磁石10の周囲とりまく磁極を環状にす
るのは、永久磁石10との間に発生する反発力が均一か
つバランスのとれた力とするためのもので、通電量とガ
ス流量との比例関係を良好に保つうえで大きな影響を有
するからである。
The purpose of making the magnetic poles surrounding the permanent magnet 10 into an annular shape in this way is to make the repulsive force generated between the permanent magnet 10 and the permanent magnet 10 uniform and balanced, so that the amount of current applied and the gas flow rate are balanced. This is because it has a great influence on maintaining a good proportional relationship.

この考案以上詳細に説明したように、電磁石と、この電
磁石の中心磁極の磁極面に対抗する位置に変位可能に支
承された永久磁石と、この永久磁石に連結された弁体と
、上記電磁石に通電したとき上記永久磁石との間に生じ
る反発力により当該永久磁石が変位したとき上記反発力
に抗する力を発生する弾性支持部材とを備えたもので、
永久磁石の磁気吸着力により弁を閉じ、通電時に電磁石
と永久磁石との間に生じる反発力により弁を開くように
したので弁の開閉ないしガス流量の制御に要する電力が
少なく、かつその構成も簡単であるなど幾多の利点を有
するものである。
As explained in detail above, this invention includes an electromagnet, a permanent magnet displaceably supported at a position opposite to the magnetic pole surface of the central pole of the electromagnet, a valve body connected to the permanent magnet, and and an elastic support member that generates a force that resists the repulsive force when the permanent magnet is displaced due to the repulsive force generated between the permanent magnet and the permanent magnet when energized,
The valve is closed by the magnetic attraction force of the permanent magnet, and the valve is opened by the repulsive force generated between the electromagnet and the permanent magnet when energized, so less power is required to open and close the valve or to control the gas flow rate. It has many advantages such as simplicity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の制御弁の断面図、第2図はこの考案の一
実施例の断面図、第3図は通電量とガス流量の関係を示
す特性図、第4図はこの考案の他の実施例の断面図、第
5図はこの考案に係る電磁石の一構成例を示す部分斜視
図である。 図において、1は制御弁本体、5は弁体、6は弁座、7
はガス入口、8はガス出口、9は電磁石、91は中心磁
極、92はつぼの磁極、93はコイル、94はコ字型の
磁極、95はリング状の磁極、10は永久磁石、11ダ
イヤフラム、12は連結部材、13.15は透孔、14
は隔膜、16は巻ばねである。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。
Fig. 1 is a cross-sectional view of a conventional control valve, Fig. 2 is a cross-sectional view of an embodiment of this invention, Fig. 3 is a characteristic diagram showing the relationship between energization amount and gas flow rate, and Fig. 4 is another example of this invention. FIG. 5 is a partial perspective view showing an example of the structure of the electromagnet according to the invention. In the figure, 1 is the control valve body, 5 is the valve body, 6 is the valve seat, and 7
is a gas inlet, 8 is a gas outlet, 9 is an electromagnet, 91 is a center magnetic pole, 92 is a pot magnetic pole, 93 is a coil, 94 is a U-shaped magnetic pole, 95 is a ring-shaped magnetic pole, 10 is a permanent magnet, 11 is a diaphragm , 12 is a connecting member, 13.15 is a through hole, 14
is a diaphragm, and 16 is a coiled spring. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁石と、この電磁石の中心磁極の磁極面に一方の磁極
面が常に対向するように変位可能に支承された永久磁石
と、この永久磁石に連結された弁体を有する弁機構と、
永久磁石の支持体が電磁石と出口側弁室との間を気密に
仕切る部材を兼ね、該支持部材に加わる出口側弁室内の
ガス圧により永久磁石の変位量を規制する手段とを備え
、上記電磁石を付勢したとき弁を開き、付勢していない
ときは上記永久磁石が上記電磁石の中心磁極に吸着する
力により弁を閉じる構成としたガス流量制御弁。
a valve mechanism having an electromagnet, a permanent magnet displaceably supported such that one magnetic pole surface always faces a magnetic pole surface of a central magnetic pole of the electromagnet, and a valve body connected to the permanent magnet;
The permanent magnet support also serves as a member for airtightly partitioning between the electromagnet and the outlet valve chamber, and means for regulating the amount of displacement of the permanent magnet by gas pressure in the outlet valve chamber applied to the support member, A gas flow control valve configured to open the valve when the electromagnet is energized, and close the valve when the electromagnet is not energized by the force of the permanent magnet attracting the center magnetic pole of the electromagnet.
JP1977135603U 1977-10-07 1977-10-07 gas flow control valve Expired JPS5913417Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977135603U JPS5913417Y2 (en) 1977-10-07 1977-10-07 gas flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977135603U JPS5913417Y2 (en) 1977-10-07 1977-10-07 gas flow control valve

Publications (2)

Publication Number Publication Date
JPS5461320U JPS5461320U (en) 1979-04-27
JPS5913417Y2 true JPS5913417Y2 (en) 1984-04-20

Family

ID=29106052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977135603U Expired JPS5913417Y2 (en) 1977-10-07 1977-10-07 gas flow control valve

Country Status (1)

Country Link
JP (1) JPS5913417Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127621A (en) * 1976-04-19 1977-10-26 Matsushita Electric Ind Co Ltd Valve for controlling flow quantity of fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127621A (en) * 1976-04-19 1977-10-26 Matsushita Electric Ind Co Ltd Valve for controlling flow quantity of fluid

Also Published As

Publication number Publication date
JPS5461320U (en) 1979-04-27

Similar Documents

Publication Publication Date Title
US3570807A (en) Electromechanical control valve
US3368789A (en) Electromagnetic valve
US4690371A (en) Electromagnetic valve with permanent magnet armature
US6220569B1 (en) Electrically controlled proportional valve
US4159026A (en) Solenoid operated pilot valve
JPH0219845Y2 (en)
JPS5913417Y2 (en) gas flow control valve
US6328279B1 (en) Miniature electrically operated diaphragm valve
JPS6343632B2 (en)
JPS6060383A (en) Solenoid valve with inelastic interrupting section
JPS6256679A (en) Solenoid controlled valve
WO1988010388A1 (en) Solenoid valve
JPS599283Y2 (en) control valve
JP2765733B2 (en) Flow control valve with closing function
JPH071568Y2 (en) Gas proportional control valve
JPS6046307B2 (en) fluid flow control valve
GB2181818A (en) Fluid flow control valve
JPH0636373Y2 (en) Proportional control valve with closing function
JPS58102882A (en) Proportional control valve for gas
JP2743023B2 (en) Solenoid valve with closing function
JPH07113432B2 (en) Proportional control valve for gas
JPS5918215Y2 (en) solenoid valve
JPS629077A (en) Control valve
JPS5936155B2 (en) pressure controller
JPS61149675A (en) Gas pressure control device