JPH0627558B2 - Motorized valve control method - Google Patents

Motorized valve control method

Info

Publication number
JPH0627558B2
JPH0627558B2 JP58206611A JP20661183A JPH0627558B2 JP H0627558 B2 JPH0627558 B2 JP H0627558B2 JP 58206611 A JP58206611 A JP 58206611A JP 20661183 A JP20661183 A JP 20661183A JP H0627558 B2 JPH0627558 B2 JP H0627558B2
Authority
JP
Japan
Prior art keywords
flow rate
shock wave
cycle
valve
applied voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58206611A
Other languages
Japanese (ja)
Other versions
JPS6098276A (en
Inventor
恵 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58206611A priority Critical patent/JPH0627558B2/en
Publication of JPS6098276A publication Critical patent/JPS6098276A/en
Publication of JPH0627558B2 publication Critical patent/JPH0627558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気調和機、冷蔵庫等の冷凍、空調機器に用い
られる熱電式膨張弁、可逆電磁比例弁等減圧機構付き電
動弁の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for controlling a thermoelectric expansion valve, a reversible solenoid proportional valve, or other motor-operated valve with a decompression mechanism used in air conditioners, refrigerators, and other refrigeration and air conditioning equipment. Regarding

(ロ)従来技術 この種電動弁は「電気的加熱手段を有するバイメタル式
熱応動弁」として特公昭58−7869号公報にて紹介
されている。この電動弁には通電閉弁型と、通電開弁型
との二種類があり、その作動特性については上記公報及
び刊行物「冷凍」の第56巻第641号(昭和56年3
月号)の第60頁〜第64頁で詳細に説明されている。
(B) Prior Art This type of motor-operated valve is introduced in Japanese Patent Publication No. 58-7869 as a "bimetal type thermo-responsive valve having an electric heating means". There are two types of this motor-operated valve, an energizing valve closing type and an energizing valve opening type, and the operating characteristics thereof are described in the above publication and the publication "Freezing", Vol. 56, No. 641 (March 1981).
Monthly issue, pp. 60-64.

上記電動弁の作動特性は、通電部となるヒータに印加し
た電圧と、冷媒流量との関係が基本特性となる。上記刊
行物の第61頁の第2図には通電閉弁型及び通電開弁型
の流量特性が示され、何れも理論的には全閉から全開ま
で広範囲の制御が可能であるが、実際に使用するときに
は、制御方式が簡略化できるように流量特性の直線部分
を使用している。
The basic characteristic of the operating characteristics of the motor-operated valve is the relationship between the voltage applied to the heater serving as the energizing portion and the refrigerant flow rate. FIG. 2 on page 61 of the above publication shows the flow characteristics of the energizing valve closing type and the energizing valve opening type, both of which theoretically can control a wide range from fully closed to fully opened. The straight line portion of the flow rate characteristic is used so that the control method can be simplified.

即ち、かゝる制御方法では、通電部の印加電圧をアナロ
グ電圧としているために、流量特性が全体として曲線と
なり、その結果、この曲線の直線部分の狭い範囲のみの
制御しか行なうことができなかった。
That is, in such a control method, since the applied voltage of the current-carrying portion is an analog voltage, the flow rate characteristic becomes a curve as a whole, and as a result, only a narrow range of the linear portion of this curve can be controlled. It was

そこで、本願発明者は、(株)鷺官製作所の通電閉弁型
電動弁(熱電式膨張弁)SQX−22012D(差圧1
0kg)を使用して上記流量特性の裏付けを取る実験を行
なった。
Therefore, the inventor of the present application has found that the electric valve closing type electric valve (thermoelectric expansion valve) SQX-22012D (differential pressure 1) manufactured by Sagikan Seisakusho Co., Ltd.
An experiment was conducted to confirm the above flow rate characteristics using 0 kg).

その実験結果を第1図に示す。かゝる実験では、冷媒流
量と空気流量との間に双方共に流体で一義的な関係があ
る点に鑑み、冷媒流量を空気流量に置換してもその特性
が損なわれることがないので、電動弁を通過する流体と
して空気流を使用した。
The experimental results are shown in FIG. In such an experiment, in consideration of the fact that both the flow rate of the refrigerant and the flow rate of the air have a unique relationship with the fluid, even if the flow rate of the refrigerant is replaced with the air flow rate, the characteristic is not deteriorated. Airflow was used as the fluid passing through the valve.

実験結果によれば、制御量となるアナログ電圧(印加電
圧)Eと、操作量となる空気流量GAとの間には直線的
な関係は殆んどなく、空気流量特性が曲線となった。即
ち、冷凍装置の被冷却側負荷、例えば冷蔵庫にあっては
庫内負荷の増減に伴ない、電動弁に入る冷媒流量を変化
させるために、この変化に合わせてアナログ電圧Eを変
変えると、その時々のアナログ電圧Eにより同じ制御量
の変化分△E、例えば0.5Vに対しての操作量△GAの
変化分が第1図及び下記の表に示す如く表われる。
According to the experimental results, there is almost no linear relationship between the analog voltage (applied voltage) E that is the control amount and the air flow rate GA that is the operation amount, and the air flow rate characteristic becomes a curve. That is, if the load on the cooled side of the refrigeration system, for example, in a refrigerator, the load on the refrigerator is increased or decreased, the flow rate of the refrigerant entering the motor-operated valve is changed. A change amount ΔE of the same control amount, for example, a change amount of the manipulated variable ΔGA with respect to 0.5 V is displayed by the analog voltage E at each time as shown in FIG. 1 and the table below.

この様に、通電部に印加されるアナログ電圧Eの制御量
の変化分△Eが同じでも、操作量△GAの値が変化する
ため、同じ操作量の変化分△GAを得る場合には制御量
△GAの決定(弁の開度調整)が難かしく、即ち流量特
性の曲線部分における制御が難かしく、上記刊行物で述
べられた欠点を確認できた。
In this way, even if the change amount ΔE of the control amount of the analog voltage E applied to the current-carrying portion is the same, the value of the operation amount ΔGA changes, and therefore, when the same change amount ΔGA of the operation amount is obtained, the control is performed. It was difficult to determine the amount ΔGA (adjustment of the opening of the valve), that is, it was difficult to control the curve portion of the flow rate characteristic, and the drawbacks described in the above publication were confirmed.

(ハ)発明の目的 本発明は従来技術の欠点を解決すると共に、制御量(印
加電圧=パルス数)と操作量(空気流量=開口面積)と
の関係を直線に表わし、電動弁の制御を簡単に行なえる
様にすることを目的とする。
(C) Purpose of the invention The present invention solves the drawbacks of the prior art and represents the relationship between the controlled variable (applied voltage = number of pulses) and the manipulated variable (air flow rate = opening area) in a straight line to control the motor-operated valve. The purpose is to make it easy to do.

(ニ)発明の構成 本発明は、開口面積の変化が印加電圧の2乗に比例する
ような特性を有し、全開から全閉迄、またはその逆に任
意で開口面積を可変に制御できる熱電式膨張弁の通電部
に、ひずみ波の一種である方形衝撃波を時間間隔をもっ
て印加する際に、前記方形衝撃波の実効値を第1の周期
に対するHIGHの時間に比の1/2乗に比例させ、且
つ、前記第1の周期をこの第1の周期より短い第2の周
期で分割して準パルスを形成し、前記HIGHの時間を
複数個の基準パルスの群として方形衝撃波を印加して制
御量と操作量との関係を広範囲にわたって略直線として
なる電動弁の制御方法である。
(D) Structure of the Invention The present invention has a characteristic that the change of the opening area is proportional to the square of the applied voltage, and the opening area can be variably controlled from fully open to fully closed or vice versa. When a rectangular shock wave, which is a kind of distorted wave, is applied to the energization part of the expansion valve at time intervals, the effective value of the rectangular shock wave is proportional to the 1/2 power of the ratio of the HIGH time to the first cycle. In addition, the first cycle is divided into a second cycle shorter than the first cycle to form a quasi-pulse, and the HIGH time is controlled by applying a rectangular shock wave as a group of a plurality of reference pulses. This is a method for controlling a motor-operated valve in which the relationship between the quantity and the manipulated value is substantially linear over a wide range.

(ホ)発明の実施例 第2図は冷凍装置の制御回路で、冷媒回路(A)と電気回
路(B)とを示す。前記冷媒回路は冷媒電動圧縮機(1)、凝
縮器(2)、上記した公知の減圧機構付き電動弁(3)、蒸発
器(4)等の冷凍部品を配管によって環状に接続すること
により構成され、所定の冷凍サイクルを形成して被冷却
側負荷(5)を冷却する。又、前記電気回路はマイクロプ
ロセッサ等からなる制御中心部(6)と、1次側(7A)と2
次側(7B)とに跨がるフォトカブラー(8)、PNPトラン
ジスタ(9)(10)、固定抵抗(11)(12)(13)を備えたインタ
ーフェイス部(7)と、出力部(14)とからなり、出力部(1
4)から方形衝撃波の実効値を印加電圧として電動弁(3)
の通電部に与える。
(E) Embodiment of the Invention FIG. 2 is a control circuit of a refrigerating apparatus, showing a refrigerant circuit (A) and an electric circuit (B). The refrigerant circuit comprises a refrigerant electric compressor (1), a condenser (2), a motorized valve with a known decompression mechanism described above (3), an evaporator (4) and the like, which are connected in an annular shape by piping. Then, a predetermined refrigeration cycle is formed to cool the load (5) to be cooled. Further, the electric circuit includes a control center portion (6) including a microprocessor and the like, a primary side (7A) and a control center portion (2).
An interface section (7) equipped with a photo-curbler (8), PNP transistors (9) and (10), fixed resistors (11), (12) and (13) straddling the secondary side (7B), and an output section (14). ) And the output part (1
From 4), the effective value of the square shock wave is applied voltage, and the motor-operated valve (3)
To the energized part of.

前記電動弁の制御性を改善するためには制御量(印加電
圧E)対操作量(空気流量G)の関係を直線関係に表
現できればよい。例えば、 という一次式が得られゝば、操作量の変化分△Gが制
御量Eの大きさや位置に依存する事態を解消できる。
In order to improve the controllability of the motor-operated valve, it suffices if the relationship between the controlled variable (applied voltage E) and the manipulated variable (air flow rate G A ) can be expressed in a linear relationship. For example, Linear equation is obtainedゝif that can solve the situation where variation △ G A of the operation amount depends on the size and position of the control amount E.

上記印加電圧相当値を得るためには、波形のHIGH
時間の長さによる実効値の直流電圧相当値、即ち方形衝
撃波の実効値電圧を利用する必要がある。
In order to obtain the value equivalent to the applied voltage, the waveform HIGH
It is necessary to use the value corresponding to the DC voltage of the effective value depending on the length of time, that is, the effective value voltage of the rectangular shock wave.

上記方形衝撃波については第3図でその波形及び実効値
を示す。かゝる図面から印加電圧相当値Ee〔V〕は、 となり、印加電圧相当値、即ち実効値は周期Tに対する
HIGHの時間τの比の1/2乗に比例する。
The waveform and effective value of the above rectangular shock wave are shown in FIG. From such drawings, the applied voltage equivalent value Ee [V] is Therefore, the value corresponding to the applied voltage, that is, the effective value is proportional to the 1/2 power of the ratio of HIGH time τ to the period T.

次に、印加電圧E〔V〕対空気流量G〔M/H〕を
解析する。
Next, the applied voltage E [V] vs. air flow rate G A [M 3 / H] is analyzed.

上記第1図の曲線を曲線近似すると、略下記の式にな
る。
When the curve of FIG. 1 is approximated by a curve, the following equation is obtained.

=G〔MAX〕−k− 即ち、印加電圧の2乗で流量に変化が表われるのがわか
る。更に、印加電圧Eで上記式を微分すれば となり、電圧の大きさによる流量の割合がよく分る。具
的的に述べれば小さい印加電圧のときには、少ししか空
気流量が変化しないのに、大きい印加電圧になる程、空
気流量の変化が多量になり、電動弁(3)の制御が難しく
なる。
G A = G A [MAX] −k 1 E 2 − That is, it can be seen that the flow rate changes with the square of the applied voltage. Furthermore, if the above equation is differentiated by the applied voltage E, Therefore, the ratio of the flow rate depending on the magnitude of the voltage is well understood. Concretely speaking, when the applied voltage is small, the air flow rate changes only slightly, but as the applied voltage increases, the air flow rate changes more and control of the motor-operated valve (3) becomes difficult.

次に、方形衝撃波の実効値で与えた印加電圧対空気流量
について説明すると、上記式を式に代入して 〔k=kEH/Tとする〕 の式が得られるか、かゝる式によれば、空気流量G
方形衝撃波のHIGH時間τの一次式として得られ、上
記式における困難を解決でき、制御性が向上する。
Next, the applied voltage versus the air flow rate given by the effective value of the rectangular shock wave will be explained. Substituting the above equation into the equation The equation [k 3 = k 1 EH 2 / T] can be obtained, or according to such an equation, the air flow rate G A can be obtained as a linear equation of the HIGH time τ of the rectangular shock wave, which is difficult in the above equation. Can be solved and controllability is improved.

次に、方形衝撃波の構成を具体的な値で表わし、 但し、τ:基準パルス:周期(第2周期)5msec とし、又HIGH時間τを基準パルスの個数を群として
扱える様にした。その結果、0≦N≦200〔個/秒〕
で、0≦Ee≦11.4〔V〕となる。
Next, the composition of the square shock wave is expressed by specific values, However, τ s : reference pulse: period (second period) is set to 5 msec, and the HIGH time τ can be treated as a group of the number of reference pulses. As a result, 0 ≦ N ≦ 200 [pieces / second]
Then, 0 ≦ Ee ≦ 11.4 [V].

この状態での波形は第4図に示す様になり、又その実効
値Eeは となり、第4図及び第5図に示すようになる。
The waveform in this state is as shown in Fig. 4, and its effective value Ee is And as shown in FIGS. 4 and 5.

又、方形衝撃波のパルス数対空気流量Gの関係を上記
式よりみると、 G=G〔MAX〕−kτ =G〔MAX〕−k×(Nτ) =G〔MAX〕−kN 〔k=kτとする〕 となる。この関係は第6図に示す空気流量特性となり、
右下がりの直線にて空気流量特性、即ちパルス数の変化
に伴う開口面積の変化を表すことができる。
Further, when the relationship between the number of pulses of the rectangular shock wave and the air flow rate G A is examined from the above formula, G A = G A [MAX] −k 3 τ = G A [MAX] −k 3 × (N τ s ) = G A [MAX] −k 4 N [k 4 = k 3 τ s ]. This relationship is the air flow rate characteristic shown in FIG.
A straight line descending to the right can represent the air flow rate characteristic, that is, the change in the opening area with the change in the number of pulses.

従って、電動弁(3)を全閉から全開迄の制御が行なえ、
流量特性のどの部分をとっても直線制御となる。
Therefore, the motorized valve (3) can be controlled from fully closed to fully open,
Linear control is achieved at any part of the flow rate characteristic.

(ヘ)効果 本発明は熱電式膨張弁に方形衝撃波を印加する際に、方
形衝撃波の実効値を第1の周期に対するHIGHの時間
の比の1/2乗に比例させ、且つ、前記第1の周期をこの
第1の周期より短い第2の周期で分割して基準パルスを
形成し、前記HIGHの時間を複数個の基準パルスの群
として方形衝撃波を印加するので、下記に列挙する効果
を奏する。
(F) Effects The present invention makes the effective value of the rectangular shock wave proportional to the 1/2 power of the ratio of the time of HIGH to the first cycle when applying the rectangular shock wave to the thermoelectric expansion valve, and Is divided by a second period shorter than the first period to form a reference pulse, and a rectangular shock wave is applied with the HIGH time as a group of a plurality of reference pulses. Play.

制御量対操作量の関係、即ち基準パルス群の時間割合
の変化によって熱電式膨張弁に印加される電圧の実効値
が変化し、熱電式膨張弁の開口面積の制御精度を向上す
ることができると共に、実効値に基づいて変化する熱電
式膨張弁の流量特性が広範囲にわたり直線となり、熱電
式膨張弁を全開さら全閉迄、またはその逆に任意の位置
で開口面積を可変に制御でき、さらに、流量特性のどの
部分を取っても直線であるために所定範囲の制御が簡単
になり、又被冷却側に負荷変動があっても開口面積を変
更しつつ冷媒を減圧しながらその収斂を容易に行え、全
体として安定した冷却効果が得られる。
The effective value of the voltage applied to the thermoelectric expansion valve changes due to the relationship between the control amount and the operation amount, that is, the change in the time ratio of the reference pulse group, and the control accuracy of the opening area of the thermoelectric expansion valve can be improved. At the same time, the flow rate characteristic of the thermoelectric expansion valve that changes based on the effective value becomes linear over a wide range, and the opening area can be variably controlled at any position until the thermoelectric expansion valve is fully opened and fully closed, or vice versa. Since it is a straight line regardless of which part of the flow rate characteristic is taken, it is easy to control within a predetermined range, and even if there is a load fluctuation on the cooled side, it is possible to reduce the pressure of the refrigerant while changing the opening area and to easily converge it. Therefore, a stable cooling effect can be obtained as a whole.

被冷却側負荷の変動に応じ制御量が多様に変化して
も、操作量の変化分は略一定なので、過熱度を最適な状
態に維持でき、蒸発器の熱交換効率の向上が図れる。
Even if the controlled variable varies in various ways according to the fluctuation of the load on the cooled side, the amount of change in the manipulated variable is substantially constant, so that the degree of superheat can be maintained in an optimum state and the heat exchange efficiency of the evaporator can be improved.

被冷却側負荷の変動が生じても過熱度を略一定に維持
できるので、冷媒電動圧縮機への液戻りが少なくなり、
冷凍装置の安全性が向上する。
Even if the load on the cooled side fluctuates, the degree of superheat can be maintained at a substantially constant level, reducing the amount of liquid returning to the refrigerant electric compressor,
The safety of the refrigeration system is improved.

波形の発生がデジタル処理に適しているので、電気回
路の構成が扱いやすくなる。
Since the waveform generation is suitable for digital processing, the configuration of the electric circuit is easy to handle.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来技術の制御方法による流量特性図、第2図
は本発明にかゝる電動弁を備えた冷凍装置の制御回路
図、第3図は方形衝撃波の基本波形図、第4図は本発明
にかゝる方形衝撃波の構成図、第5図は第4図の基準パ
ルス図、第6図は本発明の制御方法による流量特性図で
ある。
FIG. 1 is a flow rate characteristic diagram according to a control method of the prior art, FIG. 2 is a control circuit diagram of a refrigerating device equipped with an electric valve according to the present invention, FIG. 3 is a basic waveform diagram of a rectangular shock wave, and FIG. Is a block diagram of a rectangular shock wave according to the present invention, FIG. 5 is a reference pulse diagram of FIG. 4, and FIG. 6 is a flow rate characteristic diagram by the control method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開口面積の変化が印加電圧の2乗に比例す
るような特性を有し、全開から全閉迄、またはその逆に
任意の位置で開口面積を可変に制御できる熱電式膨張弁
の通電部に、ひずみ波の一種である方形衝撃波を時間間
隔をもって印加する際に、前記方形衝撃波の実効値を第
1の周期に対するHIGHの時間の比の1/2乗に比例
させ、且つ、前記第1の周期をこの第1の周期より短い
第2の周期で分割して基準パルスを形成し、前記HIG
Hの時間を複数個の基準パルスの群として方形衝撃波を
印加して制御量と操作量との関係を広範囲にわたって略
直線とすることを特徴とする電動膨張弁の制御方法。
1. A thermoelectric expansion valve having a characteristic that the change of the opening area is proportional to the square of the applied voltage and capable of variably controlling the opening area at any position from fully open to fully closed or vice versa. When a rectangular shock wave, which is a kind of distorted wave, is applied to the current-carrying part at a time interval, the effective value of the square shock wave is proportional to the 1/2 power of the ratio of the HIGH time to the first cycle, and The first cycle is divided by a second cycle shorter than the first cycle to form a reference pulse,
A method for controlling an electric expansion valve, characterized in that a time period of H is used as a group of a plurality of reference pulses and a rectangular shock wave is applied to make a relationship between a control amount and an operation amount substantially linear over a wide range.
JP58206611A 1983-11-01 1983-11-01 Motorized valve control method Expired - Lifetime JPH0627558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206611A JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206611A JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Publications (2)

Publication Number Publication Date
JPS6098276A JPS6098276A (en) 1985-06-01
JPH0627558B2 true JPH0627558B2 (en) 1994-04-13

Family

ID=16526245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206611A Expired - Lifetime JPH0627558B2 (en) 1983-11-01 1983-11-01 Motorized valve control method

Country Status (1)

Country Link
JP (1) JPH0627558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005048726B4 (en) 2005-10-12 2010-09-16 Airbus Deutschland Gmbh leak

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204381A (en) * 1981-06-12 1982-12-15 Saginomiya Seisakusho Inc Flow rate control method and apparatus

Also Published As

Publication number Publication date
JPS6098276A (en) 1985-06-01

Similar Documents

Publication Publication Date Title
US4674292A (en) System for controlling flow rate of refrigerant
CA2106559A1 (en) System of two zone refrigerator temperature control
JPS6025285B2 (en) Control device
JPS63150551A (en) Air-conditioning system and control method of speed of compressor and speed of motor in said system
JPH0627558B2 (en) Motorized valve control method
JPS6130127Y2 (en)
KR100351507B1 (en) Air-conditioning system for real time control and control method thereof
JPH086952B2 (en) Refrigeration cycle control device
JP2845981B2 (en) Vehicle air conditioner
JPS59137676A (en) Expansion valve
RU2052739C1 (en) Method of control of capacity of refrigerating machine compressor
JPH09250867A (en) Refrigerator
JPH0133713B2 (en)
JPS62238109A (en) Refrigerant flow rate control system for automobile
JP2567649B2 (en) Absorption refrigerator
JPS57108538A (en) Apparatus for controlling operation of air conditioner
JPS6353473B2 (en)
JPH0322555B2 (en)
JPS5694140A (en) Function control device for compressor in air conditioner
EP1361400A2 (en) Thermostatic expansion valve
JPS6410073A (en) Decompression device
JPS6056622A (en) Air conditioning device for car
JPH03156194A (en) Air conditioner
JPH0777361A (en) Electrical expansion valve control device
JPS6255589B2 (en)