JPS5899575A - Valve - Google Patents

Valve

Info

Publication number
JPS5899575A
JPS5899575A JP56198025A JP19802581A JPS5899575A JP S5899575 A JPS5899575 A JP S5899575A JP 56198025 A JP56198025 A JP 56198025A JP 19802581 A JP19802581 A JP 19802581A JP S5899575 A JPS5899575 A JP S5899575A
Authority
JP
Japan
Prior art keywords
spring
valve
needle
current
operating spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56198025A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Noda
芳行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56198025A priority Critical patent/JPS5899575A/en
Publication of JPS5899575A publication Critical patent/JPS5899575A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/36Expansion valves with the valve member being actuated by bimetal elements or shape-memory elements influenced by fluids, e.g. by the refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To simplify the structure and obtain the quick response of a valve by shifting an opposing point between an operation spring made of shape-memorizing alloy and a bias spring opposite thereto for moving a needle to control discharge. CONSTITUTION:For example, in the case of an expansion valve, a valve body 7 is connected to refrigerating cycle via pipe 8 and 9, and the position of a needle 10 is maintained by a balancing power between an operation spring 13 made of shape-memorizing alloy and an opposing bias spring 12. Current can be supplied to the operation spring 13 from electrodes 16 and 17 via lead wires 18 and 19. When the current is supplied to the operation spring 13, the spring is shrinked, and the needle 10 is moved oppositely to the illustration of an arrow to increase the passing amount of refrigerant. This construction permits to regulate the gap between the needle 10 and a needle receiver 11 in accordance with the passing amount of the current.

Description

【発明の詳細な説明】 本発明は冷凍サイクルに備えられる膨張弁あるいは開閉
弁等の弁の構造の改良に係り、特に動作スプリングを形
状記憶合金で形成したものに関す(1) る○ ある種の合金では、原子が拡散することなしに起るマル
テンサイト変態は外力に対する応答が極めて早く、同じ
現象が繰返し再現できる性質をもち、このマルテンサイ
ト変態に付随して特異な物理的・機械的性質を持つこと
が知られている。この特異な性質の中でマルテンサイト
変態温度以下においである応力で変形しても、これを応
力ゼロのもとてマルテンサイト変態温度以上に加熱する
と、ある条件下で熱処理された形状、すなわち記憶され
た形状に戻ってしまう形状記憶効果を有する0又、マル
テンサイト変態温度以上でも応力をかけることによって
生ずる応力誘起マルテンサイトによる超弾性があり、こ
れらは数十度Cの狭い温度範囲で起りうる。そして、あ
る応力下でマルテンサイト変態温度以上の温度で安定な
応力誘起マルテンサイト相もさらに加熱されるとその応
力に打ち勝って母相に逆変態する。このとき、この合金
に生ずる力は、マルテンサイトを生じ変形するのに要し
た力よりもはるかに大きい。従って温(2) 度の差を力の差に変換することができ駆動源とする事が
できる。マルテンサイト変態温度や応力誘起マルテンサ
イトを生ずるのに要する応力の程度は、その合金の種類
、組成、製造方法、熱処理条件、合金の形状によって変
化し、それぞれ固有である。又、マルテンサイト変態温
度や応力誘起マルテンサイトの生ずる温度域は数十度C
の範囲であり常□温付近にその温度範囲をもつものが種
々あるO 従って、これらの合金(以下形状記憶合金と呼ぶ)を用
いることによって1駆動源とすることができ、本発明は
このような点に着目してなしたものであり、動作スプリ
ングとこの動作スプリングに対抗させて設置したバイア
スバネとを備えた弁において、前記動作スプリングを形
状記憶合金で形成し、前記動作スプリングとバイアスバ
ネの対抗点の移動によりニードルを動かして流体の流量
制御を行なうことを特命とした弁を提供するものである
[Detailed Description of the Invention] The present invention relates to an improvement in the structure of a valve such as an expansion valve or an on-off valve provided in a refrigeration cycle, and particularly relates to a structure in which an operating spring is formed of a shape memory alloy. In alloys of is known to have. Due to this unique property, even if it is deformed by a certain stress below the martensitic transformation temperature, if it is heated to above the martensitic transformation temperature under zero stress, it will retain the shape that was heat treated under certain conditions. In addition, there is superelasticity due to stress-induced martensite, which occurs when stress is applied even above the martensitic transformation temperature, and these can occur in a narrow temperature range of several tens of degrees Celsius. . When the stress-induced martensitic phase, which is stable at a temperature equal to or higher than the martensitic transformation temperature under a certain stress, is further heated, it overcomes the stress and transforms back into the parent phase. At this time, the force generated in this alloy is much greater than the force required to form and deform martensite. Therefore, a difference in temperature (2) degrees can be converted into a difference in force and can be used as a driving source. The martensitic transformation temperature and the degree of stress required to produce stress-induced martensite vary depending on the type of alloy, composition, manufacturing method, heat treatment conditions, and shape of the alloy, and are unique to each alloy. In addition, the martensite transformation temperature and the temperature range where stress-induced martensite occurs is several tens of degrees Celsius.
There are various types of alloys that have a temperature range near normal temperature.Therefore, by using these alloys (hereinafter referred to as shape memory alloys), one driving source can be obtained. The invention was developed by focusing on this point, and in a valve equipped with an operating spring and a bias spring installed opposite to the operating spring, the operating spring is formed of a shape memory alloy, and the operating spring and the bias spring are The present invention provides a valve whose special purpose is to control the flow rate of fluid by moving a needle by moving the opposite point of the valve.

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る弁を使用した冷凍サイクルのサイ
クル図、第2図は本発明に係る弁の構造を示した断□面
図である。
FIG. 1 is a cycle diagram of a refrigeration cycle using the valve according to the present invention, and FIG. 2 is a sectional view showing the structure of the valve according to the present invention.

まず、第1図について説明すると、■は冷媒圧縮機、2
は凝縮器、3は本発明に係る弁構造を有した膨張弁、4
は蒸発器、5および6は送風機である。
First, to explain Fig. 1, ■ is the refrigerant compressor, 2 is the refrigerant compressor,
3 is an expansion valve having a valve structure according to the present invention; 4 is a condenser;
is an evaporator, and 5 and 6 are blowers.

この第1図の冷凍サイクルにおいて、圧縮機1から吐出
された高温の冷媒ガスは、凝縮器2に入って送風機5の
送風で冷却されて凝縮し、そして膨張弁3で減圧され、
蒸発器4に入って送風機6の送風により蒸発し、再び圧
縮機1に戻って圧縮され、以後このサイクルを繰り返す
In the refrigeration cycle shown in FIG. 1, high-temperature refrigerant gas discharged from the compressor 1 enters the condenser 2, is cooled and condensed by the air blown by the blower 5, and is then depressurized by the expansion valve 3.
It enters the evaporator 4, is evaporated by the air blowing from the blower 6, returns to the compressor 1, is compressed, and repeats this cycle thereafter.

次に、本発明に係る弁構造を有した膨張弁3について第
2図で説明すると、まず7は弁本体、8゜9は冷凍サイ
クルに接続するパイプ、10il−1:ニードル、11
はニードル受け、12はバイアスバネ、13は前述した
形状記憶合金により形成された動作スプリングで弁本体
7とは絶縁物14及び15で絶縁されている。I6及び
17は動作スプリング13に電流を流すだめの電極で弁
本体7とはガラス密封+6a、+7a部等で絶縁されて
それぞれリード線18.19で動作スプリング13に接
続されている。
Next, the expansion valve 3 having the valve structure according to the present invention will be explained with reference to FIG. 2. First, 7 is the valve body, 8°9 is a pipe connected to the refrigeration cycle, 10il-1 is a needle, 11
12 is a bias spring; 13 is an operating spring made of the aforementioned shape memory alloy; and is insulated from the valve body 7 by insulators 14 and 15. I6 and 17 are electrodes for passing current through the operating spring 13, and are insulated from the valve body 7 by glass seals +6a, +7a, etc., and are connected to the operating spring 13 through lead wires 18 and 19, respectively.

動作スプリング13は無通電時は伸びて通電することに
より元の形状に縮まろうとする方向に動作するので、通
電量を多くすることによりニードル10が矢印と反対側
に動き、ニードル10とニードル受け12の間が大きく
なり通過冷媒量を多くし、逆に通電量を減らすことによ
りニードルIOは矢印方向に動いて通過冷媒量を減らす
ことができる。
The operating spring 13 expands when not energized and moves in the direction of contracting to its original shape when energized. Therefore, by increasing the amount of energization, the needle 10 moves in the opposite direction to the arrow, and the needle 10 and needle receiver 12 By increasing the gap between the two needles and increasing the amount of refrigerant passing through, and conversely reducing the amount of current, the needle IO moves in the direction of the arrow and can reduce the amount of refrigerant passing through.

従来のこのような膨張弁においては、一般にバイメタル
とヒータが使用されていたが、ヒータ過熱→熱伝導→バ
イメタル→動作というように発熱体(ヒータ)と動作体
(バイメタル)のふたつで構成されているため、その間
の絶縁が必要であり、構造も複雑となるものであった。
Conventional expansion valves of this type generally use a bimetal and a heater, but they are made up of a heating element (heater) and an operating element (bimetal), as follows: heater overheating → heat conduction → bimetal → operation. Therefore, insulation was required between them, and the structure was complicated.

本発明では上述の通り発熱体と動作体を兼用しているの
で構造も簡単で応答性も早くできる。
In the present invention, as described above, the heating element and the operating element are both used, so the structure is simple and the response is quick.

第2図に示した構造は、通電すると弁が開く方向に動作
するが、動作スプリング13とバイアスバネ12を逆に
すれば通電時に閉じる方向に動作させることもできる。
In the structure shown in FIG. 2, the valve operates in the opening direction when energized, but if the operating spring 13 and bias spring 12 are reversed, the valve can also be operated in the closing direction when energized.

本発明の応用として膨張弁ではなく、通常の弁として、
常時閉通電時開、及び常時開通電時閉の遅延動作電動弁
等としても利用できる。
As an application of the present invention, not as an expansion valve but as a normal valve,
It can also be used as a delayed action motor-operated valve that is normally closed and opens when energized, and normally open and closes when energized.

また、開度の制御は通電による以外にも、通過冷媒の温
度により開度を制御することもできる。
In addition to controlling the opening degree by applying electricity, the opening degree can also be controlled by the temperature of the passing refrigerant.

例えば、第2図の構造で通電しなくとも冷媒50℃が流
れてくると開き、低温冷媒が流れてくると閉じる。
For example, in the structure shown in FIG. 2, even if no electricity is applied, it opens when refrigerant of 50° C. flows, and closes when low-temperature refrigerant flows.

上述したように本発明によれば、従来の発熱体に相当す
るものと動作体とが兼用された形となるので、構造が従
来に比べて簡単になり、応答性も早くできる。
As described above, according to the present invention, an element corresponding to a conventional heating element and an operating element are combined, so that the structure is simpler than that of the conventional one, and the response is faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る弁を使用した冷凍サイクルのサイ
クル図、第2図は本発明に係る弁の構造を示した断面図
である。 7:弁本体、10:ニードル、12:バイアスバネ、1
3:動作スプリング。 代理人 弁理士 福 士 愛 彦 t7) 茅1図 第2 図
FIG. 1 is a cycle diagram of a refrigeration cycle using the valve according to the present invention, and FIG. 2 is a sectional view showing the structure of the valve according to the present invention. 7: Valve body, 10: Needle, 12: Bias spring, 1
3: Operation spring. Agent Patent Attorney Aihiko Fuku t7) Kaya Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 ■、動作スプリングとこの動作スプリングに対抗させて
設置したバイアスバネとを備えた弁において、前記動作
スプリングを形状記憶合金で形成し、前記動作スプリン
グとバイアスバネの対抗点の移動によりニードルを動か
して流体の流量制御を行なうことを特徴とした弁。 2 形状記憶合金で形成した動作スプリングの動作を通
電により制御することを特徴とする特許請求の範囲第1
項記載の弁。 3、形状記憶合金で形成した動作スプリングの動作を流
体自身の温度で制御することを特徴とする特許請求の範
囲第1項記載の弁。
[Scope of Claims] (1) In a valve equipped with an operating spring and a bias spring installed opposite to the operating spring, the operating spring is formed of a shape memory alloy, and the opposing point between the operating spring and the bias spring is A valve characterized by controlling the flow rate of fluid by moving a needle. 2. Claim 1, characterized in that the motion of a motion spring formed of a shape memory alloy is controlled by energization.
Valve as described in section. 3. The valve according to claim 1, wherein the operation of the operating spring made of a shape memory alloy is controlled by the temperature of the fluid itself.
JP56198025A 1981-12-08 1981-12-08 Valve Pending JPS5899575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198025A JPS5899575A (en) 1981-12-08 1981-12-08 Valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198025A JPS5899575A (en) 1981-12-08 1981-12-08 Valve

Publications (1)

Publication Number Publication Date
JPS5899575A true JPS5899575A (en) 1983-06-13

Family

ID=16384265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198025A Pending JPS5899575A (en) 1981-12-08 1981-12-08 Valve

Country Status (1)

Country Link
JP (1) JPS5899575A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128972U (en) * 1983-02-18 1984-08-30 三洋電機株式会社 washing machine valve device
JPS60196072U (en) * 1984-06-01 1985-12-27 ダイキン工業株式会社 On-off valve
JPS614084U (en) * 1984-06-13 1986-01-11 エヌテ−シ−工業株式会社 electric valve
JPS61202775U (en) * 1985-06-10 1986-12-19
JPS62183212U (en) * 1986-05-07 1987-11-20
FR2725013A1 (en) * 1994-09-22 1996-03-29 Air Liquide Joule-Thomson cooling of infra red detectors
JP2007024486A (en) * 2005-06-16 2007-02-01 Tgk Co Ltd Expansion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128972U (en) * 1983-02-18 1984-08-30 三洋電機株式会社 washing machine valve device
JPS6145432Y2 (en) * 1983-02-18 1986-12-20
JPS60196072U (en) * 1984-06-01 1985-12-27 ダイキン工業株式会社 On-off valve
JPS614084U (en) * 1984-06-13 1986-01-11 エヌテ−シ−工業株式会社 electric valve
JPS61202775U (en) * 1985-06-10 1986-12-19
JPH0514066Y2 (en) * 1985-06-10 1993-04-14
JPS62183212U (en) * 1986-05-07 1987-11-20
FR2725013A1 (en) * 1994-09-22 1996-03-29 Air Liquide Joule-Thomson cooling of infra red detectors
JP2007024486A (en) * 2005-06-16 2007-02-01 Tgk Co Ltd Expansion device

Similar Documents

Publication Publication Date Title
EP4083547A1 (en) Refrigerator
JPS5899575A (en) Valve
JPS61262560A (en) Heat pump type air conditioner
JPS59195045A (en) Control method of defrosting operation of refrigeration cycle
US3299237A (en) Defroster control or the like
JPH025334Y2 (en)
JPH0429322Y2 (en)
JPS6039729Y2 (en) control valve
JPS5944553A (en) Air conditioner
JPH01107069A (en) Multi-chamber type air conditioner
JP2643708B2 (en) Air conditioner
KR200259305Y1 (en) freezing circuit saving power by re-heating construction
KR890003822Y1 (en) Air conditioner combined defrost circuit
KR0156386B1 (en) Heat pump having frost remover
JPS6360302B2 (en)
JP2001153477A (en) Refrigerating plant
JPH04103965A (en) Cooling and heating device
JPS6025708B2 (en) absorption refrigeration equipment
JP2998418B2 (en) Air conditioner
JPS58174770A (en) Valve
JPH042377Y2 (en)
JPS60108668A (en) Decompression device for refrigerator
JPH09236354A (en) Absorption type heat pump
JPH0515948B2 (en)
JPS63172866A (en) Refrigerator using self-excited compressor and heat pump device